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Dicke model with disordered spin-boson couplings
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We introduce and study the disordered Dicke model in which the spin-boson couplings are drawn from a
random distribution with some finite width. Regarding the quantum phase transition, we show that, when the
standard deviation σ of the coupling strength gradually increases, the critical value of the mean coupling strength
μ gradually decreases, and after a certain σ there is no quantum phase transition at all; the system always lies
in the superradiant phase. We derive an approximate expression for the quantum phase transition in the presence
of disorder in terms of μ and σ , which we numerically verify. Studying the thermal phase transition in the
disordered Dicke model, we obtain an analytical expression for the critical temperature in terms of the mean
and standard deviation of the coupling strength. We observe that, even when the mean of the coupling strength
is zero, there is a finite temperature transition if the standard deviation of the coupling is sufficiently high.
Disordered couplings in the Dicke model will exist in quantum dot superlattices, and we also sketch how they
can be engineered and controlled with ultracold atoms or molecules in a cavity.
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I. INTRODUCTION

The Dicke model [1], which describes the interaction be-
tween light and matter, is of fundamental importance within
the field of quantum optics. It exhibits a variety of interesting
phase transitions covering quantum phase transitions [2–6]
(QPT), excited-state quantum phase transitions [7,8] (ES-
QPT), and thermal phase transitions [7–11] (TPT). The QPT
takes place in the thermodynamic limit of infinite atom num-
ber N → ∞, where the system goes from the normal phase
(NP) to the superradiant phase (SP) [12] at some critical cou-
pling strength gc [3] between spins and bosons. If temperature
is introduced to the system, for g > gc, there is a critical
temperature Tc, above which the system returns to the NP from
the SP, whereas for g < gc the system lies in the NP for all
temperatures [7–9,13–16].

Here, we generalize the standard Dicke model towards dis-
order in the coupling strength g for which we propose several
practical realizations. While the role of disorder in the more
general spin-boson model has been considered both in theoret-
ical [17–24] and experimental [25–27] studies, the exploration
of disorder-induced phenomena within this context is still at a
nascent stage. The earlier work mainly focused on the study of
polariton physics whereas we show that, if we introduce dis-
order with a sufficiently broad distribution into the coupling
strength between spins and bosons, there exists a QPT (or at
least a cross over) as well as a TPT even for vanishing mean
coupling. We study mutual information [28–30] between two
spins as a function of temperature whose usefulness was
demonstrated for clean Dicke models previously [8,31]. We
investigate our system both analytically and numerically, with
results in agreement. Additionally, we propose experimental
platforms with ultracold atoms or molecules in a cavity, which
can confirm our results.

In the usual clean Dicke model, it is well known that
the QPT [2–6] occurs at some critical light matter coupling
strength. We find that, for the disordered Dicke model, both

the mean and the standard deviation of the random coupling
distribution play a crucial role in the QPT. If either one of
them or both are high, then the ground state exhibits super-
radiant behavior. To show this, we numerically calculate the
ground-state energy and average boson number as a function
of the coupling distribution for the disordered Dicke model.
We show how a symmetry of the Hamiltonian can be exploited
along with a heuristic argument to obtain the line of quantum
criticality in an accurate manner.

To understand the thermal phase transition, we follow
methods for which the basis was laid in Refs. [9,32], and
calculate the partition function of the disordered Dicke model
to obtain the critical temperature in terms of the disorder
coupling strength. Numerically we calculate the mutual infor-
mation between two spins for the disordered Dicke model by
a method similar to our earlier work [8] for the usual Dicke
model. When the width of the disorder is sufficiently high,
there is a finite temperature transition from the SP to the NP
even if the mean of the coupling strength is zero. We can
predict the critical temperature of this transition analytically,
signatures for which are also seen in the mutual information
found numerically.

Earlier studies of disorder in the Dicke model considered
the multimode case [33]. In contrast, we sketch several pos-
sible realizations of disorder in the single-mode Dicke model.
It can naturally arise in semiconductor quantum dot lattices
(see for, e.g., Ref. [34]), where each quantum dot can have
a varied orientation relative to propagating electric fields, yet
due to the small structure all dots effectively radiate into a
single mode, causing superradiance. One can also engineer
controlled realizations by transforming a random spatial dis-
tribution of atoms within an optical cavity [35] relative to
a varying electric field amplitude into a distribution of cou-
plings. Other possibilities include ultracold molecules whose
fixed transition dipoles are randomly oriented with respect to
the cavity field direction.
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FIG. 1. Schematic of the disordered Dicke model where N two-
level atoms are coupled to a single-mode bosonic field with different
spin-boson coupling strengths gk and two possible realizations. The
frequency of the bosonic mode is ω and the gap between two levels
|1〉 and |2〉 of each atom is ω0. (left) These could be ultracold
molecules whose fixed transition dipoles are randomly oriented with
regard to (wrt) the cavity field direction (green) or (right) atoms
under the influence of an additional external field that breaks their
symmetry, such as the magnetic field around a wire (red).

The organization of the article is as follows. In the next
section we will discuss the system Hamiltonian for the disor-
dered Dicke model. In Secs. III and IV we present our results
regarding the two types of phase transitions: QPT and TPT. In
Sec. V we outline several possible experimental realisations.
Finally in Sec. VI we provide a summary of our work.

II. MODEL HAMILTONIAN AND QUANTIFIERS

In Fig. 1 we show a schematic of the disordered Dicke
model. The Hamiltonian consists of a single-mode bosonic
field coupled to N atoms with a coupling strength that is mod-
eled as a random variable. The Hamiltonian can be written as

H = ωa†a + ω0

2

N∑
i=1

σ (i)
z + 1√

N
(a† + a)

N∑
i=1

giσ
(i)
x , (1)

where the operators a and a† are the bosonic annihilation
and creation operators, respectively, following the commu-
tation relation [a, a†] = 1, and the N spin-1/2 atoms are
described by Pauli matrices σ (i)

x,z acting on site i. Here, the
gi’s are random numbers drawn from two types of distri-
butions. In the first distribution, the gi’s are drawn from a
uniform unit box distribution with finite width (2ε) and height
A such that 2εA = 1. The parameters ε and A are chosen so
that 2ε = (μ + ε) − (μ − ε), ε = √

3σ , and hence A = 1
2
√

3σ

where μ and σ are the mean and the standard deviation. In
the second distribution, we consider gi ∝ cos θi, where θi are
angles randomly drawn from a Gaussian distribution p(θ ) ∼
exp([−(θ − θ0)2/σ 2

θ ]). Both can be engineered, e.g., in optical
cavities as sketched in Fig. 1 and discussed in Sec. V. Due
to the disorder in the coupling strengths, the total angular
momentum is not a conserved quantity of the Hamiltonian 1
and hence we have to consider all possible spin configurations.
For N spins, the corresponding dimension of the spin subspace
is 2N and the bosonic subspace dimension is nmax + 1, where
nmax is the maximal occupation we allow for the bosonic field.
Hence the total Hilbert space dimension for our numerical
calculations is ND = 2N (nmax + 1).

In the next sections we explore the QPT and TPT sepa-
rately, based on the properties of eigenvalues and eigenstates
of Eq. (1). We study useful quantifiers such as ground-state en-
ergy, average boson number, and mutual information between
two spins. For a mixed state (like a temperature equilibrated
state), the mutual information has been shown [8] to be an
appropriate quantity, although it contains both quantum and
classical correlations. We shall study the mutual informa-
tion [8,28–30,36] between two spins which are in a mixed
density matrix that is determined from the state of the overall
system. Defining the reduced density matrices of any two
selected spins to be ρ1 and ρ2 and the reduced density matrix
corresponding to the two-spin state to be ρ12, the mutual
information between the two spins can be computed using the
relation

I12 = S1 + S2 − S12, (2)

where S1,2 = −Tr[ρ1,2 ln(ρ1,2)], S12 = −Tr[ρ12 ln(ρ12)] are
the corresponding von Neumann entropies. Since we will be
interested in I12 at finite temperature, we will first construct the

total thermal density matrix ρTh = e− H
kBT , and then trace over

the bosonic subspace and the remaining (N − 2) or (N − 1)
spins. Since we will average over the disorder, it does not
matter which two spins are considered for the purpose of com-
puting mutual information. Another useful observable that we
employ to study the QPT is the average boson number 〈a†a〉
evaluated in the interacting ground state.

III. QUANTUM PHASE TRANSITION

It is well known that in the thermodynamic limit (when
the atom number N → ∞), the usual Dicke model exhibits
a quantum phase transition [4] from the normal phase to the
superradiant phase at some critical coupling strength gc. In the
disordered Dicke model, if we fix the mean of the coupling
strength at a sufficiently low value and vary the standard
deviation (σ ) we see a similar QPT. The QPT here is stud-
ied with the aid of the disorder-averaged energy and average
boson number in the ground state. In Figs. 2 and 3 we show
these properties in the ground state of the disordered Dicke
model, considering two types of distributions as discussed in
the previous section.

What we will empirically show now is that much of the
behavior of the disordered Dicke model can be understood
by averaging the known results for the disorder-free (clean)
model. This is not clear a priori since all the two-level systems
in the disordered model couple to the same bosonic mode and
thus get coupled. For the clean Dicke model, Emary et al. [2]
derived analytical results for the ground-state energy

EG =
{−Nω0

2 , g < gc,

−Nω0
4

[ g2

g2
c
+ g2

c
g2

]
, g > gc,

(3)

and the average boson number in the cavity

〈a†a〉 =
{

0, g < gc,

N
ω2

[
g2 − g4

c
g2

]
, g > gc,

(4)

where gc is the critical value of the coupling in the absence of
disorder. We will make use of the above results and integrate
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FIG. 2. Phase diagram of the disordered Dicke model with uni-
form coupling distribution [Eq. (8)]. To map it out, we show (a) the
ground-state energy EG and (b) the average boson number, 〈a†a〉 wrt
the ground state, as a function of the standard deviation σ and the
mean μ of the coupling parameters gi. We consider the resonant case
ω = ω0 = 1, take the average over 120 realizations, fix the atom
number to be N = 8, and the bosonic cutoff to be nmax = 40. Here
the dotted line is the critical line for the QPT:

√
μ2 + σ 2 = gc [see

Eq. (7)].

over the coupling strength distribution to obtain approximate
analytical results for the disordered Dicke model. We denote
the disorder-averaged value of an observable O as O:

O =
∫ x2

x1

P(g)O(g)dg, (5)

where P(g) is the distribution of the disorder and the limits of
integration x1 and x2 have to be chosen appropriately accord-
ing to the observable and the distribution being considered.

For the disorder-free Dicke model, the transition from the
NP to the SP happens at the critical coupling strength gc. Since
the disordered Dicke model is described by two parameters μ

and σ , we would expect a line that would separate the NP
and the SP in the μ-σ plane. A crude guess to obtain this
line would be to look for points where the average coupling

FIG. 3. Phase diagram of the disordered Dicke model where gi =
2 cos θi, θi are angles randomly drawn from a Gaussian distribution
with mean θ0 and standard deviation σθ . To map it out, we show
(a) the ground-state energy EG and (b) the average boson number,
〈a†a〉 wrt the ground state as a function of the standard deviation
σ and the mean μ of the coupling parameters gi. We consider the
resonant case ω = ω0 = 1 and take the average over 200 realizations,
fix the atom number to be N = 8, and the bosonic cutoff to be nmax =
40. Here the dotted line is the critical line for the QPT:

√
μ2 + σ 2 =

gc [see Eq. (7)].

〈g〉 equals gc. A refined argument, incorporating a symmetry
of the Hamiltonian, yields an excellent approximation for the
critical line. We observe that the Hamiltonian in Eq. (1) has
the same eigenvalues as one in which any one of the cou-
plings gi is changed to −gi. In other words, the eigenvalues of
H ({g j, j 	= i}, gi ) and H ({g j, j 	= i},−gi ) are the same. This
is a direct consequence of the fact that

H ({g j, j 	= i},−gi ) = σ z
i H ({g j, j 	= i}, gi )σ

z
i . (6)

Thus when the transformation T = σ z
i is applied on any eigen-

state of the Hamiltonian H ({g j, j 	= i}, gi ), we would get an
eigenstate of the Hamiltonian H ({gj, j 	= i},−gi ) with the
same eigenvalue. This argument naturally extends to the case
when multiple gi’s undergo a sign change. Hence we can
consider a scenario where all the coupling strengths are made
positive, i.e., if there are any negative coupling strengths we
may simply take their absolute values. Thus the root-mean-
squared value of the coupling is really the typical coupling of
this system. Hence the critical line can be written as

√
〈g2〉 =

gc, i.e., √
μ2 + σ 2 = gc. (7)

We show below that this result agrees very closely with the ex-
act numerical results for two different distributions. Moreover,
we will show in the next section that the above approximate
result can be recovered with the aid of a suitable limiting
procedure from our result for the thermal phase transition
temperature.

A. Uniform distribution

In the first scenario the coupling g is drawn from a uniform
distribution

Pu(g) =
{

1
2
√

3σ
if μ − √

3σ < g < μ + √
3σ,

0 otherwise,
(8)

with mean μ and standard deviation σ .
The disorder-averaged ground-state energy and average

boson number are found from the integrals

EG =
∫ x2

x1

Pu(g)EGdg, (9)

〈a†a〉 =
∫ x2

x1

Pu(g)〈a†a〉dg, (10)

where EG is given in Eq. (3), 〈a†a〉 is given in Eq. (4), and we
use the overline to denote the disorder average. The lower and
upper limits of the box distribution are x1 = μ − √

3σ and
x2 = μ + √

3σ , respectively, and we consider μ and σ to be
in the range [0,1]. Figure 2(a) shows the numerical value of
the ground-state energy EG of the system as a function of the
standard deviation (σ ) and mean (μ) of the coupling parame-
ter. In this figure the white or pink color indicates the normal
phase where the ground-state energy is large and constant
EG = −Nω0

2 and the other colors represent the superradiant
phase where EG is decreasing. Similarly, Fig. 2(b) shows the
average boson number in the ground state of the disordered
Dicke model. In the normal phase 〈a†a〉 ≈ 0 (black color), i.e.,
there are no excitations in the bosonic mode whereas in the
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superradiant phase 〈a†a〉 is finite (other colors), which
indicates a macroscopic excitation of the bosonic mode.
The dotted line in Fig. 2 which separates the NP and
SP for the QPT is obtained using Eq. (7). We note that
our numerical data obtained for a system with a small
N agree with this critical line quite well. It is clear
that for μ = 0, the standard deviation of the disordered
Dicke model plays the same role as the coupling param-
eter g in the usual Dicke model and the critical point is
Eq. (7).

While the critical line is well described by Eq. (7) when
the number of atoms is small, corrections would be expected
as N is made large (thermodynamic limit). In Appendix A
with the aid of analytical expressions obtained by disorder-
averaging the clean Dicke model results, we generate data
for intensive quantities (energy per atom), so the dependence
on N is removed. We also discuss how to obtain improved
estimates for the critical line that separates the NP and SP.
The robustness of our numerical results as the bosonic cutoff
nmax is increased is shown in Appendix B. Thus, while a
directly numerical demonstration of nonanalytic behavior for
the disordered Dicke model is intractable, we offer plausible
numerical evidence to show that the behavior of the disordered
Dicke model across the phase boundaries is quite similar to
that of the usual Dicke model, where the criticality has been
established.

B. Gaussian distribution

To demonstrate the robustness of our results to variations
of the detailed shape of the probability distribution for the
coupling, we now consider a second case. The angle θ is
drawn from the Gaussian distribution

P(θ ) ∝ e−(θ−θ0 )2/σ 2
θ , (11)

where θ0 ∈ [0, π ] is the mean and σθ ∈ [0, π
4 ] is the standard

deviation of θ and the disordered coupling strength for the ith
spin is then taken as

gi = 2 cos θi. (12)

Here, we numerically calculate the mean and the standard
deviation of g: μ = 〈g〉 = 1

N

∑N
i=1 gi and σ =

√
〈g2〉 − 〈g〉2

to obtain characteristics of the distribution that are eas-
ily comparable with the previous section. The ground-state
energy EG and the average boson number for this distri-
bution are shown in Fig. 3 and we see a behavior similar
to the uniform distribution used in Fig. 2. The dotted line
sketched using Eq. (7) is seen to be an excellent rep-
resentation of the line that separates the NP from the
SP.

IV. THERMAL PHASE TRANSITION

Moving from the quantum to the thermal phase transition,
in this section we derive an analytical expression for the
critical temperature for the disordered Dicke model building
on previous results [9,32] for the clean Dicke model. We start
by rewriting the system Hamiltonian for the disordered Dicke

model as

H̃ = H
ω

= a†a +
N∑

j=1

ε

2
σ z

j + 1√
N

(a + a†)
N∑

j=1

λ jσ
x
j

= a†a +
N∑

j=1

h j, (13)

where ε = ω0
ω

, λ j = g j

ω
, and

h j = ε

2
σ z

j + 1√
N

(a + a†)λ jσ
x
j . (14)

Following Wang and Hieo [9] who studied the Dicke model
within the rotating wave approximation, the partition function
can be computed as

Z (N, T ) =
∑

s1,...,sN =±1

∫
d2α

π
〈s1 . . . sN |〈α|e−βH̃|α〉|s1 . . . sN 〉

=
∫

d2α

π
e−β|α|2� j=1,2,...,N 〈s j |e−βh j |s j〉

=
∫

d2α

π
e−β|α|2� j=1,2,...,N

×
⎛
⎝2 cosh

⎡
⎣βε

2

[
1 + 16λ j

2α2

ε2N

]1/2
⎤
⎦
⎞
⎠. (15)

Here |α〉 is a coherent state which satisfies the relation a|α〉 =
α|α〉 and |s1 . . . sN 〉 is the product basis for the spin subspace.
In polar coordinates the partition function becomes

Z (N, T ) =
∫ ∞

0
rdre−βr2

� j=1,2,...,N

×
⎛
⎝2 cosh

⎡
⎣βε

2

[
1 + 16λ j

2r2

ε2N

]1/2
⎤
⎦
⎞
⎠. (16)

Defining the variable y = r2

N allows us to rewrite the above
integral as

Z (N, T ) = N
∫ ∞

0
dye−βNy� j=1,2,...,N

×
⎛
⎝2 cosh

⎡
⎣βε

2

[
1 + 16λ j

2y

ε2

]1/2
⎤
⎦
⎞
⎠

= N
∫ ∞

0
dy exp

⎛
⎝−βNy +

N∑
j=1

ln

×
⎡
⎣
⎛
⎝2 cosh

⎡
⎣βε

2

[
1 + 16λ j

2y

ε2

]1/2
⎤
⎦
⎞
⎠
⎤
⎦
⎞
⎠.

(17)
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FIG. 4. Thermal phase diagrams of the disordered Dicke model, based on the mutual information between two spins. Axes are the
temperature T and mean coupling strength μ = 〈g〉, for (a) σ = 0.2, (b) σ = 0.4, (c) σ = 0.5, and (d) σ = 0.8. The couplings g are drawn
from a random uniform distribution with finite mean μ and standard deviation σ [see Eq. (8)]. The number of atoms is N = 6 and we choose
the bosonic cutoff as nmax = 40. We take the average over 150 realizations of g for each σ .

We can write this more compactly as

Z (N, T ) = N
∫ ∞

0
dy exp

(
φN (y)

)
(18)

using a shorthand

φN (y) = −βNy

+
N∑

j=1

ln

⎡
⎣
⎛
⎝2 cosh

⎡
⎣βε

2

[
1 + 16λ j

2y

ε2

]1/2
⎤
⎦
⎞
⎠
⎤
⎦

for the exponent. We would like to evaluate the above integral
using the method of steepest descent for which we would like
to extract the point at which φN (y) is a maximum. To find this,
we compute the derivative

dφN (y)

dy
= −βN + 4β

ε

∑
j

λ2
j

η j
tanh

(
βεη j

2

)
, (19)

where we use the shorthand notation

η j =
[

1 + 16λ j
2y

ε

2
]1/2

. (20)

A vanishing derivative dφN (y)
dy = 0 implies

0 = −βN + 4β

ε

∑
j

λ2
j

η j
tanh

(
βεη j

2

)
. (21)

Following the intuition from the corresponding calculation for
the clean Dicke model, we argue that the critical value of the
inverse temperature must correspond to the case when all the
η j take their minimum possible value, namely, unity. Inserting
η j = 1, we have

0 = −βcN + 4βc

ε

∑
j

λ2
j tanh

(
βcε

2

)
, (22)

which can be reshaped into

∑
j

λ2
j tanh

(
βcε

2

)
= Nε

4
. (23)

This gives us

tanh

(
βcε

2

)
= ε

4
∑

λ2
j

N

= ε

4〈λ2〉 . (24)

Substituting for the expressions for ε and λ, we obtain an
expression for the transition temperature

Tc = ω0

2ω

1

tanh−1
(

ω0ω
4〈g2〉
) . (25)

To verify this expression for the critical temperature, we
numerically study the mutual information between two spins,
which has been shown to be a useful marker for the thermal
phase transition in the Dicke model [8,31]. In Fig. 4, we show
the mutual information between two spins as a function of the
mean coupling strength μ and the temperature T for different
standard deviations σ = 0.2, 0.4, 0.5, 0.8. For σ = 0.2 the
phase diagram is almost identical to the one for the usual
Dicke model (see Fig. 4(c) of our earlier work [8]). For μ < 1

2
the system lies in the normal phase, which gives rise here to
the black color; for μ > 1

2 , there is a thermal phase transition
from the superradiant phase (light color) to the normal phase
around some critical temperature. In this figure the red dashed
line denotes the analytical critical temperature of Eq. (25).
We can see that it describes the numerical results well. If
the standard deviation is increased, it is clear from Figs. 4(b)
(σ = 0.4) and 4(c) (σ = 0.5) that the thermal phase transi-
tion starts at lower mean values μ than μ = gc. Finally, for
sufficiently wide coupling distributions, with, e.g., σ = 0.8,
there is a clear TPT from the SP to the NP even for vanishing
mean coupling strength μ = 0.0. Hence, we can conclude
from Fig. 4 that if we introduce disorder with a sufficiently
broad distribution into the coupling strength between spins
and bosons, there exists a TPT even for vanishing mean cou-
pling μ = 〈g〉 = 0.

In Fig. 5, we show similar data, but using the distribution
based on angles, Eq. (11) and Eq. (12). We again show the
mutual information between two spins as a function of the
mean and the standard deviation of the spin-boson coupling
strength for fixed temperatures. Here θ is a random number,
drawn from a Gaussian distribution and g = 2 cos θ which we
describe in the Sec. III B. In the normal phase the mutual
information is small, shown by the black color. However, in
the superradiant phase I12 is relatively high, which is rep-
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FIG. 5. Thermal phase diagrams of the disordered Dicke model, based on the mutual information between two spins. Axes are the standard
deviation σ and mean coupling strength μ = 〈g〉 for (a) T = 0.1, (b) T = 1, (c) T = 1.5, and (d) T = 2. The couplings gi = 2 cos θi, where
θi are angles randomly drawn from a Gaussian distribution with mean θ0 and standard deviation σθ . The number of atoms is N = 6 and we
choose the bosonic cutoff as nmax = 40. We take the average over 96 realizations of g for each temperature.

resented by the other colors. One can notice that, when we
gradually increase the temperature, the normal phase is also
expanding in parameter space. In this figure the white dashed
curves represent the critical values of σ and μ for TPT that
we derived analytically in Eq. (25), which separate the normal
and superradiant phases quite well.

We now show how to recover Eq. (7) from Eq. (25). Insert-
ing Tc = 0, we have

ω0ω

4〈g2〉 = tanh(∞) = 1. (26)

Thus the critical line for the QPT is given by√
〈g2〉 = gc =

√
ωω0

2
, (27)

which is the same as Eq. (7).

V. REALIZING DISORDERED COUPLINGS IN DICKE
MODEL WITH COLD ATOM OR ULTRACOLD

MOLECULES IN A CAVITY

While we intentionally study the abstract model (1) such
that it can apply to a variety of systems, we provide in this
section some examples for practical realisations. When con-
sidering the origin of the Hamiltonian (1) through light matter
coupling for two-level systems in a single-mode optical cavity,
one has, in the dipole approximation [37]

gi =
√

1

2h̄ε0ω
ω0u(xi )d21 cos θi, (28)

where ε0 is the vacuum permeability, u(xi ) the cavity mode
amplitude at the location xi of the ith two level system, and
d21 cos θi the transition dipole matrix element between | 2 〉
and | 1 〉 projected onto the local cavity field axis, where we
made the dependence on the angle θi between cavity field at
xi and transition dipole axis explicit.

Even for identical atoms or molecules, treated as an
approximate two-level system (TLS), a random position
distribution xi can now translate into disordered coupling
strengths through the position of the TLS relative to the
cavity field structure in u(xi ) that may contain standing
waves, which will cause disorder in the field strength. While
this can easily be avoided by trapping all atoms on spatial

scales small compared to the cavity wavelength [38], one
can just as well generate a range of coupling distributions
by weakly trapping the atoms on the flanks of a standing
wave [39]. For atomic TLSs without any external fields other
than the cavity field, there would be no additional contribution
from the transition dipole orientation since we can always
choose the quantization axis along the local cavity-mode elec-
tric field direction, such that cos θi → 1. This is no longer
true once an additional external field perturbs the symme-
try, or the particle is asymmetric, such as most molecules
are.

A symmetry-breaking field B could be magnetic, strong
enough to Zeeman-shift undesired magnetic sublevels of the
excited state out of cavity resonance and locally defining
the quantisation axis. If the cavity is penetrated, for exam-
ple, by the circular magnetic field around a current carrying
wire, a random three-dimensional (3D) distribution of atomic
positions will translate into a random distribution of angles
between quantisation axis and cavity mode electric field, and
hence affect couplings, as sketched in Fig. 1.

Another approach to break the symmetry of the two-level
system would be considering ultracold molecules [40,41] in
the optical cavity [42]. Typical heteronuclear molecules pos-
sess transition dipole moments with a fixed orientation relative
to the molecular axis [43]. Molecules oriented randomly in
three dimensions, such as in the ground state with angu-
lar momentum J = 0 of the quantum mechanical rotor, will
thus exhibit a distribution of couplings. The disadvantages
of molecules are their vibrational and rotational degrees of
freedom, which are undesired here. However eliminating or
minimizing the impact of these is also required for quantum
information and quantum simulation applications of ultracold
molecules and aids cooling them and is thus being actively
pursued. Coupling to both degrees of freedom can be strongly
suppressed, by choosing a molecule with a nearly diagonal
Franck-Condon factor [44] between the ground and excited
states, and a larger angular momentum in the ground state than
the excited state [45,46].

Randomly oriented molecules neatly realize the uniform
coupling distribution that we focused on since the probability
of a given polar angle θ is P(θ ) = sin θ

2 and hence P(cos θ )
will be uniform. Refined distributions can then be tailored
by partially orienting molecules along the cavity field axis,
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e.g., P(θ ) = N e−(θ−θ0 )2/σ 2
θ , with θ0 enforced by an additional

external bias field E (see Fig. 1).
The implementations of the disordered Dicke model with

cold atoms and molecules in cavities that we discussed above
can then provide controlled insight, which can be lever-
aged for understanding the underlying Hamiltonian in more
complex and less controlled cases, such as when studying
superradiance effects in semiconductor quantum dot lat-
tices [34]. In this case of transition dipoles of carriers in
quantum dots are also likely disordered by additional fields
and quantum dot geometries, however, a clear distinction of
such effects from other disorder and decoherence sources will
be much more difficult.

VI. SUMMARY AND CONCLUSION

In this work, we propose and investigate a disordered
single-mode Dicke model. We specifically focus on two
concrete random distributions of the spin-boson coupling pa-
rameters gi: (i) a uniform distribution and (ii) gi ∝ cos θi,
where θi are Gaussian random variables and study the result-
ing quantum and thermal phase transitions in the disordered
Dicke model. In both cases we see similar results and hence
demonstrate that our results are robust to changes in the de-
tailed shape of the distribution.

We find that the phase transitions depend on both the mean
and the standard deviation of the random coupling strengths.
For the QPT, we find that, for mean coupling strengths signif-
icantly smaller than their standard deviation σ , the standard
deviation plays a role similar to the coupling g in the clean
Dicke model. Even for vanishing mean coupling μ = 0, the
system thus shows a QPT around σ = gc for uniformly dis-
tributed couplings. When μ is systematically increased, the
critical value of σ decreases, and after a certain mean cou-
pling (= gc) the QPT disappears. We show that the critical
line is well described by

√
μ2 + σ 2 = gc when the number

of atoms is small. This corresponds to simply equating the
root mean squated (rms) coupling to the critical value of the

undisordered model, and is able to delineate the boundary
between the phases quite well. Moreover, we are able to
recover this result by taking the zero transition temperature
limit of the expression for the thermal phase transition. In
the Appendix, with the aid of analytical expressions obtained
by disorder-averaging the clean Dicke model results, we also
discuss how to obtain improved estimates for the critical line
that separates the NP and SP.

We also derive an analytical expression for the critical
temperature and numerically verify it with the aid of mutual
information between two spins. It shows that, for wide distri-
butions, such that σ is large, there is a phase transition from SP
to NP at σ ≈ 0.8 even for vanishing mean coupling strength
μ = 0.

The disordered Dicke model should describe quantum
dot superlattices in semiconductor quantum optics (see, e.g.,
Ref. [34]). Additionally, we list several methods by which the
disordered Dicke model can be realized in experiments with
ultracold atoms or molecules in a cavity.
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APPENDIX A: UNIFORM DISTRIBUTION

Consider the scenario where the coupling g is drawn from a
uniform distribution which is given in Eq. (8) in the main text.
Carrying out the integration in Eq. (10) we have the disorder-
averaged value of the energy and average boson number of
the ground state. Depending on the relation between x1, x2,
and gc, there are five cases to be considered. After performing
the integration outlined above, we obtain an expression for the
disorder-averaged ground-state energy

EG

N
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1
[ 2gc

3 − x3
1
3 + g4

c
x1

]− ω0
2

( x2+gc

2
√

3σ

)
, x1 < −gc and 0 < x2 � gc,

D1
[ 4g3

c
3 + 1

3

(
x3

2 − x3
1

)+ g4
c

(
1
x1

− 1
x2

)]− ω0
2

( gc√
3σ

)
, x1 < −gc and x2 > gc.

−ω0
2 , |x1| < gc and 0 < x2 � gc

D1
[ x3

2
3 − g4

c
x2

+ 2gc

3

]− ω0
2

( gc−x1

2
√

3σ

)
, |x1| < gc and x2 > gc,

D1
[

1
3

(
x3

2 − x3
1

)+ g4
c

(
1
x1

− 1
x2

)]
, x1, x2 > gc, and x1 < x2,

(A1)

where D1 = − 1
2
√

3σω
. For the average boson number the disorder-averaged expression is

〈a†a〉
N

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D2
[− 4g2

c
3 − x3

1
3g2

c
− g4

c
x1

]
, x1 < −gc and 0 < x2 � gc,

D2
[− 8g3

c
3 + 1

3

(
x3

2 − x3
1

)+ g4
c

(
1
x2

− 1
x1

)]
, x1 < −gc and x2 > gc,

0, |x1| < gc and 0 < x2 � gc,

D2
[ x3

2
3 + g4

c
x2

− 4g3
c

3

]
, |x1| < gc and x2 > gc,

D2
[

1
3

(
x3

2 − x3
1

)+ g4
c

(
1
x2

− 1
x1

)]
, x1, x2 > gc, and x1 < x2,

(A2)
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FIG. 6. Phase diagram which we calculate theoretically using
Eq. (A1) and Eq. (A2) of the disordered Dicke model with uni-
form coupling distribution [Eq. (8)] considering the thermodynamic
limit. To map it out, we show (a) the ground-state energy per atom
EG/N and (b) the average boson number per atom, 〈a†a〉/N wrt.
the ground state, as a function of the standard deviation σ and the
mean μ of the coupling parameters gi. We consider the resonant case
ω = ω0 = 1. The dot dashed line is given by Eq. (A9), the dashed
line by Eq. (A11), the solid line by Eq. (A12), and the dotted line
by Eq. (7). Here, Eq. (A9) is based on a solution of the Taylor series
expansion of the disordered averaged observables, while we obtain
Eqs. (A11) to (A12) using heuristics exploiting a symmetry of the
Hamiltonian.

where D2 = 1
2
√

3σω2 . In Fig. 6 we plot the disordered-averaged
values of the ground-state energy [Fig. 6(a)] per atom and the
average boson number in the ground state per atom [Fig. 6(b)]
as a function of μ and σ of the coupling parameter. Similar to
the numerical data in Fig. 2 in the main text, in this figure also
the white or pink color indicates the normal phase where
the ground-state energy is large and constant EG

N = −ω0
2 and

the other colors represent the superradiant phase where EG
N is

decreasing. Again in Fig. 6(b) the normal phase with 〈a†a〉
N ≈ 0

(black color) and the superradiant phase where 〈a†a〉
N is finite

(other colors) are highlighted. Since intensive quantities are
being shown, the dependence on N is explicitly absent, and
therefore, we would expect this picture to hold in the thermo-
dynamic limit. Comparing Figs. 2 and 6, we see that, in Fig. 6,
the entire normal phase seems to become more homogeneous.
Also the boundary separating the SP and NP is no longer so
well captured by Eq. (7). We now attempt to obtain the phase
boundary heuristically.

For the NP (|g| � gc) the third case is applicable and thus

EG

N
= −ω0

2
, (A3)

〈a†a〉
N

= 0. (A4)

However, for the SP (|g| > gc), we consider only the fourth
case: |x1| < gc and x2 > gc for the QPT around gc. Thus

EG

N
= − 1

2
√

3σω

[
x3

2

3
− g4

c

x2
+ 2gc

3

]
− ω0

2

(
gc − x1

2
√

3σ

)
, (A5)

〈a†a〉
N

= 1

2
√

3σω2

[
x3

2

3
+ g4

c

x2
− 4g3

c

3

]
. (A6)

Taylor expanding around the critical point gc and considering
only the dominant terms, we have

EG

N
≈ −ω0

2

(
gc − x1

2
√

3σ

)
− Aω0

2
(x2 − gc)

− 1.33Aω0(x2 − gc)3, (A7)

〈a†a〉
N

≈ A

ω2
(x2 − gc)2 − 0.667A

ω2
(x2 − gc)3, (A8)

where A = 1
2
√

3σ
and x2 is the upper limit of the integration

μ + √
3σ . At the critical point the scaled ground-state energy

is −ω0
2 and the scaled average boson number is zero, hence we

have a relation for the critical line as a function of μ and σ :

μ +
√

3σ = gc. (A9)

The dash-dotted line in Fig. 6 represents the quantum critical
line which is given in Eq. (A9) and our analytical data already
roughly agrees with this linear relation. It is remarkable that
the formula describes the numerical data this well, despite
the coarse approximation of just disorder-averaging the clean
Dicke model results. Around the critical line the expectation
value (with respect to the uniform disorder) of the ground-
state energy and the average boson number can be represented
by the simpler Taylor series in Eqs. (A7) and (A8), respec-
tively.

The line that separates the NP and the SP in Fig. 6 can
also be obtained approximately with the aid of a heuristic
argument that exploits a symmetry of the Hamiltonian, which
we described in the main text [see Eq. (6)]. Since it is the
magnitude of the couplings that matters, we have already seen
that working with the rms value of g yields a good estimate
for the line separating the SP and the NP. An alternate way
to proceed is to work with an effective distribution where the
weight corresponding to a negative value of the coupling is
shifted to its positive value. Hence when the lower limit of the
uniform distribution μ − √

3σ < 0 the effective distribution
is

Peff(g) =
⎧⎨
⎩

1√
3σ

if 0 < g < −(μ − √
3σ ),

1
2
√

3σ
if − (μ − √

3σ ) < g < (μ + √
3σ ),

(A10)
as shown in Fig. 7(a). The effective distribution in this case
yields a mean value of 〈g〉 = μ2+3σ 2

2
√

3σ
and a variance of 〈g2〉 =

μ2 + σ 2, which, in turn, corresponds to a standard deviation

of:
√

μ2 + σ 2 − (μ2+3σ 2 )2

12σ 2 . If the lower limit of the distribution

μ − √
3σ � 0, the effective distribution remains identical to

the original one and its mean and standard deviation remain
unchanged as μ and σ [Fig. 7(b)].

To identify the phase transition line heuristically, we argue
as follows. We would expect that as more and more of the
couplings gi are drawn above gc, we would see increasingly
dominant effects characteristic of the SP. A coarse way to
identify this would be to simply demand that the rightmost
edge of the effective distribution [Eq. (A10)] must be above
the critical coupling gc = 1

2 , i.e., μ + √
3σ = gc, which is

nothing but the crude approximation Eq. (A9) and dot-dashed
line in Fig. 6. For a refined result, we demand that the mean

013715-8



DICKE MODEL WITH DISORDERED SPIN-BOSON … PHYSICAL REVIEW A 109, 013715 (2024)

FIG. 7. Effective distribution containing only positive coupling
strengths. The left panel denotes the original distribution, whereas
the right panel shows the effective distribution where only the ab-
solute values of the coupling strengths are considered. (a) For μ −√

3σ < 0, the effective mean of the coupling strength is 〈g〉 = μ2+3σ 2

2
√

3σ

and the effective variance 〈g2〉 = μ2 + σ 2 hence the effective stan-

dard deviation is
√

μ2 + σ 2 − (μ2+3σ 2 )2

12σ 2 . (b) For μ − √
3σ � 0 the

distribution remains unchanged: the mean and the standard deviation
of g are μ and σ . For both cases A = 1

2
√

3σ
.

of the effective distribution [Eq. (A10)] must reach above gc

μ2 + 3σ 2

2
√

3σ
= gc, μ <

√
3σ,

μ = gc, μ �
√

3σ. (A11)

FIG. 8. Phase diagram of the disordered Dicke model with uni-
form coupling distribution [Eq. (8)]. To map it out, we show the
ground-state energy fluctuations �EG = √〈E 2

G〉 − 〈EG〉2, as a func-
tion of the standard deviation σ and the mean μ of the coupling
parameters gi. We consider the resonant case ω = ω0 = 1, take the
average over 120 realizations, fix the atom number to be N = 8, and
the bosonic cutoff to be nmax = 40. The dot dashed line is given by
Eq. (A9), the dashed line by Eq. (A11), the solid line by Eq. (A12),
and the dotted line by Eq. (7). Here, Eq. (A9) is based on a solution of
the Taylor series expansion of the disordered averaged observables,
while we obtain Eqs. (A11) and (A12) using heuristics exploiting a
symmetry of the Hamiltonian.

This is shown by the dashed line in Fig. 6. A less stringent
condition is to demand that the mean plus one standard devia-
tion of the effective distribution [Eq. (A10)] must reach above
gc,

μ2 + 3σ 2

2
√

3σ
+
√

μ2 + σ 2 − (μ2 + 3σ 2)2

12σ 2
= gc, μ <

√
3σ,

μ + σ = gc, μ �
√

3σ.

(A12)

This is shown by the solid white line in Fig. 6 and appears to
be closest to the actual line of separation between the SP and
NP.

While we studied the ground-state energy to characterize
the phases in the main part of the paper, it is also interesting
to look at the fluctuations in the ground-state energy �EG =√

〈E2
G〉 − 〈EG〉2. Figure 8 shows the numerically computed

values of the ground-state energy fluctuation of a small-sized
system as a function of the standard deviation (σ ) and mean
(μ) of the coupling parameter. In this figure, the black color
indicates the normal phase where �EG is zero and the other
colors represent the superradiant phase where �EG is increas-
ing. We observe that the separation of the phases indicated
by the energy fluctuations is in good agreement with the
analytical results of Fig. 6.

APPENDIX B: FINITE-SIZE ANALYSIS FOR THE
UNIFORM DISTRIBUTION

Our numerical analysis is based on exact diagonalization
as the total angular momentum is not conserved here. The

FIG. 9. [(a), (c)] The ground-state energy per atom EG/N and
[(b), (d)] the average boson number per atom, 〈a†a〉/N wrt. the
ground state, as a function of [(a), (b)] the mean μ and [(c), (d)]
the standard deviation σ of the coupling parameters gi. We consider
the resonant case ω = ω0 = 1, take the average over 60 realizations,
fix the atom number N = 8, and vary the bosonic cutoff nmax =
40, 45, 50. Here we consider the disordered Dicke model with
uniform coupling distribution. The solid lines denote the numerical
disordered average value whereas the dashed lines correspond to the
analytical value in the thermodynamic limit.
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total Hilbert space dimension is ND = 2N (nmax + 1), where
the bosonic cutoff nmax has to be introduced. Due to compu-
tational constraints, we cannot consider very large values for
the bosonic cutoff. However, it is useful to make a systematic
study of our various results as a function of nmax. In Fig. 9 we
compare the numerical disordered-averaged data for a small
system with N = 8 atoms (solid lines in Fig. 9) with the cor-
responding theoretical value (dashed lines in Fig. 9) obtained
from Eqs. (A1) and (A2). In Fig. 9 we keep the atom number
fixed at N = 8 and gradually increase the bosonic cutoff nmax.
Figures 9(a) and 9(c) show the ground-state energy of the sys-
tem per atom and Figs. 9(b) and 9(d) show the average boson
number per atom. For the top panel [Figs. 9(a) and 9(b)] we fix
the standard deviation of the coupling strength (g) and plot the
disorder-averaged observables as a function of the mean of g,

corresponding to a vertical cut through Fig. 2. For the bottom
panel, we instead consider horizontal cuts. For both cases, we
see a clear quantum phase transition at some critical point in
the analytical calculations, with the numerical data strongly
supportive of the theoretical values. The top row is equivalent
to the usual QPT in the clean isotropic Dicke model. However,
from the bottom row of panels we conclude that coupling
strength disorder with a sufficiently broad distribution causes
a QPT even for vanishing mean coupling μ = 〈g〉 = 0. We
see that the ground-state energy and average boson number at
N = 8 retain clear evidence of the QPT found from analytical
calculations in the large system limit, even though the bosonic
cutoff is limited to nmax = 40. In Fig. 9, we show the data for
a uniform distribution but we find similar behavior for other
distributions.
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