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Excitation spectrum of a multilevel atom coupled with a dielectric nanostructure
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We develop a microscopic calculation scheme for the excitation spectrum of a single-electron atom localized
near a dielectric nanostructure. The atom originally has an arbitrary degenerate structure of its Zeeman sublevels
on its closed optical transition and we follow how the excitation spectrum would be modified by its radiative
coupling with a mesoscopically small dielectric sample of arbitrary shape. The dielectric medium is modeled
by a dense ensemble of V -type atoms having the same dielectric permittivity near the transition frequency of
the reference atom. Our numerical simulations predict strong coupling for some specific configurations and
then suggest promising options for quantum interface and quantum information processing at the level of single
photons and atoms. In particular, the strong resonance interaction between atom(s) and light, propagating through
a photonic crystal waveguide, justifies as realistic the scenario of a signal light coupling with a small atomic array
consisting of a few atoms. As a potential implication, the directional one-dimensional resonance scattering,
expected in such systems, could provide a quantum bus by entangling distant atoms integrated into a quantum
register.
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I. INTRODUCTION

A robust, stable, and controllable interface between quan-
tum systems of different nature provides an important element
for quantum information processing and quantum computing
[1–3]. The coupled atomic and light subsystems reveal the
well-developed physical platforms for realization of various
interface protocols due to their extensive research, predictable
behavior, and widespread use in experiments. Even in the ear-
lier era of quantum optics localized atoms allowed to observe
intrinsically quantum phenomena, including the nonclassical
statistical characteristics of light emitted by individual atoms
[4] and the reversible vacuum Rabi oscillations shared by
single atom and photon [5]. Recently, deterministically assem-
bled arrays of neutral atoms in optical tweezers have emerged
as a promising resource for quantum simulation of many-
body problems [6] as well as to realize programmable and
scalable processors for quantum computing [7,8]. But despite
the impressive perspectives, outlined by the pioneering works,
and remarkable experimental progress of last decades, the
realization of an advanced quantum interface protocol, with
on-demand manipulation by the quantum states of atoms and
photons, remains a quite challenging experimental task.

The interaction between light and a single atom obeys the
basic principles of quantum electrodynamics and is mainly
observed via spontaneous emission, absorption, and scattering
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of a single photon by an atom. However, in free space, the
efficiency of these processes is critically constrained by a
small ratio of the scattering cross section to the spot area
illuminating the atom by a tightly focused light beam. In
general, the weakness of the dimensionless coupling strength,
characterizing the weakness of interaction between the atomic
electron and quantized field, is basically limited by a small
value of the fine-structure constant.

The radiative coupling could be significantly enhanced and
directionally controlled if the atom was placed near the di-
electric nanostructure designed as a subwavelength waveguide
or resonator [9–13]. Such an option has encouraged experi-
mental studies towards searching various hybrid platforms for
interface protocols assisted by the interfering of atoms with
mesoscopic dielectric samples. The first experiments towards
subwavelength waveguide quantum electrodynamics (QED)
were carried out with nanoscale silica fibers [11,14–17]. The
permittivity of silica is approximately constant within a broad
spectral domain, that provides a homogeneous spatial profile
of the evanescent field, effective trapping of atoms near the
fiber surface, and enhanced coupling with the evanescent field
[18–23].

However, for an axially symmetric and homogeneous
nanofiber the coupling with the guided mode is still weak
and nanostructures with spatially inhomogeneous dielectric
properties can give additional advantages. Such nanostruc-
tures enable a control over the dispersion dependence of the
mode frequency as a function of its wave number, which, in
certain conditions, should slow down the light propagation
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and enhance its interaction with the atoms. For nanofibers,
this is technically attained by spatial modulation of the di-
electric profile along the direction of light propagation, i.e.,
by using the properly designed photonic crystal waveguide
(PCW). Stronger radiation coupling of atoms with such a
one-dimensional photonic crystal via interaction with the
evanescent field of its guided mode was predicted and exper-
imentally verified in [24]. Afterwards, this effect inspired a
number of experimental studies towards advanced integration
of atoms and nanostructures into hybrid quantum platforms
preventing the external spontaneous losses and pursuing the
directional light-matter interface [25–28].

In the first experiments an “alligator”-type PCW was
used to observe enhanced emission associated with a di-
electric sample periodically and symmetrically modulated in
transverse direction [29]. However, the nanostructure can be
purposely designed with violated transverse symmetry and
produce quite specific dispersion relations varied from the flat
dependence to the cone-type profile [30]. Recently, the comb-
type configured PCW was suggested in order to enhance the
radiative coupling of trapped atoms with the guided mode
[28].

Here we are aiming to examine the potential for such
advanced schemes of radiative coupling by the subsequent
microscopic analysis. These are the following reasons why
we are motivated to do that beyond the empirical argument
normally applied to explain the complicated physics of atom-
field interaction in the presence of nanostructures. First, at
present most of the theoretical approaches in a cavity and
waveguide QED focus on atoms modeled either by two-level
quantum systems or by a bit more general V -type or �-type
energy configurations. Such transition schemes can only qual-
itatively reproduce the real-energy structure of alkali-metal
atoms, which, in turn, would be inappropriate to ignore in
complicated dynamics of any realistic interface protocol. The
second reason is that an accurate QED analysis, which is ev-
idently needed for such complex quantum systems, would be
difficult to compromise with empirical description, assuming
a universal split of decay rate for emission into the waveg-
uide and outer modes, and mainly supported by arguments of
conventional macroscopic electrodynamics.

To overcome both these difficulties we intend to model the
dielectric nanostructure by an ensemble of either randomly
or regularly distributed V -type atoms, whose locations would
be bounded by a surface having arbitrary shape and in some
cases can be specifically modulated in one dimension in space
(photonic crystal). Our central assumption is that there is only
one fitting parameter, suggested by the model, namely, the
dielectric permittivity of the approached dielectric medium
in a given spectral domain. In numerical simulations the ap-
propriate dielectric permittivity could be mediated by various
choices of the transition frequency of the medium atoms, their
density, and transition dipole moments.

The paper is organized as follows: In Sec. II we describe
our theoretical model. In Appendix A we clarify how the
actual dielectric medium can be microscopically approached
by its artificial replica. In Appendix B we clarify our estimate
for the van der Waals interaction of the atom in its ground
state with a nanostructure of arbitrary shape. In Sec. III we
present the results of our numerical simulations, which were

performed for alkali-metal atoms and for the nanostructures
available for experimental verification. Finally, we make some
concluding remarks in the context of further applicability to
the problems of quantum interface, light storage, and quantum
computations.

II. THEORETICAL FRAMEWORK

A. The atom propagator

The dynamics of an excited atom, treated as an open sys-
tem, can be rigorously described by its propagation function
(causal-type Green’s function) defined as a chronologically
ordered product of time-dependent ψ operators averaged over
the variables of external subsystems (i.e., the electromagnetic
field and other matter environment)

iGn,n′ (r, t ; r′, t ′) = 〈T ψn(r, t ) ψ
†
n′ (r′, t ′)〉, (2.1)

where both the creation ψ
†
n′ (r′, t ′) and annihilation ψn(r, t )

operators in the Heisenberg picture are considered, respec-
tively, at the atom’s positions r′ and r and dressed by its
interaction with the quantized field and by its coupling with
the medium. Here n and n′ enumerate the internal quantum
states of the atom, such that its Green’s function (2.1) is
defined in the energy representation of the atom’s undisturbed
internal Hamiltonian. In nonrelativistic description the defined
causal-type Green’s function coincides with the retarded-type
propagator, such that (2.1) is only nonzero for t > t ′.

Let us assume that the atom is slowed down and can be
treated as an infinitely heavy and immobile particle. Then
r′ = r and propagator (2.2) reveals the fundamental solution
of a Dyson (Schrödinger-type) equation for the atom’s valent
electron driven by both the internal field and radiation cou-
pling with the environment. In the energy representation this
equation reads as

Gn,n′ (r, t ; r′, t ′) = Gn,n′ (r, t − t ′) δ(r − r′),[
ih̄

∂

∂t
− En

]
Gn,n′ (r, t − t ′)

− [� ∗ G]n,n′ (r, t − t ′) = h̄ δn,n′ δ(t − t ′), (2.2)

where we have assumed the time homogeneous conditions.
The last term in the left-hand side contains a matrix integral
operator with kernel �nn′′ (r, τ = t − t ′′) and the asterisk de-
notes its convolution with the Green’s function over the time
argument t ′′ and matrix product over the quantum states n′′.
In the long-wavelength approximation, which we will follow,
this operator expresses the radiation self-action of the atom,
considered as a compound system, together with its radiation
coupling with other atoms belonging to the medium. The latter
is intrinsically inhomogeneous so this operator depends on the
atom’s position.

The equation can be transformed to more informative alge-
braic form after its Fourier transform

Gn,n′ (r, E ) =
∫ ∞

−∞
dτ e

i
h̄ E τ Gn,n′ (r, τ ) (2.3)
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so we get

[E − En]Gn,n′ (r, E ) −
∑

n′′
�n,n′′ (r, E )Gn′′,n′ (r, E ) = h̄ δn,n′ ,

(2.4)

where

�n,n′′ (r, E ) =
∫ ∞

−∞
dτ e

i
h̄ E τ �n,n′′ (r, τ ). (2.5)

That clarifies the physics of the Dyson equation, which can be
consequently derived by the Feynman diagram method. The �

operator is now a matrix, visualized by a set of tight diagrams,
and therefore normally referred to as a self-energy part of
the diagram sequence. If it was a fairly Hermitian operator,
then Eq. (2.4) would reveal us an example of a conventional
Hamiltonian eigenstate problem. In such a simplification we
can associate the self-energy part with correction of the atomic
energy (radiation shift) induced by the spontaneous radiation
process. That can be equally treated as radiative correction
of the electron’s energy and let us refer to this term as a
mass operator. In the considered case it corrects the original
self-energy of the valence electron when the atom transforms
to an exciton-type quasiparticle localized near a macroscopic
or mesoscopic object. However, in reality the self-energy part
is a non-Hermitian operator and its anti-Hermitian part is
responsible for the spontaneous decay of the state.

Formally the self-energy part of a quasiparticle Green’s
function results from a diagram expansion following the meth-
ods of the quantum field theory extrapolated to statistical
physics (see [31,32]). But, in reality, it would be not so easy
to do since the external interaction with a macroscopic sample
as well as the sample’s internal dynamics is quite complicated
and its Hamiltonian can be only schematically defined. Thus,
the entire description is normally accompanied by many sim-
plifications.

We suggest a certain alternative to the approach guided by
statistical physics and explain our model in the next section.

B. Cooperative dynamics of the reference
atom and dielectric medium

Let us imagine an ideal dielectric medium, described by
only one physical parameter, namely, by dielectric permittiv-
ity ε, which is assumed to be constant within the relevant
spectral domain, i.e., near the resonant frequency of the ref-
erence atom. Then we can approximate such a medium by
a simple model approaching it by an ensemble of immobile
disordered atoms having two-level energy structure. For such
a medium we can derive the spectrally dependent dielectric
permittivity ε = ε(ω), as it is described in [33,34], and fix its
value near the resonance frequency of the reference atom (see
Appendix A for details).

Since all the atoms are immobile we can consider the resol-
vent operator of the system Hamiltonian Ĥ as matrix acting in
a subspace of finite dimension

R̂(E ) = 1

E − Ĥ
,

˜̂R(E ) = P̂ R̂(E ) P̂, (2.6)

where the second line projects the global resolvent operator
R̂(E ) onto the linear span, sharing the single excitation within
the atomic subsystem, and onto the vacuum field state |0〉Field.
The projector P̂ can be decomposed in two terms

P̂ = (P̂A + P̂(N ) )|0〉〈0|field, (2.7)

where P̂A projects on an excited state of the reference atom

P̂A =
∑

n

|n; g . . . g〉〈g . . . g; n| (2.8)

when all other N atoms, belonging to the medium, occupy the
collective ground state |g . . . g〉 and

P̂(N ) =
N∑

a=1

∑
m,e

|m; g . . . e
∣∣
a
. . . g〉〈g . . . e

∣∣
a
. . . g; m| (2.9)

projects on any ground Zeeman state |m〉 of the reference atom
and each, but only one, atom of the medium can occupy the
excited state |e〉, such that we have subscribed it in (2.9) by
the atom’s position a running from 1 to N .

In the cooperative dynamics of the reference atom and
the medium the excitation virtually migrates among all the
atoms and the resolvent operator ˜̂R(E ) can be expressed by
the Fourier image of the multiparticle Green’s function. The
latter is defined as the following time-ordered product of the
second-quantized operators:

iG(N+1)(x1, . . . , xN ; x|x′; x′
N , . . . , x′

1)

= 〈T ψ (x1) . . . ψ (xN )ψ (x)ψ†(x′)ψ†(x′
N ) . . . ψ†(x′

1)〉,
(2.10)

where we have incorporated all the quantum state specifica-
tions, including position and time arguments into the symbolic
arguments x for the reference atom and xa for any ath atom of
the medium.

Denote any accessible internal states of the reference and
medium atoms as |α〉 ≡ |m〉, |n〉, . . . and |β〉 ≡ |g〉, |e〉, . . .,
respectively. Then we can express an arbitrary matrix element
of the resolvent by the following Laplace-type integral trans-
form of the multiparticle Green’s function

〈β1 . . . βN ; α| ˜̂R(E )|α′; β ′
N . . . β ′

1〉
× δ(r − r′) δ(r1 − r′

1) . . . δ(rN − r′
N )

= 1

h̄

∫ ∞

0
dt exp

[
+ i

h̄
Et

]

× G(N+1)(x1, . . . , xN ; x|x′; x′
N , . . . , x′

1)

∣∣∣∣t1 =· · ·= tN = t
t ′
1 =· · ·= t ′

N = t ′ =0

(2.11)

which coincides with its Fourier transform since the integrand
vanishes at t < 0.

Now we can clarify our calculation model. We associate
the single-particle Green’s function of the reference atom,
earlier defined by (2.1)–(2.3), with the following matrix pro-
jection of the entire resolvent:

Ĝ(r, E ) = h̄ P̂A
˜̂R(E ) P̂A, (2.12)

where the right-hand side is a microscopically defined quan-
tity, which depends on either positions of the reference as well
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as medium atoms. However, we expect and further verify it by
our numerical simulations that, being averaged over different
spatial configurations, the Green’s function, defined by (2.12),
remains sensitive to specific choice of the density of medium
atoms, frequency offset ωeg − ωnm, and internal interaction
parameters only via their contribution to the self-consistently
constructed dielectric permittivity of the medium ε(ω) taken
near vicinity of the transition frequency ωnm.

Considering Eq. (2.4) in its matrix form we can select the
self-energy part, dressed by interaction with the medium, by
the identity

�̂(r, E ) = E − En − h̄Ĝ−1(r, E ). (2.13)

For applications, it is most important to evaluate this matrix
function near the resonance point E ∼ En, where we obtain

�̂(r) ≡ �̂(r, En) = −h̄Ĝ−1(r, En), (2.14)

which gives us the radiation correction to the energy structure
of the reference atom localized near the medium surface at
the distances having an order of the radiation wavelength or
less. For the sake of notation convenience, we fix the ground-
state energy by zero value and denote the reference transition
frequency, same for all the Zeeman states, as ωnm ≡ ω0. Then
the transition frequency of a medium atom can be expressed
as ωeg ≡ ωM ≡ δM + ω0, where δM is its frequency offset in
respect to the reference transition frequency.

C. The resolvent operator

The closed equation for the resolvent operator ˜̂R(E ) can be
constructed after decoding the following Dyson-type diagram
equation for the collective multiparticle Green’s function
G(N+1)(. . .):

(2.15)

Here the shaded block imagines the function G(N+1)(. . .)
dressed by the radiation coupling. The arrowed straight lines
imagine the free propagators of either reference or medium
atoms. The expansion of (2.15) generates a sequence of virtual
radiation processes transporting the single excitation within
the global atomic chain. So only one of N + 1 inward and
outward arrowed lines on the shaded block belongs to an
excited atom.

The key element of the Dyson equation (2.15) is the
cooperative multiparticle self-energy operator, imagined by
the white block and expressed by irreducible interaction di-
agrams. Due to the exponential structure of the undressed
individual atom propagators, the undressed many-particle
Green’s function has exponential form as well and Eq. (2.15)
can be straightforwardly converted to the matrix-type operator
equation defined in the unitary subspace spanning over all
the atoms. Eventually for the resolvent ˜̂R(E ) we arrive at the

following matrix equation:

[(E − h̄ω0)P̂A + (E − h̄ωM )P̂(N ) − �̂(N+1)] ˜̂R(E ) = Î,

(2.16)

which we intend to evaluate near the pole point associated
with the atomic resonance E ∼ h̄ω0. The cooperative self-
energy part �̂(N+1) is compiled from the single-particle and
two-particle basic diagrams. Below we clarify these building
diagram blocks and respective partial contributions to �̂(N+1)

and enumerate them by superscript indices running from 0
(reference atom) to a, b = 1 . . . N (medium atoms).

There is a fundamental vacuum contribution to the mass
operator of the reference atom

(2.17)

which expresses the self-action on the atom by its own radi-
ation spontaneously emitted or just virtually created in free
space. The estimate of this diagram, within the framework
of the used long-wavelength dipole gauge, is quite nontrivial
(see, for example, [35]), and eventually leads to the result

�
(0)
nn′ (E ) = �(0)

n (E ) δnn′ ,

�(0)
n (E ) ≈ �(0)

n (h̄ω0) ≡ h̄n − ih̄
�n

2
, (2.18)

where

n = − 2

3π

∑
α

ω3
nα

h̄c3
|dnα|2 ln

c kmax

|ωnα| ,

�n = 4

3

∑
α<n

ω3
nα

h̄c3
|dnα|2 = 4

3

∑
m

ω3
0

h̄c3
|dnm|2, (2.19)

where dnα are the transition matrix elements of the atomic
dipole moment. The first line determines the logarithmic di-
verging energy shift where the contributing field spectrum is
bounded by a cutoff wave number kmax. The cutoff kmax fulfills
the inequality |ωnα|/c 
 kmax � a−1

0 
 kC = mec/h̄, where
a0 is Bohr radius and me is electronic mass, i.e., it has to be
an order of atomic scale a−1

0 but much less than the Compton
scale for a linear momentum of the electron. The sum in the
expression for n expands over all the atomic levels (with
including continuous part of the atomic spectrum) such that
the partial contribution can be either negative if ωnα > 0 or
positive if ωnα < 0. The convergence of the sum is guaranteed
by the transition matrix elements vanishing for highly excited
atomic states |α〉. Let us stress that a similar estimate can be
done for the ground state |m〉 of the reference atom either and
will lead to its radiation shift. Nevertheless, both the shifts
have to be incorporated into physical energies of the atomic
levels and in our practical calculations we leave in (2.18) only
the decay rate of the excited state �n.
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The elementary interaction of the reference atom with any
ath atom of the medium is imaged by the diagrams

(2.20)

and

(2.21)

where we have split one virtual process in two different time-
ordered parts.

In these diagrams the internal wavy line expresses the
causal-type vacuum Green’s function of the chronologically
ordered polarization components of the electric field operators

iD(E )
μν (R, τ ) = 〈T Êμ(r, t )Êν (r′, t ′)〉, (2.22)

which depends only on difference of its arguments R = r − r′
and τ = t − t ′. For coupling of two distant atoms it is ex-
pressed by the vacuum photon propagator with zero scalar part
and with vector indices running μ, ν = x, y, z.1 Its Fourier
image is given by

D(E )
μν (R, ω) =

∫ ∞

−∞
dτ eiωτ D(E )

μν (R, τ )

= −h̄
|ω|3
c3

{
i
2

3
h(1)

0

( |ω|
c

R

)
δμν

+
[

XμXν

R2
− 1

3
δμν

]
ih(1)

2

( |ω|
c

R

)}
. (2.23)

1The field quantization is conventionally introduced in the
Coulomb gauge, but by making use of the gauge invariance in the
internal parts of the Feynman diagrams the field propagators can
be linked with the fundamental solution of the Maxwell equation
responding on a pointlike dipole current (see [35]). This gauge has
zero scalar part of the photon’s propagator and is equivalent to the
long-wavelength dipole gauge.

Here h(1)
L (. . .) with L = 0, 2 are the spherical Hankel func-

tions of the first kind. It is important that in the self-action
diagram (2.17) the Green’s function (2.22) has contributed to
the fundamental mass operator with spatial argument R → 0.
The direct implication of the long-wavelength approximation
would be insufficient in that specific case and, as we have
pointed above, the additional physical arguments are needed
for correct evaluation of diagram (2.17).

Let us assume that in the diagrams (2.20) and (2.21) the
reference and medium atoms are originally in the excited
and ground states, respectively. Then the retarded-type virtual
transfer of the excitation (2.20) leads to the following contri-
bution to the cooperative self-energy part:

�
(0a,+)
me;n′g (E ) =

∫ +∞

−∞

dω

2π
f μ
egdν

mn′ iD(E )
μν (R0a, ω)

× 1

E − h̄ω − Eg − Em + i0
(2.24)

and its advanced-type counterpart (2.21) reads as

�
(0a,−)
me;n′g (E ) =

∫ +∞

−∞

dω

2π
f μ
egdν

mn′ iD(E )
μν (R0a, ω)

× 1

E + h̄ω − Ee − En + i0
, (2.25)

where atoms are separated by a distance R0a = |ra − r0|. Fur-
ther, we rename r0 ≡ r, with having in mind elimination of the
medium microscopic structure in conversion (2.12)–(2.14).
For sake of generality we use covariant notation for the tensor
indices and assume the invariant sum over repeated indices.
The vector components of the dipole matrix elements dν

mn′
and f μ

eg are related with the reference and medium atoms,
respectively. The complete contribution is given by sum of
both the terms

�
(0a)
me;n′g(E ) = �

(0a,+)
me;n′g (E ) + �

(0a,−)
me;n′g (E ) (2.26)

and has to be evaluated near the point E ≈ En = h̄ω0.
Let us select the dominant contribution with constructing

a delta-function singular feature in the integrand and then
estimate the resting term

�
(0a)
me;n′g(E ) ≈ �

(0a)
me;n′g(h̄ω0) = 1

h̄
f μ
egdν

mn′D(E )
μν (R0a, ω0)

+ · · · , (2.27)

where ellipses denote the rest

· · · = 1

h̄

∫ +∞

−∞

dω

2π
f μ
egdν

mn′ iD(E )
μν (R0a, ω)

× δM

(ω − ωM + i0)(ω − ω0 + i0)
. (2.28)

In accordance with general constraints of the rotating-wave
approximation this integral expansion is representative for the
frequency argument nearby the transition frequency and only
if the offset δM is sufficiently small, i.e., within assumptions
that ω ∼ ω0, ωM and δM 
 ω0, ωM . Then, in the spectral
domain, adjacent to ω0, ωM , the integral becomes asymp-
totically converging and can be fairly estimated by omitting
modulus in (2.23) and substituting here the retarded-type
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Green’s function of the field operators. That approximates
integrand as analytic function in the upper half-plane of the
complex ω, such that (2.28) vanishes after making a closed
contour integration in the upper half-plane. So within the
made approximations the resting term in (2.27) makes only
negligible correction to the main result.2

If in the diagrams (2.20) and (2.21) the medium atom
was assumed as originally excited, the similar transformations
would lead to

�
(a0)
gn;e′m′ (E ) ≈ �

(a0)
gn;e′m′ (h̄ω0) = 1

h̄
dμ

nm′ f ν
ge′D(E )

μν (Ra0, ω0)

+ · · · , (2.29)

where unlike the previous case the diagram (2.21) describes
the retarded dynamics and the diagram (2.20) has advanced
status. The spatial vector argument is now directed from atom
“a” to atom “0.”

Similar diagrams visualize coupling between any atoms of
the medium. We can define the following partial contribution
between any atoms a and b:

�
(ab)
ge;e′g(E ) ≈ �

(ab)
ge;e′g(h̄ω0) = 1

h̄
f μ
eg f ν

ge′D(E )
μν (Rab, ω0) + · · · ,

(2.30)

where indices a and b are independently running from 1 to N
and each selected pair of the atoms contributes twice because
of two alternative options in sharing a single excitation in the
system of two atoms.

The following remarks concerning the presented deriva-
tion seem important. For the medium atoms the self-action
diagram (2.17) should be also incorporated into the entire
construction of the complete self-energy operator �̂(N+1).
But in fact in far off-resonance conditions with δM � �e,
where �e is the natural decay rate for a medium atom, it
makes only negligible correction to evaluation of the resolvent
operator. The crucial assumption, approving the domination
of the interaction diagrams (2.20) and (2.21) with avoiding
more complex graphs, is that the system dynamics would be
approached as free within a short retardation time for light
propagation between the atoms of any pair. Finally, we can
point out that the complete self-energy operator consists of the
Hermitian and anti-Hermitian parts. The former is responsible
for the correction of energy structure in the multiatomic sys-
tem sharing the single excitation and the latter for the decay
process of such an unstable exciton-type quasiparticle state.

2This estimate would be invalid for the atoms separated by a long
distance �c/δM . But such long distances are nonattainable for our
numerical simulations further performed for a sample of much less
spatial scale. Our evaluation of the diagrams (2.20) and (2.21) is also
constrained by separation of the reference atom from the dielectric
surface with a distance comparable with c/ω0 but not significantly
shorter than it. Otherwise, it should be extended by a short-range
chemical interaction including the complete excitation spectrum of
the medium.

FIG. 1. The single atom placed by optical tweezers near a cylin-
drical nanoscale waveguide. The atomic emission is partly enhanced
into the guided mode.

III. RESULTS

Here, we present two examples demonstrating capabilities
of the method in application to some feasible and actively
studied experimental objects. We compare our results with
the alternative and independent calculations and arguments
conventionally utilizing the approach of macroscopic electro-
dynamics.

A. Cylindrical nanoscale waveguide

The mesoscopic systems, consisting of a few atoms with
individual access to each of them, make convenient experi-
mental resource for studying various QED effects that have
been highlighted by recent experiments with dielectric nanos-
tructures [26,28,36,37] and microcavities [13,38]. As a first
example, shown in Fig. 1, we consider the optical coupling
of an alkali-metal atom with a cylindrical dielectric waveg-
uide, made of silica (SiO2 with refractive index n = 1.45).
In experiments the trapping of atoms is normally designed
by two beams propagating along the fiber and oppositely
detuned from the atomic transition [39,40]. But here we have
in mind and examine a different trapping technique, based on
optical tweezers, when the atom is loaded into a potential well
appeared near the caustic waist of an auxiliary light beam
and configured by its far off-resonant red-detuned Gaussian
mode. The trapping light affects and can significantly distort
the atomic energy structure, which can be important for its
implication as a logic unit in quantum interface or quantum
computing (see [13,41]). Nevertheless, we further neglect
the action of the trapping light on the atom and focus on a
net effect, i.e., on the energy correction induced by its own
radiation only.

1. Tripod configuration 87Rb

In the hyperfine manifold of D2 line of 87Rb there is a
unique configuration of the closed tripod-type transition ex-
isting between the F = 0 excited state and F0 = 1 ground
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state.3 That gives a convenient example of emission channel
letting comparative analysis for alternative calculations based
on the macroscopic approach. The atom has its nondegenerate
upper state, so in macroscopic description we can avoid the
subtle problem with evaluation of the energy shift, induced
by interaction with the medium, via renormalization of the
“dressed” and formally diverging upper-state energy to its
experimentally measured physical value. The microscopic ap-
proach, within the made approximations, leaves finite all the
calculated parameters.

The self-energy operator (2.14) reduces to the energy cor-
rection of the F = 0 excited state

�(ρ) = (ρ) − i

2
�(ρ), (3.1)

where  = (ρ) and � = �(ρ) are the energy shift and decay
rate, considered as function of radial distance ρ. We have
omitted here and in further examples the vacuum contribution
to the shift by incorporating it into the physical energy of the
free atom. Then the extra energy shift includes the radiative
correction, associated with the emitted light, and estimates the
near-field static interaction with the sample. The asymptotic
value �(∞) ≡ �∞ in (3.1) defines the decay rate of free atom.

In Fig. 2 we show the results of the microscopic and macro-
scopic calculations for the decay rate of the F = 0 state (upper
plot) and its energy shift, microscopically calculated (lower
plot). The atom is assumed to be placed near a nanoscale
waveguide (nanofiber) with radius a = 200 nm. In addition
in the lower plot we have shown our estimate for the van der
Waals shift of the ground state (see Appendix B). The actual
shift of the transition frequency is given by difference of these
two quantities.

The results of macroscopic calculations are adopted from
[42] and, in turn, were made in two different ways. In the
macroscopic vision of the problem it is most natural to apply
the Fermi’s golden rule and evaluate numerically the transition
rate into all the set field modes distorted by the presence of the
nanofiber. These modes can be constructed by straightforward
solution of the Maxwell equations (see [43]), and the final re-
sult is reproduced in the upper plot of Fig. 2 by the red dashed
curve. As a second way, it is possible to analytically construct
a long-distance asymptotic approximation to the exact result
in assumptions of a certain balance in the coupling of atomic
emitter with the HE11-guided and external modes (see [42]).
These calculated data are reproduced by the gray curve in the
plot.

The microscopic calculations for the decay rate and light
shift are given by the blue curves in both the plots of Fig. 2.
For the decay rate we have obtained excellent agreement be-
tween the data calculated in the microscopic and macroscopic
approaches. Let us stress that the presented calculations were
independently done without any fitting manipulations. In the
microscopic case we have verified the internal conversion
of the calculation process and its eventual insensitivity to

3Here and throughout we specify the atomic states by total
(orbital + electronic spin + nuclear spin) angular momentum and its
projection F0, M0 and F, M, respectively, for the ground and excited
states.

FIG. 2. Upper plot: decay rate of the hyperfine sublevel F = 0
belonging to the excited state of 87Rb (D2 line, λ ∼ 780 nm), calcu-
lated microscopically (blue solid), by the Fermi’s golden rule (red
dashed), and its asymptotic estimate from [42] (gray) (see text).
Lower plot: the radiative shift of the same sublevel (blue solid) and
the van der Waals shift of the ground state (dashed). The depen-
dencies on radial distance ρ were calculated for a silica cylindrical
nanofiber with radius a = 200 nm (see Fig. 1) and scaled by the
natural decay rate �(∞) ≡ �∞, approached in the limit ρ → ∞.

variation of the external parameters of the artificial medium,
such as atomic density, sample length, and frequency offset
(see Appendix A). The data sets show the oscillation behavior
indicating the interference of the emitted radiation and incor-
poration of the reference atom into a local nanocavity system
with the waveguide. But the primitive balance description of
light emission, expressed by the gray curve, loses this effect.

The main advantage of the microscopic approach is that it
lets us estimate the shift of the energy level, induced by the
radiative coupling of the atom with the nanofiber. At short
distances this shift is masked by the van der Waals static
attraction to the sample in both the excited and ground states.
Our estimates indicate the importance of the static interaction
for distances of 200 nm or shorter. The net radiative correc-
tion to the energy shift is quite small within ∼0.01�∞. But
even such a relatively small shift can be visible in observation
of microwave-optical double resonances driven by coherent
fields.

2. The F = 5 → F0 = 4 closed transition in 133Cs

Consider the cesium atom, coupled with the same cylin-
drical nanofiber. The critical difference with the previous
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FIG. 3. Same as in Fig. 2, but calculated for the F = 5 → F0 = 4
closed transition in D2 line of 133Cs. The six different curves, enumer-
ated by n = 0, 1 . . . , 5, reproduce the six imaginary (upper plot) and
real (lower plot) parts of the eigenvalues of the self-energy operator,
i.e., the state decay rates and the radiative shifts.

example is that the closed emission transition F = 5 → F0 =
4 in 133Cs has degenerate both upper and lower states. The
interaction with the nanofiber violates the spherical symmetry,
such that the excited state splits in six quasienergy sublevels.
The self-energy operator (2.14) reveals 11 × 11 matrix having
six different eigenvalues

�n(ρ) = n(ρ) − i

2
�n(ρ), (3.2)

where one specific eigenvalue, labeled by n = 0, is nonde-
generate, and the other five with n = 1, . . . , 5 are double
degenerate. Asymptotically in the limit of weak coupling the
respective eigenstates correlate with the atomic state |F, M =
0〉 and with the pair of states |F, M〉 with |M| = 1, . . . , 5,
where the relevant quantization direction is clarified below.
But before and for a sake of comparative discussion let us
draw attention to the earlier calculations in [16], based on the
Fermi’s golden rule, where the initial and final states were
intuitively defined as undisturbed atomic states with angular
momentum and its projection, quantized along the waveguide
direction.

In Fig. 3 we present the results of our microscopic calcu-
lations for the eigenvalues (3.2). For six different eigenvalues
the obtained degeneracy results from the symmetry of emis-
sion process and the correct eigenfunctions of the operator
(2.14) deviate from the atomic states, suggested in [16], and,

as justified by our numerical simulation, construct a unique set
of states, superposed in the atomic basis, which are nonorthog-
onal in the general case.

Indeed, the microscopic approach adds an important cor-
rection to an intuitive vision, based on the perturbation theory,
and associates the quasiparticle excitation and its symmetry
properties with the non-Hermitian self-energy operator (2.14)
with its dominating anti-Hermitian part but not so negligible
Hermitian contribution. For the atom, considered in its local
reference frame, the geometry of the object itself has a sym-
metry of the C2v point group with its principal axis, coincided
with the radial coordinate ρ, directed from the z axis to the
atom (see Fig. 1). The C2v symmetry group is Abelian and has
only one-dimensional representations conventionally leading
to nondegenerate eigenvalues. Nevertheless, we observe the
double degeneracy for the five eigenvalues, which indicates a
clear signature of higher local symmetry. Take into account
that the self-energy operator, thinkable as effective Hamilto-
nian of the valence electron, depends on its internal variables
via the polarizability tensor, which components are contracted
with certain weighting factors. In turn, these weighting factors
are expressed by the field propagators dressed by interaction
with the medium. Surprisingly, that makes this operator in-
variant to any internal rotation around the axis orthogonal to
the (z, ρ) plane sketched by the atom and waveguide. As a
consequence, it obeys the symmetry of point group D∞h in
respect to arbitrary rotation around this axis.

The manifestation of higher symmetry for the effective
Hamiltonian than for the physical object results from equiv-
alence and absence of correlations in the emission process
of two counter-rotating polarization modes, defined in a local
frame originated with the atom’s location. Then in a Carte-
sian basis the slope of the transition dipole moment in the
(z, ρ) plane only imbalances the directional total emission
into the outer space and waveguide between z > 0 and z < 0
but does not change the rate of emission. In our calculations,
reproduced in Fig. 3, we have specified the eigenstates by
the modulus of the angular momentum projection onto the
azimuthal direction |Mφ| of the cylindrical coordinate system
(see Fig. 1), running between 0 and 5.

However, it is noteworthy to point out that the orthogonal-
ity of the eigenstates is primarily provided by the dominating
anti-Hermition part of the effective Hamiltonian and is
slightly violated by the small contribution of its Hermitian
part. That adds an admixture of extra basis states with |Mφ| =
n to each n state. Nevertheless, it does not break the symmetry
of the self-energy operator for itself and, in accordance with
the Schur’s lemma, leaves the eigenvalues (3.2) degenerate
in each subspace of the group irreducible representations.
Actually, the nonorthogonality is meaningful for far distance
separations from the nanostructure, where the respective de-
viations from the atomic energy become negligibly small and
the system approaches to an undisturbed spherically symmet-
ric state of the free atom.

By concluding this section let us make the following re-
mark. As we see from the considered example, the expected
Purcell-type enhancement of light emission into a nanoscale
waveguide of cylindrical shape reveals a quite weak effect.
For both the transition schemes the coupling of an individual
atomic emitter with a silica nanofiber enhances the decay
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FIG. 4. The single atom placed by optical tweezers (not shown)
near a comb-type spatially modulated waveguide. The light emission
by the atoms into the guided mode is enhanced when its frequency is
tuned near the edge of the Brillouin zone of PCW and is sensitive to
displacement of the atom along the z direction.

rate within 50% at maximum. In experiments the enhance-
ment is usually certified by a factor β, which is given by
an empirically normalized part of the light emitted directly
into the guided mode. This quantity is normally within a few
percent of the total emission [14] since the atom is typically
trapped quite far from the fiber surface, that is confirmed by
our estimates in Figs. 2 and 3. A similar effect, and with the
same order in its magnitude, had been earlier observed for
a rubidium atom experiencing the radiative-type interaction
with evanescent field of the light beam reflected from a plane
dielectric surface (see [44]). Significant enforcement of the
radiative coupling would be attained once we involve many
atoms periodically ordered and interacting cooperatively via
the guided field (see [45,46]). Alternatively, as suggested in
[24,28], one could slow down the light propagation and then
enhance the emission into the guided mode if a subwavelength
waveguide was designed as a one-dimensional photonic crys-
tal. We examine such options in the next section.

B. A comb-type asymmetric waveguide

In our second example we address a specifically shaped
asymmetric photonic crystal waveguide (PCW), which has a
periodic spatial comb-type modulation (see Fig. 4). In such
a waveguide the dispersion law for light propagation in its
guided mode would obey the periodic dependence as well and,
as a consequence, any emission at frequency tuned near the
edge of its Brillouin zone would be delayed and effectively
enhanced.

For sake of clarity and comparability with the previous
example let us refer to the F = 5 → F0 = 4 closed transition
in 133Cs with the vacuum wavelength 852 nm. Then the main
parameter of the comb-type waveguide is its period a, which is
supposed to fit the longitudinal half-wavelength of the guided
mode for the reference frequency and expected to be shorter

than its vacuum value. For the material InGaP, suggested
for experimental verification, with refractive index n ∼ 3.31,
this half-wavelength is varied between 425 nm (very narrow
waveguide) and 130 nm (wide waveguide). For configura-
tion, shown in Fig. 4, we have scanned the following probe
parameters: 130 nm< a <425 nm, h = 1.5 a, w = 0.5 a. Par-
ticularly, we shall verify the predictions followed from a
macroscopic analysis reported in [28] that such an asymmetric
comb waveguide “would support (i) a slow mode with an
unusual quartic dispersion around a zero-group-velocity point
and (ii) an electric field that extends far into the air cladding
for an optimal interaction with the atom.”

For PCW we present only microscopic simulations since
there is a serious amplification for the calculation capabil-
ities if following the macroscopic vision of the problem.
The Maxwell equation cannot be analytically solved and a
representative set of the waveguide modes could be only
numerically constructed. Then applicability of the Fermi’s
golden rule would meet evident difficulties in numerical
evaluation of a large number of transition matrix elements as-
sociated with these modes. To our knowledge at present there
are no estimates of the decay rates for an atom coupled with
a PCW in the literature. There are certain constraints for our
microscopic approach as well, which hides a direct identifica-
tion of the PCW parameters such as its zone structure, group
velocity, etc. The method allows only indirect access to these
characteristics via dependence of the calculated quantities on
various external parameters.

1. Emission of 133Cs at F = 5 → F0 = 4 of D2 line

In Figs. 5 and 6 we show the results of our numerical sim-
ulations, presented for cesium atom, at its different locations,
and for the external conditions similar to those we used in
Sec. III A 2. From the macroscopic point of view the strongest
coupling would be expected if frequency ω0 was equal to
the band frequency of the Brillouin zone. We can fulfill this
critical condition by varying the waveguide parameters and
by searching for an optimal emission regime where the eigen-
values of the self-energy operator are maximized.

We present here the data for such an optimal configuration,
which we have justified by a round of simulation cycles. With
referring to Fig. 4, the cesium atom is placed behind the
inhomogeneity feature (comb tooth) for the data of Fig. 5 and
behind the comb but between its teeth for the data of Fig. 6.
The optimal spatial period a occurs a bit less than half of
the vacuum wavelength and slightly different for these two
cases. We associate these deviations with a certain signature
of boundary effects caused by a light reflection at the edges
of the sample. Actually, we deal here not with a conventional
waveguide but rather with an open one-dimensional resonator.
The emission enhancement is low sensitive to small variation
of a near its optimal value (within 10 nm of changes) in
qualitative agreement with the empirical arguments of [28].
Our calculation accuracy has certain limitations dictated by
internal convergence of the simulation procedure with respect
to extension of the sample length and density, which, in turn, is
restricted by consistency in parameter variations for approach-
ing the actual dielectric sample by its artificially constructed
microscopic replica. After entire verification of the simulation
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FIG. 5. Same as in Fig. 3, but calculated for the cesium atom cou-
pled with the comb-type waveguide shown in Fig. 4, where the atom
is placed behind a comb tooth. The separation from the waveguide
surface is scaled by x0 = 200 nm similarly to Figs. 2 and 3.

protocol we have justified that the representative data corre-
spond to the separation distances x > 100 nm.

The dramatic difference in the calculation results, shown
in Figs. 3 and in 5 and 6, is clearly seen. In the case of cylin-
drical waveguide and for separations from the fiber surfaces
about 200 nm we obtain practically negligible correction to
the natural decay rate. But for the comb configuration and at
the same distances there is meaningful enhancement of the
emission, which is mainly expected into the guided mode.
Strictly speaking, our calculation scheme is incompatible with
selection of the emission channel exactly into the waveg-
uide. Nevertheless, the fact that for short separations with
x ∼ 100 nm we obtain the decay rate enhanced up to two
times its natural value, clearly indicating that a significant part
of the light emerges from the system primarily via waveguide.

The stronger radiative coupling with the photonic crystal is
observed when the atom is placed near those inhomogeneity
features where the dielectric nanostructure is locally widened
and when it weakly violates the system periodic structure.
As pointed out above, the periodicity slows down the group
velocity of light and stimulates the emission process near
the edge of the Brillouin zone if it is resonant to the atomic
transition. But we can also associate the effect of emission
enhancement with optimal incorporation of the atom into a
periodic structure of the photonic crystal and then into the
process of Bragg diffraction and, as a consequence, with
stimulation of the directional light passage through the one-
dimensional channel in general.

FIG. 6. Same as in Fig. 5, but for the cesium atom displaced to
position between the comb teeth (see Fig. 4).

The next important point is that, similarly to the case of
cylindrical nanofiber, the effective Hamiltonian of the comb
configured PCW reproduces a local symmetry of D∞h group
in respect to rotation around the y axis orthogonal to (z, x)
plane as defined in Fig. 4. The eigenstates are parametrized by
the modulus of the angular momentum projection |My| onto
the y axis, which is running between 0 and 5. The enhanced
light emission can be directionally controllable by preparation
of the atom in a specific excited state. The radiative shifts,
given by the real components of the complex eigenvalues, as
well as the ground-state van der Waals shift, are small but not
negligible and have the same order of magnitude as in the case
of cylindrical waveguide.

2. Emission of 87Rb at F = 3 → F0 = 2 of D2 line
and comparing remarks

For comparison in Figs. 7 and 8 we show the emission rates
and radiative shifts of the quasienergy states, calculated for
rubidium atom, in the same external conditions as for cesium
in Figs. 5 and 6. The results look qualitatively the same but
give us a few additional observations. Since the rubidium has
a shorter optical wavelength than cesium, the evanescent field
of the guided mode is weaker in its case and, as a consequence,
leads to a smaller coupling with the atom and less correction
to the decay rate for the same separations from the dielectric
surface.

The next interesting point is that for both the atoms
the states with n = max(|My|) = 3 (rubidium) and with n =
max(|My|) = 5 (cesium) have their decay rate close to the
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FIG. 7. Same as in Fig. 5, but for emission of 87Rb at the F =
3 → F0 = 2 transition of its D2 line.

reference values for the isolated atoms or even smaller than it
at some distances. Such states can decay only onto the lower-
energy states with maximal projection of their spin angular
momentum and the transition dipole moment lies in the (z, ρ)
or (z, x) plane, i.e., is oriented along the waveguide. Just for
these states the atomic dipole has an ability for destructive
interference with its image created by the dielectric sample.
The effect is small but foreseen from the behavior of all the
lower curves in the upper plots of Figs. 3 and 6–8. The com-
pound system (atomic dipole and nanstructure) demonstrates
here a certain signature of subradiant regime in the emission
process. From the macroscopic vision we can treat this effect
as the atomic dipole together with its image have created a
Dicke-type subradiant mode for certain separations.

For both the atoms and for all the considered geometries
the shift corrections to the quasienergies for the atomic states
reveal a quite small effect. For some calculated data it is prob-
lematic to distinguish small splittings in the quasienergy terms
in the diagrams presented in Figs. 5–8 since the observed
resolution for these data is within our simulation uncertainty.
Nevertheless, for rather short separations from the dielectric
surface, i.e., around 100 nm or less, our estimates predict a
relatively strong static attraction via van der Waals forces for
the ground as well as for the excited states.

IV. DISCUSSION

In this paper we have presented a theoretical approach for
microscopic modeling of the radiative coupling of a single
atom with a dielectric nanostructure of arbitrary shape, with a

FIG. 8. Same as in Fig. 7, but for the rubidium atom displaced to
position between the comb teeth, see Fig. 4.

main focus on nanoscale photonic crystal waveguides (PCW).
The developed calculation scheme is applicable when the
atom has a closed optical transition with arbitrary orbital and
spin angular momenta. We believe it can be further general-
ized and adjusted for more complicated objects consisting of
several atoms trapped near nanostructures by optical tweezers.
By the presented numerical simulations we were aiming to
evaluate the potential of such physical systems for future
architecture of reliable quantum interface and quantum infor-
mation processing with single photons and atoms.

The excitation spectrum of the atom is described in terms
of the self-energy operator responsible for the correction of
the radiative dressing of the atom’s excited state in the pres-
ence of a nanostructure. This operator can be also treated as an
effective Hamiltonian for such a prepared atomic quasiparticle
and intrinsically has a non-Hermition nature. In the considered
examples of nanoscale waveguides we have obtained that the
radiative interaction possesses the local symmetry of point
group D∞h with its principal axis directed orthogonal to the
plane sketched by the waveguide and atom. In turn, this leads
to the double degeneracy of those quasiparticle states, which
are correlated with the atomic states having nonzero projec-
tion of the total angular momentum on the symmetry axis.

The obtained results have confirmed existing expectations
that PCW with asymmetric transverse profile have stronger
radiative coupling between the atom and waveguide than for
axially symmetric nanostructure. For the distances between
the atom and the dielectric surface of about 100 nm we predict
the light be emitted primarily to the waveguide. That indicates
a signature of strong resonance coupling between atom(s) and
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light propagating through the PCW in the guided mode tuned
near the edge of its Brillouin zone. This in turn justifies as
realistic the scenario of a signal light storage for single or few
photons mapped onto a small atomic array consisting of a few
atoms. This can be done by common means of either Raman
or electromagnetically induced transparency protocols. If a
signal photon was effectively transferred in the guided mode,
then we could expect, as a realistic option, to map it even onto
the spin state of a single atom by the Raman storage protocol.

For the specific atomic states and at certain separations
from the dielectric surface we have obtained a signature of
a Dicke-type subradiant effect suppressing the emission rate.
The observed subradiant states asymptotically correlate with
the states of free atom, which have maximal projection of the
angular momentum onto quantization direction orthogonal to
the plane sketched by the waveguide and atom. Just for such
states the transition dipole moment and the waveguide lie in
one plane and there is a possibility for destructive interference
for the atomic dipole with its image created by the dielectric
sample. The effect is obtained for both considered examples
of cylindrical waveguide and PCW.

If specific subradiant states are excluded, then in gen-
eral, for a transition dipole, having a component oriented
orthogonal to the waveguide, we observe strong coupling
and emission enhancement mainly in the guided mode. In
particular, such emission channels could be activated by ex-
citation of an atom initially occupying the upper level of the
so-called “clock transition” in the Zeeman manifold of its
ground state, i.e., for the state having zero projection of the
spin angular momentum. In this regard let us draw attention
to recent experiments [39,40], where a strong cooperative
interaction of alkali-metal atoms, periodically arrayed along
a nanoscale waveguide, was observed via the mechanism of
one-dimensional Bragg scattering at the level of only a few
percent of emission enhancement per atom. In the case of
PCW we expect stronger resonance scattering for a small
number of atoms and even for a single atom. As we believe
this suggests a promising option for organization of a quantum
bus for a system of qubits adjusting the clock transition for
quantum data processing.

Then, as a potentially important implication, the expected
strong one-dimensional resonance scattering can provide the
entanglement of atoms integrated into a quantum register. In
the example of alkali-metal atoms, any detection event of
elastic resonance scattering, observed in the one-dimensional
channel, changes the phase of the atomic state by −1 if at
least one or several atoms occupy the upper hyperfine sub-
level and leaves the phase unchanged otherwise. So by the
elastic resonance scattering of an auxiliary photon it makes it
possible to create a Cz-type entanglement of the ground-state
atomic spins, which could be even more effective than the
conventional protocol based on Rydberg blockade. The sug-
gested entanglement protocol has certain robustness to weak
disturbances in the atom positions.
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APPENDIX A: THE DIELECTRIC MEDIUM APPROACHED
BY A DISORDERED ENSEMBLE OF TWO-LEVEL ATOMS

Let us consider an artificially constructed homogeneous
medium consisting of two-level atoms having the energy
structure shown in Fig. 9. The medium atom has its single
1S0 ground state (|g〉 = |0, 0〉) and degenerate 1P1 excited
state (|e〉 = |1,−1〉; |1, 0〉; |1,+1〉), both parametrized by the
electron orbital momentum and its projection. Its resonance
frequency ωM ≡ ωeg is upshifted from the resonance fre-
quency of the reference atom ω0. The atoms are randomly
distributed in space and fill the sample volume with a density
n0, which is high and n0λ̄M

3 > 1, where λ̄M = c/ωM

As shown in [33] such a medium has its dielectric permit-
tivity ε = ε(ω) given by a root of the following equation:

ε(ω) =
1 − 8πn0

3h̄
f 2
0

ω−ωM+i
√

ε(ω)�e/2

1 + 4πn0
3h̄

f 2
0

ω−ωM+i
√

ε(ω)�e/2

, (A1)

where f0 is modulus of the transition dipole moment, and �e

is spontaneous decay rate of the atomic upper state

�e = 4ω3
M

3h̄c3
f 2
0 . (A2)

Equation (A1) reveals a cubic equation, which relevant root
should be selected by correct asymptotic behavior at low and
high frequencies and obey the Kramers-Kronig causal rela-
tions. In particular, if the frequency argument is taken near
the resonance frequency of the reference atom ω ∼ ω0 and the
frequency offset is large enough, i.e., δM = ωM − ω0 � �e,
we arrive at the following asymptote for the real part of
dielectric permittivity in a far-off resonant domain

ε′(ω) → 1 − 4πn0

h̄

f 2
0

ω − ωM
, (A3)
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FIG. 10. Fit of the spectral permittivity to the dielectric constant
of silica εSi, scanned near the vicinity of the F = 0 → F 0 = 1 (D2-
line) transition in 87Rb. The medium parameters are n0λ̄M

3 = 20 and
δM = 233 �∞.

and the complex function ε(ω) = ε′(ω) + iε′′(ω) will have
negligible imaginary part ε′′(ω) 
 1. In such an asymptotic
spectral region the function (A1) is approximately constant
and, being fixed by condition ε′(ω0) = ε, will fit the permittiv-
ity ε of the actual dielectric sample in a rather broad spectral
domain. There are free parameters, namely, the atomic den-
sity n0, the transition dipole moment f0, and the frequency
offset δM , which could be independently varied to optimally
fulfill the required condition. As verified by our numerical
simulations for the dense samples with n0λ̄M

3 � 1 and at
fixed ε′(ω0) the radiative coupling of the reference atom with
the medium converges to a certain level further insensitive to
variation of the above parameters.

As a relevant example in Fig. 10 we show a typical fit for
the real part of the spectral permittivity of such an artificial
medium to the dielectric constant of silica (εSi ∼ 1.452) near
the resonance frequency of the reference atom. Here we have
tested the F = 0 → F 0 = 1 decay channel in 87Rb and scaled
the spectral range by the decay rate of the reference atom
�∞. The latter is defined as an asymptotic far-distance limit
for the self-energy operator calculated in the main text �∞ ≡
�(∞). In our estimates we set �e = �∞, i.e., parametrized
the artificial medium (replica of silica) by the same reduced
transition dipole moment as for the reference atom. As we
can see from the graph, for the parameters n0λ̄M

3 = 20 and
δM = 233 �∞, in a quite broad spectral domain near vicinity
of the reference frequency the dielectric constant of silica is
reliably reproducible.

The internal convergence of the method is clarified in
Fig. 11, where we show the results of calculations done for the
different densities n0λ̄M

3 = 5, 10, 15, 20 and respective fre-
quency offsets δM/�∞ = 58, 117, 175, 233. The waveguide
length was set as 4λM ∼ 4 ∗ 780 nm for all the configurations.
Each curve corresponds to disordered random distribution of
atoms and suggests a configuration averaging over 20 differ-
ent realizations. Conceptually, the dependencies are plotted
in a such way that for each pair of the chosen parameters
n0λ̄M

3 and δM they provide the same mean value for the
dielectric constant εSi in vicinity of the transition frequency
(see Fig. 10). The dependencies for highest densities become
unresolved within the graph scale.

In Fig. 12 we compare two different options for distri-
butions of atoms inside the medium with n0λ̄M

3 = 20 and
δM = 233 �∞. The dashed-dotted curve reproduces the calcu-
lations for the disordered medium and with the configuration
averaging. The solid curve corresponds to an ordered distribu-
tion with fixed interatomic separations. The dashed red curve

FIG. 11. The decay rate and radiative shifts calculated for
different densities: n0λ̄M

3 = 5 (dotted) = 10 (dashed) = 15 (dashed-
dotted) and = 20 (solid) and with the frequency offsets respectively
fitted for each density (see text).

shows the macroscopic evaluation of the decay rate with the
Fermi’s golden rule. A good coincidence between the cal-
culations done by microscopic and macroscopic approaches
was already pointed in the main text. Here we have verified
(and Fig. 12 gives an example) that the averaged parameters,
calculated for the disordered sample, coincide with the limit of
the ordered configuration. The latter was used in our practical
calculations for all the geometries considered in the paper.

However, it is necessary to point out that the variation
of the external parameters cannot be infinitely ranged. The
dipole long-wavelength approximation becomes inconsistent
for highly dense medium where the chemical forces are ev-
idently important. There is an important constraint with the
construction of the artificial medium, where the resonance
frequency is assumed to be quite close to the atomic frequency
in optical scale. But such condition would be impossible to
fulfill if we wish to cover a broader frequency domain, then
scaled by �∞, i.e., to apply the model beyond the exam-
ple of closed transition. See also the clarifying comments
after (2.28).

APPENDIX B: VAN DER WAALS SHIFT
OF THE GROUND-STATE ENERGY

The original vacuum QED diagram (2.17) contributes not
only to the excited state but to the ground state of the reference
atom as well, such that it describes a light shift, induced by
the vacuum fluctuations of the field, as expressed by the first
line in (2.19). Once the atom, being in the ground state, gets
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FIG. 12. The decay rate and radiative shifts calculated for the
ordered (solid) and disordered (dashed-dotted) configurations at the
density n0λ̄M

3 = 20 and for the frequency offset δM = 233 �∞. For
comparison the dashed red curve shows decay rate calculated with
the Fermi’s golden rule in [42].

close to the dielectric sample it experiences a near-field static
interaction and the field fluctuations modified by the medium.
Both the processes can be incorporated within the following
extension of the original vacuum diagram:

(B1)

This diagram describes the coupling of the reference atom
with the medium in a first nonvanishing order of the pertur-
bation theory. The shaded block symbolically visualizes the
resolvent operator of the medium, consisting of N atoms, with
involving all internal interactions. All the inward and outward
arrowed lines indicate the individual propagators associated
with a stable collective ground state of the entire system.

Unlike the dynamics of a single excitation, shared by
the reference atom and the medium, here we cannot follow
the problem microscopically. First, we deal here with far

off-resonant interaction such that many intermediate-energy
states are involved in the virtual coupling in the diagram (B1).
As a consequence, we fail to substitute the real medium by its
artificial replica constructed by ensemble of two-level atoms
with simply fitting the dielectric permittivity in a vicinity of
the reference transition frequency. Second, for a condensed
medium, where atoms are confined by chemical bonds, it is
certainly insufficient to be constrained by the long-wavelength
approximation for the internal interactions. The internal sys-
tem Hamiltonian is even unknown and the medium normally
yields only thermodynamically simplified macroscopic de-
scription. Third, the diagram (B1) is not originated with a
dynamically developing process, as we have implied for an
excited state. In the latter case the virtual coupling is primary
initiated between singly excited states belonging to a finite
segment of the system Hilbert subspace such that the exci-
tation transport could be structured in the cooperative Dyson
equation (2.15). But unlike (2.15) the partial contributions to
(B1) virtually expand over infinite set of intermediate states
with filling the unlimited segment in the system Hilbert sub-
space. In fact, (B1) reveals a precursor of the self-energy for
the retarded-type single-particle Green’s function of the refer-
ence atom in its ground state, which could be approximately
constructed by means of the nonequilibrium macroscopic di-
agram technique [31,32].

Nevertheless, if avoiding the problem with retardation we
can attempt to correct the ground-state energy and constrain
by the static van der Waals interaction only. Let us consider as
a starting point, which we will further improve, the dielectric
as a configuration of independent dipoles and simplify (B1)
by only pair static-type coupling with b = a. Then we can
approximate the interaction potential for the reference atom
occupying a particular Zeeman sublevel in its ground state |m〉
by the sum

Um,g . . . g︸ ︷︷ ︸
N

(r) = −2

3

N∑
a=1

1

|r − ra|6
∑
n,e

|dnm|2∣∣ f (a)
eg

∣∣2

h̄(ωnm + ωeg)
, (B2)

where the transition frequencies ωnm and ωeg are taken for
independent atoms, and we have enumerated the medium
dipoles by index a running from 1 to N . Here, as in the main
text, we consider a single-electron reference atom existing in
its 2S1/2 ground state with weak spin-orbital coupling in its
excited states [negligible in the denominator of (B2)] such that
the invariant sum over intermediate states |n〉 eliminates any
spin dependencies in the transition matrix elements and makes
(B2) independent on |m〉. But the potential itself depends on
a particular microscopic configuration of the medium dipoles,
which we have clarified in its superscript index.

As an alternative macroscopic description, let us consider a
homogeneous dielectric medium bounded by a flat surface and
coupled with the reference atomic dipole, located at distance
z from the surface. Then, being in the state |m〉, the dipole
experiences the static attraction from its image with the fol-
lowing force potential:

Um(z) = − 1

12 z3

ε − 1

ε + 1

∑
n

|dnm|2. (B3)

013714-14



EXCITATION SPECTRUM OF A MULTILEVEL ATOM … PHYSICAL REVIEW A 109, 013714 (2024)

This attraction potential reveals a macroscopic counterpart of
(B2) but with the involved internal interactions, among the
medium atoms, thermally averaged over the random medium
configurations. The medium response is converted into so-
lution of the macroscopic Maxwell equation with dielectric
constant ε and considered for the specific plane geometry.

We can attempt to compromise (B2) with (B3) if ωnm 

ωeg for the meaningful transitions. That lets us transform the
sum (B2) to a mesoscopically smoothed integral form

N∑
a=1

2

3

∑
e

∣∣f (a)
eg

∣∣2

h̄ωeg
. . . ≡

N∑
a=1

α(a) . . . → n0ᾱ

∫
V

d3r′ . . .

≈ 3

4π

ε − 1

ε + 2

∫
V

d3r′ . . . (B4)

with the spatial integral evaluated over the sample volume
V . In the last transformation, as a crucial step and extending
assumption, we have included in our model the self-consistent
coupling of the medium dipoles, expressed by the Lorentz-
Lorenz relation between the mean polarizability ᾱ, averaged
over mesoscopic volume and scaled by atomic density n0,
and dielectric constant ε. This last transformation is only
approximately valid and could be applicable inside an infinite
and homogeneous dielectric medium. In the considered case
for the medium dipoles distributed near the bounding surface,

which play primary role in interaction with the reference
dipole, their internal coupling is overestimated by (B4) and
expected to be weaker. But we shall apply (B4) as an empirical
extrapolation and use it as an upper bound for the ground-
state static interaction beyond the low-density decoding of the
diagram (B1).

Finally, we can suggest the following empirical estimate
for the electrostatic shift of the ground state of the reference
atom interacting via van der Waals forces with an arbitrary
shaped dielectric sample

m(r) = − 3

4π h̄

ε − 1

ε + 2

∑
n

|dnm|2
∫
V

d3r′ 1

|r − r′|6 (B5)

which for an infinite dielectric medium, bounded by a flat
surface, coincides with (B3) only in assumption of ε � 1.
Nevertheless, the deviation of the outer factor as function of ε

is not so critical and we believe in the correctness of our es-
timate for arbitrary-shaped nanostructures at least as its upper
bound. Finally, within the made approximations the ground-
state shift is expected to be independent on specification of the
atomic spin state, such that

∑
n

|dnm|2 = 〈m|d2|m〉 = e2〈r2
e 〉,

where e is electronic charge and 〈r2
e 〉 is the variance of its

radial position in the atom.
For further and more specific details concerning van der

Waals and Casimir forces we refer the reader to special litera-
ture [9,10,31,47,48].
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