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Driven-dissipative four-mode squeezing of multilevel atoms in an optical cavity

Bhuvanesh Sundar ,* Diego Barberena , Ana Maria Rey , and Asier Piñeiro Orioli
Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA

and Joint Institute for Laboratory Astrophysics, National Institute of Standards and Technology, Department of Physics,
University of Colorado, Boulder, Colorado 80309, USA

(Received 23 September 2023; accepted 11 December 2023; published 17 January 2024)

We utilize multilevel atoms trapped in a driven resonant optical cavity to produce scalable multimode squeezed
states for quantum sensing and metrology. While superradiance or collective dissipative emission by itself has
been typically a detrimental effect for entanglement generation in optical cavities, in the presence of additional
drives it can also be used as an entanglement resource. In a recent work [B. Sundar, D. Barberena, A. M. Rey,
and A. Piñeiro Orioli, companion paper, Phys. Rev. Lett. 132, 033601 (2024)], we described a protocol for
the dissipative generation of two-mode squeezing in the dark state of a six-level system with only one relevant
polarization. There we showed that up to two quadratures can be squeezed. Here, we develop a generalized
analytic treatment to calculate the squeezing in any multilevel system where atoms can collectively decay by
emitting light into two polarization modes in a cavity. We show that in this more general system up to four spin
squeezed quadratures can be obtained. We study how finite-size effects constrain the reachable squeezing, and
analytically compute the scaling with N . Our findings are readily testable in current optical cavity experiments
with alkaline-earth-like atoms.
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I. INTRODUCTION

Creating many-body states of matter with large useful en-
tanglement that can be harnessed for quantum sensing and
metrology is a highly sought-after goal. Optical cavities are
natural candidates for creating such types of entangled states
since photon-mediated interactions between atoms allow for
the generation of collective (i.e., fully symmetric) quantum
many-body states with entanglement that grows with the atom
number N . One particular type of entangled states that can be
created in this way is the spin squeezed state [1–7], i.e., a state
with a reduced variance along some spin direction.

Most of the effort so far has been focused on the generation
of squeezing by restricting the dynamics to two levels per
atom [7], using either coherent interactions [8–12] or dissi-
pation [13–17]. However, the use of the full multilevel atomic
structure can open up new opportunities for creating different
types of collective entangled states [18,19], such as multimode
squeezed states, i.e., states with two or more squeezed spin di-
rections. Multimode squeezed states are not easily accessible
in collective two-level systems, and they could be useful for
multiparameter estimation [20].

In Ref. [21], we proposed to use coherent driving and
superradiance on multilevel systems with one relevant cavity
polarization as a resource for generation of scalable two-mode
squeezing. We also showed ways to store squeezed states
in dark manifolds that are robust to collective dissipation
[21,22]. In this paper, we describe the dissipative squeezing
dynamics for a wide range of multilevel structures in the case
of two relevant cavity polarizations. We derive the condition
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for the system to be stable to quantum fluctuations, and show
that up to four spin variables are typically squeezed in this
more general system. We study how finite-size effects con-
strain the reachable squeezing, and analytically compute the
scaling of the squeezing with N .

The paper is outlined as follows. In Sec. II, we describe the
proposed experimental setup and derive the effective master
equation. In Sec. III, we describe the mean-field (MF) physics
and stability to quantum fluctuations. In Sec. IV D, we calcu-
late the quantum correlations that develop between the atoms,
and the emergent squeezing, during the driven-dissipative dy-
namics. In Secs. V and VI, we apply the techniques developed
in prior sections to an effective two-level and multilevel sys-
tem, respectively. We conclude in Sec. VII.

We note that we include a reference table with all symbols
used in Table I that the reader might find helpful.

II. SYSTEM AND INITIAL STATE

We consider an ensemble of N multilevel atoms pinned in
a deep optical lattice within an optical cavity [see Fig. 1(a)].
We consider the atoms to have a degenerate ground mani-
fold with 2Fg + 1 levels, labeled |g, m〉(−Fg � m � Fg), and
a long-lived degenerate excited manifold with 2Fe + 1 levels
labeled |e, m〉(−Fe � m � Fe). Here, Fg and Fe are the spins
in the ground and excited manifolds, and m denotes the an-
gular momentum projection along the quantization axis. The
ground-excited transition frequency is ω ≡ ωa.

The cavity is assumed to be resonant with the atomic tran-
sition and to support a pair of photon modes with degenerate
angular frequency ωc = ωa = ω and orthogonal polarizations
[see Figs. 1(b) and 1(c)], both perpendicular to the cavity
axis [see Figs. 1(b) and 1(c)]. The atoms couple to these two
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TABLE I. Description of list of symbols used.

Symbol Meaning Location(s) first used

D̂−
α Jump operator Eqs. (1) and (2)

�α Drive strength Eq. (1)

D̂−
α Effective jump operator, D̂−

α + i� Eq. (3)

|�(α0, θ0; �β )〉 Initial wavefunction Eq. (4)

H Hessian matrix Eq. (10)

V (ζ0, ζ1; �) Superradiance potential Eq. (11)

ĉμ(α0, θ0; �β ), ĉμ Schwinger c-bosons Above Eq. (14)

gα,μν Matrix elements of jump operator in the c-Schwinger basis Eq. (14)

xα,μ, yα,μ Matrix elements of jump operator in the c-Schwinger basis Eq. (15)

X c
μ, Y c

μ Real and imaginary parts of ĉμ Below Eq. (15)

�xα, �yα List of xα,μ, yα,μ values Below Eq. (15)

b̂α Bogoliubov b-bosons Eq. (18)

X b
μ, Y b

μ Real and imaginary parts of b̂μ Below Eq. (18)


c, 
c
X X , 
c

YY , 
c
XY Covariance matrices for Schwinger c-bosons Above Eq. (19)


b, 
b
X X , 
b

YY , 
b
XY Covariance matrices for Bogoliubov b-bosons Sec. IV D

θ0 Area of initial pulse to prepare coherent state Eq. (4)

ξ 2
X,α,sq, ξ 2

Y,α,sq Squeezing in X c
μ and Y c

μ quadratures Eq. (33)

ξ 2
X,α,anti−sq, ξ 2

Y,α,anti−sq Antisqueezing in X c
μ and Y c

μ quadratures Eq. (33)

cavity modes with single-photon Rabi frequency 2g. The cav-
ity modes are also driven with a resonant laser with frequency,
ωl = ω. Additionally, photons can leak out of the cavity at a
rate κ .

FIG. 1. (a) An ensemble of atoms trapped in a deep lattice in
an optical cavity, with the cavity frequency on resonance with the
atomic transition from the ground states to the excited states (with
spins Fg and Fe), ωc = ωa. The cavity is driven by a resonant laser,
and the atoms superradiantly decay at rate 
 from the excited to the
ground states. (b), (c) Transitions driven by the collective atomic ex-
citation operators. (b) L± and R± transitions due to coupling to a left
or right circularly polarized photon when we choose the quantization
axis to be parallel to the cavity axis. (c) �± and �± transitions due
to coupling to a vertically or horizontally polarized photon when we
choose the quantization axis to be perpendicular to the cavity axis.

If κ � g
√

N , we can adiabatically eliminate the cavity
photons and obtain an effective master equation for the atoms
only, h̄ dρ

dt = −i[Ĥdrive, ρ] + L[ρ]. The effective Hamiltonian
and dissipation terms for the atoms are

Ĥdrive =
∑

α

h̄�α

2
(D̂−

α + D̂+
α ), (1)

L[ρ] =
∑

α

h̄


(
D̂−

α ρD̂+
α − 1

2
D̂+

α D̂−
α ρ − 1

2
ρD̂+

α D̂−
α

)
, (2)

where �α is the intracavity drive strength, and D̂+
α is a

collective atomic operator that excites atoms by absorbing
an α-polarized photon. If the α-polarized photon has angu-
lar momentum projection lα = ±1, 0 along the quantization
axis, then D̂+

α = ∑
i d̂+

i,α with i running over the atoms, and
d̂+

i,α = ∑
m Cm

α ŝ+
m,i,α , where the sum runs over the ground-

state atomic levels. The single-particle spin-raising operator
ŝ+

m,i,α = |e, m + lα〉i〈g, m|i drives a transition between the
levels |g, m〉 and |e, m + lα〉, and Cm

α = 〈Fg, m; 1, lα|Fe, m +
lα〉 is the Clebsch-Gordan coefficient for this transition.

 = 4g2/κ is the cavity-induced decay of an atom from the
excited manifold.

The master equation h̄ dρ

dt = −i[Ĥdrive, ρ] + L[ρ] can also
be written as

h̄
dρ

dt
= L′[ρ]

≡
∑

α

h̄


(
D̂−

α ρD̂+
α − 1

2
D̂+

α D̂−
α ρ − 1

2
ρD̂+

α D̂−
α

)
(3)

where D̂−
α = D̂−

α + i�α/
. Detailed derivations of Eqs. (1),
(2), and (3) are given in Appendix A.
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The basis states |g, m〉 and |e, m〉 are associated with a par-
ticular choice of the quantization axis. In this paper, we will
either choose the quantization axis to be along the cavity axis
or perpendicular to the cavity axis, and we will explicitly spec-
ify this where necessary. Similarly, the cavity supports two
polarizations of light, which we will choose to decompose into
either linear modes or circular modes. Whenever we choose
the atomic quantization axis along the cavity axis, we will
choose the polarizations as left handed (denoted α = L and
having lα = −1) and right handed (denoted α = R and having
lα = +1) [Fig. 1(b)]. Whenever we choose the atomic quan-
tization axis to be perpendicular to the cavity axis, we will
define the polarizations as vertical (denoted α = � and having
lα = 0) and horizontal (denoted α = �, which includes both
lα = 1 and −1) [Fig. 1(c)] and define D̂+

� = (D̂+
L + D̂+

R )/
√

2.
We initialize the atoms in a product of single-particle

ground states |G�β〉 = ∑
m βm|g, m〉, and apply a laser pulse of

duration τ and polarization α0 such that Ĥdriveτ/h̄ = θ0D̂x
α0

.
This leaves the atoms in the coherent state

|�(α0, θ0; �β )〉 = exp
(−iθ0D̂x

α0

)|G�β〉⊗N , (4)

where D̂x
α = (D̂+

α + D̂−
α )/2 and D̂y

α = (D̂+
α − D̂−

α )/2i. We will
denote the polarization that is orthogonal to α0 as α1.

The goal of this paper is to study the properties of the
system at the steady state, i.e., L′[ρSS] = 0. In general, our
multilevel system contains a continuum of steady states, since
the steady state realized by the dynamics as t → ∞ depends
on the choice of initial state and the parameter �α/N
. To
constrain the number of possibilities, we will only consider
initial states |�(α0, θ0; �β )〉 as given in Eq. (4) for which the
single-particle observables 〈Ô〉 are approximately stationary
from the beginning and focus on the behavior of the fluctua-
tions captured by higher-order observables.

III. MEAN-FIELD APPROXIMATION

We discuss first the properties of the steady state in
a MF approximation. For collective systems, MF assumes
〈Ô1Ô2〉 ≈ 〈Ô1〉〈Ô2〉 for any set of collective single-body spin
operators Ô1 and Ô2 [23]. This approximation works well
when N is large and can be seen as the leading-order expan-
sion in powers of 1/N . Under this approximation, the master
equation [Eq. (3)] for any collective single-body spin variable
〈Ô〉 reduces to

d

dt
〈Ô〉MF ≈ 


2

∑
α

〈D̂+
α 〉MF〈[Ô, D̂−

α ]〉MF

+ 〈[D̂+
α , Ô]〉MF〈D̂−

α 〉MF. (5)

Here, we used that the commutator [D̂±
α , Ô] is a collective

single-body spin operator.

A. Mean-field stationary state

A sufficient condition for making all spin variables
stationary at the mean-field level is to choose the
drive �α and the initial state |�(α0, θ0; �β )〉 such that
〈�(α0, θ0; �β )|D̂−

α |�(α0, θ0; �β )〉 = 0 [see Eq. (5)]. Satisfying

this requires two conditions:

〈�(α0, θ0; �β )|D̂x
α|�(α0, θ0; �β )〉 = 0, (6)

〈�(α0, θ0; �β )|D̂y
α|�(α0, θ0; �β )〉 = �α/
. (7)

Throughout this paper, we will choose |�(α0, θ0; �β )〉 and �α

to satisfy Eqs. (6) and (7), i.e., we only consider initial states
that are stationary states at the mean-field level. Moreover,
we will later consider only examples where the continuous
drive has the same polarization as the preparation pulse, i.e.,
�α1 = 0, but the discussion in the following sections does not
assume this.

B. Stability of the mean-field state

The mean-field stationary state may be stable or un-
stable to quantum fluctuations. If it is stable, the fluc-
tuations remain small and the mean-field state ρMF =
|�(α0, θ0; �β )〉〈�(α0, θ0; �β )| turns out to be a good approxi-
mation to the full quantum steady state ρSS, which satisfies
[24–26]

D̂+
α D̂−

α ρSS ≈ 0. (8)

Note that the approximate sign “≈” means that the above
expression is zero up to higher-order corrections in 1/N which
are qualitatively irrelevant for our purposes. In our analytical
approximation, we have 〈D̂+

α D̂−
α 〉 = 0 at the steady state, as

is shown below.
In the stable phase, the dynamics of 〈D̂+

α D̂−
α 〉 is well

captured by making an approximation where we set the
third-order cumulant to zero, 〈Ô1Ô2〉〈Ô3〉 + 〈Ô1Ô3〉〈Ô2〉 +
〈Ô2Ô3〉〈Ô1〉 − 2〈Ô1〉〈Ô2〉〈Ô3〉 − 〈Ô1Ô2Ô3〉 ≈ 0. Under this
approximation and further assuming the mean-field stationary
condition [Eqs. (6) and (7)] is also met, the master equa-
tions for 〈D̂+

α0
D̂−

α0
〉 and 〈D̂+

α1
D̂−

α1
〉 couple to the equations for

〈D̂+
α0

D̂−
α1

〉 and 〈D̂+
α1

D̂−
α0

〉. The coupled equations are

∂t

⎛
⎜⎜⎜⎜⎜⎝

〈
D̂+

α0
D̂−

α0

〉
〈
D̂+

α0
D̂−

α1

〉
〈
D̂+

α1
D̂−

α0

〉
〈
D̂+

α1
D̂−

α1

〉

⎞
⎟⎟⎟⎟⎟⎠

≈ −


⎛
⎜⎜⎜⎜⎜⎝

λ00
λ01
2

λ10
2 0

λ10
2

λ00+λ11
2 0 λ10

2
λ01
2 0 λ00+λ11

2
λ01
2

0 λ01
2

λ10
2 λ11

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

〈
D̂+

α0
D̂−

α0

〉
〈
D̂+

α0
D̂−

α1

〉
〈
D̂+

α1
D̂−

α0

〉
〈
D̂+

α1
D̂−

α1

〉

⎞
⎟⎟⎟⎟⎟⎠, (9)

where we denoted λi j = 〈[D̂−
αi

, D̂+
α j

]〉. The value of λi j is a

constant at leading order in N , λi j ≈ 〈[D̂−
αi

, D̂+
α j

]〉
MF

, since it
is a single-particle observable and is therefore stationary. Note
that Eq. (9) is independent of �, which means that the stability
is determined by the light emission properties alone.

Generically, demanding that 〈D̂+
α0

D̂−
α0

〉 and 〈D̂+
α1

D̂−
α1

〉 decay
to zero, Eq. (9) requires that 〈D̂+

α0
D̂−

α1
〉 and 〈D̂+

α1
D̂−

α0
〉 also

decay to zero, since they are coupled. This means that the
matrix in Eq. (9) needs to be positive definite. The condition
for positive definiteness of this matrix can be obtained by
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rewriting Eq. (9) in terms of the sums and differences of
correlators:

∂t

⎛
⎜⎜⎜⎜⎜⎝

〈
D̂+

α0
D̂−

α0

〉 + 〈
D̂+

α1
D̂−

α1

〉
〈
D̂+

α0
D̂−

α1

〉 + 〈
D̂+

α1
D̂−

α0

〉
〈
D̂+

α0
D̂−

α0

〉 − 〈
D̂+

α1
D̂−

α1

〉
〈
D̂+

α0
D̂−

α1

〉 − 〈
D̂+

α1
D̂−

α0

〉

⎞
⎟⎟⎟⎟⎟⎠

= −
M

2

⎛
⎜⎜⎜⎜⎜⎝

〈
D̂+

α0
D̂−

α0

〉 + 〈
D̂+

α1
D̂−

α1

〉
〈
D̂+

α0
D̂−

α1

〉 + 〈
D̂+

α1
D̂−

α0

〉
〈
D̂+

α0
D̂−

α0

〉 − 〈
D̂+

α1
D̂−

α1

〉
〈
D̂+

α0
D̂−

α1

〉 − 〈
D̂+

α1
D̂−

α0

〉

⎞
⎟⎟⎟⎟⎟⎠ (10)

where

M =

⎛
⎜⎜⎜⎜⎝

λ00 + λ11 λ01 + λ10 λ00 − λ11 λ01 − λ10

λ01 + λ10 λ00 + λ11 0 0

λ00 − λ11 0 λ00 + λ11 0

λ10 − λ01 0 0 λ00 + λ11

⎞
⎟⎟⎟⎟⎠,

(11)

and λi j = 〈[D̂−
αi

, D̂+
α j

]〉. The correlations 〈D̂+
α D̂−

β 〉 decay
to zero if the real parts of the eigenvalues of M are
all positive. This occurs if the symmetric part of M is
positive definite. The eigenvalues of the symmetric part,
(M + MT )/2, are λ00 + λ11, λ00 + λ11, and λ00 + λ11 ±√

(λ00 − λ11)2 + (λ01 + λ10)2. All four eigenvalues will be
positive if the latter two are positive, and the condition for the
latter two eigenvalues being positive is equivalent to requiring

H =
(

λ00
λ01+λ10

2
λ01+λ10

2 λ11

)

 0. (12)

The timescale of the dynamics due to Eq. (9) is O(1/N
). Cor-
rections beyond the cumulant approximation drive dynamics
on a timescale of O(1/

√
N
) � 1/N
 (see Appendix B).

C. Superradiance potential

We now introduce the concept of a superradiance potential
as a visual aid to understand Eq. (12). For any state |�〉, we
define the potential V (ζ0, ζ1; �) as

V (ζ0, ζ1; �) = 1

N
〈�|ei(ζ0D̂x

α0
+ζ1D̂x

α1
)n̂ee−i(ζ0D̂x

α0
+ζ1D̂x

α1
)|�〉,

(13)

where ζi have a similar interpretation to θ0 in Eq. (4), and n̂e =∑N
i

∑
m |e, m〉i〈e, m|i is the occupation in the excited states.

The matrix H in Eq. (12) is proportional to the
Hessian matrix of V evaluated at ζ0 = ζ1 = 0 and for |�〉 =
|�(α0, θ0; �β )〉:

H = 2N

⎛
⎝ ∂2V

∂ζ 2
0

∂2V
∂ζ0∂ζ1

∂2V
∂ζ0∂ζ1

∂2V
∂ζ 2

1

⎞
⎠

ζ0=ζ1=0

. (14)

To see this, note that the second derivative of V with respect
to ζ0 at ζ0 = ζ1 = 0 is

∂2

∂ζ 2
0

V (ζ0, 0; �)
∣∣
ζ0=0 = 1

N
〈�|[iD̂x

α0
,
[
iD̂x

α0
, n̂e

]]|�〉, (15)

which is equal to λ00
2N . Similarly, ∂2V

∂ζ 2
1
|ζ0=ζ1=0 = λ11

2N . These give
the two diagonal elements of H. In using the product rule
to calculate the mixed derivative ∂2V

∂ζ0∂ζ1
|ζ0=ζ1=0, the expression

involves either one derivative on the unitaries on each side of
n̂e or both derivatives on the same side. Noting that

∂

∂ζ0
e−i(ζ0D̂x

α0
+ζ1D̂x

α1
)
∣∣
ζ0=ζ1=0 = −iD̂x

α0
, (16)

∂

∂ζ1
e−i(ζα0 D̂x

α0
+ζ1D̂x

α1
)
∣∣
ζ0=ζ1=0 = −iD̂x

α1
, (17)

∂2

∂ζ0∂ζ1
e−i(ζ0D̂x

α0
+ζ1D̂x

α1
)
∣∣
ζ0=ζ1=0 = − D̂x

α0
D̂x

α1
+ D̂x

α1
D̂x

α0

2
, (18)

we obtain that ∂2V
∂ζ0∂ζ1

|ζ0=ζ1=0 = λ01+λ10
4N . The stability condi-

tion, i.e., the requirement that both the eigenvalues of H are
positive, therefore corresponds to the requirement that the
potential has positive curvature along all (ζ0, ζ1) directions at
ζ0 = ζ1 = 0. This condition generalizes the stability condition
for single-polarization potential described in Refs. [21,22] to
consider fluctuations along arbitrary polarizations (α0, α1).

As illustrative examples, we plot the eigenvalues of the
Hessian matrix for two specific parameter regions of the initial
state |�〉 = |�(α0, θ0; �β )〉 in Fig. 2. We choose an effective
two-level system in Figs. 2(a) and 2(b), and Fg = Fe = 3/2
in Figs. 2(c) and 2(d) for concreteness. We will calculate the
spin squeezing in these examples later in Secs. V and VI. Our
arguments, however, are general and work for any Fg, Fe and
|�(α0, θ0; �β )〉.

In the first example [Figs. 2(a) and 2(b)], we consider an ef-
fective two-level system (Fg = F , Fe = F + 1), realized with
the levels |g, F 〉 and |e, F + 1〉 and we choose the quantization
axis as the cavity axis [Fig. 1(b)]. We initialize the atoms
in |g, F 〉 and drive the system with right-circularly polarized
light, thus preparing |�(R, θ0; �β )〉 = exp(−iθ0D̂x

R)|g, F 〉⊗N ,
with parameters that satisfy Eqs. (6) and (7). In this case, only
the right-handed polarization is relevant, and therefore there is
only one nontrivial eigenvalue for H, plotted in Fig. 2(b). The
stable region corresponds to |θ0| � π/2 (marked by a thick
black line).

In the second example [Figs. 2(c) and 2(d)], we consider
an eight-level system with Fg = Fe = 3/2 where all levels
and both cavity polarizations are relevant. We initialize the
atoms in |Gβ〉 = cos β

2 |g,− 3
2 〉 + sin β

2 |g, 1
2 〉. For simplicity,

we choose the quantization axis to be perpendicular to the
cavity axis [Fig. 1(c)]. We then drive the system with a
�-polarized laser: |�(�, θ0; β )〉 = e−iθ0D̂x

� |Gβ〉⊗N . This
choice of quantization axis makes H diagonal [27].
Figure 2(d) shows the regions where the two diagonal
elements are positive or negative, with the stable phase (in
black) being the one where both are positive.

The superradiance potential has further significance be-
yond the stability criterion. To see this, note that the derivative
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FIG. 2. (a) An ensemble of effective two-level atoms is driven by
a right-circularly polarized laser with strength � and superradiantly
decay at rate 
 to the ground state. The quantization axis is parallel
to the cavity axis. (b) Negative of the curvature of the potential,
−d2V (ζ , 0; �)/dζ 2|ζ=0. There are two critical points, at θ0 = ±π/2,
indicated by two dots. The thick black line marks the stable region.
(c) An ensemble of eight-level atoms is driven by a �-polarized laser,
and superradiantly emits �- and �-polarized light. The quantization
axis is perpendicular to the cavity axis. (d) Regions of stability and
instability vs the angle β in the ground state manifold and state
preparation pulse area θ0 (see text). The system is stable to emission
of both polarizations in regions marked 1, unstable to emission of
�-polarized light in region 2, unstable to emission of �-polarized
light in region 3, and unstable to emission of both in region 4.
Green lines and dots mark critical manifolds and points where the
system crosses from a stable or unstable region to an unstable or
stable region for each polarization, and cyan and red lines show the
critical manifolds where emission of only one polarization crosses
from stable to unstable.

of V with respect to ζα at ζ0 = ζ1 = 0 is

∂V

∂ζα

|ζ0=ζ1=0 = i

N
〈�|[D̂x

α, n̂e
]|�〉

= 1

N
〈�|D̂y

α|�〉. (19)

The right-hand side in the second line is �α/N
 in the steady
state [Eq. (7)], therefore

�α = N

∂V

∂ζα

∣∣∣∣
ζ0=ζ1=0

. (20)

Thus, the slope of V helps determine the location of MF
steady states. In the examples above, �L ∝ dV/dζL = 0 in
Fig. 2(c), and �� ∝ dV/dζ� = 0 in Fig. 2(d). Furthermore,
we showed in previous works [21,22] that when there is only
one relevant polarization, the superradiance potential fully
describes the mean-field time evolution [28]. However, we
note that in general a two-parameter potential V (ζ0, ζ1) cannot
describe the mean-field dynamics when both polarizations are
relevant, because of the noncommutativity of D̂±

α0
and D̂±

α1
.

D. Critical manifolds

Critical manifolds are manifolds where one or both eigen-
values go to zero, i.e., det(H) = 0. Typically, these manifolds
separate regions where one or both eigenvalues of H have
opposite signs, i.e., regions that are stable and unstable to
either one or both polarizations. The critical manifolds will be
crucial when we study dissipative squeezing generation, be-
cause the system acquires scalable squeezing near the critical
regions.

The critical points for the two-level system in Fig. 2(a) are
at θ0 = ±π

2 [black dots in Fig. 2(b)]. As we will show in
Sec. V, the system acquires scalable squeezing in one mode
near these critical points.

For multilevel systems where two polarizations are rele-
vant, the system can be critical to emission in one polarization,
i.e., one of the eigenvalues of H is zero, indicated by red or
blue dashed lines in Fig. 2(d), or the system can be critical
to emission in two polarizations, i.e., H = 0, indicated by
green dashed lines or dots. In Fig. 2(d), there are two lines
and four points in the (ζ0, ζ1) plane where H = 0. The system
is stable to emission of both polarizations in regions marked 1,
unstable to emission of �-polarized light in region 2, unstable
to emission of �-polarized light in region 3, and unstable to
emission of both in region 4. For the multilevel example, we
will show that it is possible to generate scalable squeezing in
four different quadratures near critical lines between regions
1 and 4, whereas only two squeezed directions can be created
close to critical lines between regions 1 and 2 or 1 and 3.

We emphasize that the only region where the MF state
is a good approximation of the full quantum steady state is
where the system is stable to both polarizations, i.e., the black
region in Fig. 2(d). Outside this region, quantum fluctuations
destabilize this MF state and drive it towards a mixture of
stable steady states. Calculating the steady state for an initial
state in the unstable region is outside the scope of this paper.
In the remainder of this paper, we will focus on the properties
of the steady state in the stable region.

It is also reasonable to ask what the critical lines are sepa-
rating exactly. In the two-level system it is well known that the
critical points are associated to a normal to superradiant phase
transition [24–26,29–34]. The stable region corresponds to
the system being in the superradiant phase, where the quan-
tum steady state is close to the MF state. The normal phase
corresponds to the case where �α/N
 is large enough that
the system oscillates forever in the MF approximation. In
the multilevel system, a similar normal to superradiant phase
transition can take place, but other possibilities can emerge
as well, such as superradiant to superradiant transitions. This
will be investigated in future work.

IV. QUANTUM CORRELATIONS

Even though we initialize the system in a mean-field
steady state, the quantum fluctuations around this state are
not stationary. They lead to the development of nonzero con-
nected spin correlations, 〈ŜμŜν〉 − 〈Ŝμ〉〈Ŝν〉, and under certain
conditions quantum entanglement. Here, Ŝμ are collective
Gellmann spin operators. We will next calculate some of
these connected spin correlations, focusing in particular on
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correlations between spin variables orthogonal to the mean
Bloch vector. We will show that the dissipative quantum dy-
namics towards the full quantum steady state leads to nonzero
correlations between these spin variables, and in our case,
to the formation of entanglement between the atoms man-
ifested in the form of spin squeezing [18,19,21]. We treat
these quantum fluctuations as a small perturbation around the
mean-field state via bosonic degrees of freedom in the large-N
approximation, which allows us to analytically compute the
value of the variances in the bosonic quadratures at the steady
state.

This calculation proceeds in four steps, described in de-
tail in Secs. IV A–IV D, and exemplified in Secs. V and VI.
First, we define an exact map between collective spin oper-
ators and Schwinger bosons. Second, we make the master
equation quadratic in boson operators by making a large-N
approximation. Third, we diagonalize the master equation by
making a Bogoliubov transformation. And fourth, we solve
the master equation. In this way, we demonstrate the presence
of spin squeezing. We determine the finite-size scaling of the
best achievable squeezing by including higher-order terms in
the large-N approximation.

A. Schwinger bosons

We can define � Schwinger bosons for a collective system
of atoms with � relevant internal atomic levels, i.e., those
levels that participate in the dynamics. The most straightfor-
ward way to set the Schwinger bosons is by defining bosonic
operators âg(e),m which annihilate a particle in |g(e), m〉. How-
ever, this choice is inconvenient because the mean-field state
|�(α0, θ0; �β )〉 = |ψ (α0, θ0; �β )〉⊗N

is in a superposition of
states created by âg(e),m. A more convenient choice is to define
Schwinger boson operators ĉμ which annihilate particles in a
different orthonormal manifold of states |μ〉, μ ∈ [0, � − 1],
where |μ = 0〉 is defined as |0〉 ≡ |ψ (α0, θ0; �β )〉. We call
these Schwinger c bosons. The basis states |μ〉 are related
to |g(e), m〉 by a unitary transformation. Our main results do
not depend on this basis choice, but choosing |0〉 in this way
simplifies the calculation. For brevity, we will hereafter drop
the symbols α0, θ0, and �β from ĉμ(α0, θ0; �β ).

Any collective spin operator can be formally expressed in
this basis in a matrix form. For example, we can write the

jump operators as D̂−
α = ∑

iμν gα,μν |μ〉i〈ν|i, where gα,μν are
their matrix elements. In terms of the Schwinger c bosons, the
jump operators then have a quadratic form:

D̂−
α =

∑
μ,ν

gα,μν ĉ†
μĉν . (21)

Due to the mean-field stationary state conditions,
Eqs. (6) and (7), we have that the coefficient gα,00 =
1
N 〈�(α0, θ0; �β )|D̂−

α |�(α0, θ0; �β )〉 = 0.

B. Holstein-Primakoff approximation

If the quantum state ρ is close to the mean-field state ρMF,
which is a macroscopically occupied state of the ĉ0 operator,
we can assume that ρ also has macroscopic occupation for ĉ0,
i.e., 〈ĉ†

0ĉ0〉 � N at all times. Therefore, we make the general-
ized Holstein-Primakoff (HP) approximation ĉ0 ≈ √

N [35].
Under this approximation, the jump operators simplify to

D̂−
α =

√
N
∑
μ>0

(
xα,μX̂ c

μ + iyα,μŶ c
μ

) +
∑

μ,ν>0

gα,μν ĉ†
μĉν, (22)

where X̂ c
μ = ĉμ+ĉ†

μ√
2

and Ŷ c
μ = ĉμ−ĉ†

μ

i
√

2
are the real and imaginary

parts of ĉμ and are analogous to position and momentum
quadratures. The coefficients xα,μ and yα,μ are given by

xα,μ + yα,μ =
√

2〈0| j d̂−
j,α|μ〉

j
,

xα,μ − yα,μ =
√

2〈μ| j d̂−
j,α|0〉

j
. (23)

As we will show, the xα,μ and yα,μ terms in D̂−
α determine

the leading-order [O(1)] behavior of the quantum correlations,
while the gα,μν>0 terms lead to finite-size corrections of order
O(1/N ). For brevity, we will collect the components of xα,μ

and yα,μ into the vectors �xα and �yα , and the components

gα,μν>0 into the matrix
↔
g α .

While the values of xα,μ and yα,μ are related to matrix
elements of D̂−

α , and are therefore basis dependent, physically
relevant quantities such as the curvature of the superradiance
potential, critical points, and spin squeezing do not depend
on the basis choice. Instead, they only depend on the physi-
cal parameters (α0, θ0; �β ). For example, to leading order the
Hessian matrix H can be written as

H = N

⎛
⎝ 2Re

(
�x∗
α0

· �yα0

)
Re

(
�x∗
α0

· �yα1 + �x∗
α1

· �yα0

)
Re

(
�x∗
α0

· �yα1 + �x∗
α1

· �yα0

)
2Re

(
�x∗
α1

· �yα1

)
⎞
⎠. (24)

Basis rotations lead to SU(� − 1) rotations of �xα and �yα , and
their dot products are invariant under SU(� − 1) rotations. For
our examples, xα,μ and yα,μ are real, and as such we will set
them to be real hereafter.

C. Bogoliubov transformation

To leading order in N , i.e., ignoring gα,μν>0 in Eq. (22), the
jump operators are linear and the master equation is quadratic
in the Schwinger bosonic variables in the HP approximation.

Thus, we can analytically solve the system using a Bogoliubov
transformation. For this purpose, note first that at this order,
the jump operator D̂−

α � √
N
∑

μ>0(xα,μX̂ c
μ + iyα,μŶ c

μ ) can
be interpreted as being proportional to a single annihilation
operator. Specifically, we define two Bogoliubov operators b̂α0

and b̂α1 as

b̂α ≡ 1√
2N�xα · �yα

D̂−
α , α ∈ {α0, α1}. (25)
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We call them Bogoliubov b bosons. Importantly, the steady-
state condition D̂−

α ρ = 0 implies that the steady state is the
vacuum of b̂α0 and b̂α1 .

The commutators [b̂α, b̂†
α′ ] are proportional to the

Hessian matrix elements in Eq. (12). The normalization factor
in Eq. (25) ensures that [b̂α, b̂†

α] = 1. If H is not diagonal,
then [b̂α0 , b̂†

α1
] is nonzero. In this case, a convenient method

is to first find the basis of atomic jump operators that di-
agonalizes H, i.e., a convenient polarization basis, and then
define Bogoliubov operators corresponding to those jump op-
erators. Thus, without loss of generality, we can assume that
[b̂α0 , b̂†

α1
] = 0 and the Hessian is diagonal.

Since there are (� − 1) Schwinger c bosons ĉμ with μ > 0,
there have to be (� − 3) other independent Bogoliubov b
bosons, b̂γ , γ ∈ [1, � − 3], in addition to b̂α0 and b̂α1 . These
Bogoliubov operators commute with D̂±

α , and correspond-
ingly are conserved during the evolution to the steady state in
this approximation. Despite their dynamics being trivial, they
can still play an important role in shaping the dynamics of the
Schwinger c bosons, as will be explained in Sec. VI.

D. Calculating the quantum correlations

Starting from |�(α0, θ0; �β )〉, which is the vacuum of ĉμ>0,
the driven-dissipative dynamics leads to the development of
correlations between the bosonic fields ĉμ>0. The bosonic
variables X̂ c

μ and Ŷ c
μ approximate the collective spin variables

Ŝx
μ = ∑

j (|0〉〈μ| + H.c.)/
√

8N and Ŝy
μ = ∑

j (i|0〉〈μ| +
H.c.)/

√
8N . Therefore, the quantum correlations between

the bosonic variables, e.g., 〈X̂ c
μX̂ c

ν 〉 − 〈X̂ c
μ〉〈X̂ c

ν 〉 and
〈Ŷ c

μŶ c
ν 〉 − 〈Ŷ c

μ〉〈Ŷ c
ν 〉, capture correlations between the spin

variables.
We quantify the correlations via the covariance ma-

trix 
c = ( 
c
XX 
c

XY
(
c

XY )T 
c
YY

), where 
c
XX , 
c

XY , and 
c
YY are the

covariance matrices for the Schwinger c-boson variables
X̂ c and Ŷ c:(


c
XX

)
μν

= 〈
X̂ c

μX̂ c
ν + X̂ c

ν X̂ c
μ

〉 − 2
〈
X̂ c

μ

〉〈
X̂ c

ν

〉
,(


c
XY

)
μν

= 〈
X̂ c

μŶ c
ν + Ŷ c

ν X̂ c
μ

〉 − 2
〈
X̂ c

μ

〉〈
Ŷ c

ν

〉
,(


c
YY

)
μν

= 〈
Ŷ c

μŶ c
ν + Ŷ c

ν Ŷ c
μ

〉 − 2
〈
Ŷ c

μ〉〈Ŷ c
ν

〉
, (26)

and μ, ν > 0. At t = 0, 
c is the identity matrix.
In the HP approximation, the bosonic operators ĉμ ap-

proximate the spin operators �̂μ = 1√
N

∑
i |0〉i〈μ|i, which are

2(� − 1) spin variables perpendicular to the collective spin
vector. Therefore, the matrix elements of 
c are approxi-
mately equal to covariances of the real and imaginary parts
of �̂μ. These are the only relevant variables as they have O(1)
fluctuations in the initial state |0〉; the remaining orthogonal
variables �̂μν = 1√

N

∑
i |μ〉i〈ν|i with μ, ν > 0 are suppressed

by 1/
√

N . Therefore, the covariance matrix 
c describes the
quantum noise (normalized spin variances) perpendicular to
the collective spin vector. Any eigenvalue of 
c decreasing
below 1 indicates a reduction in spin projection noise perpen-
dicular to the collective spin vector, as compared to the initial
coherent state. Such noise reduction perpendicular to the col-
lective spin vector is spin squeezing in a multilevel system

FIG. 3. (a) An ensemble of effective two-level atoms [see also
Fig. 2(a)]. (b) Illustration of the steady-state squeezing in bosonic
quadratures. The steady state is the coherent vacuum of X̂ b and Ŷ b,
which makes it squeezed in X̂ c and antisqueezed in Ŷ c (see text for
definitions of the quadratures). (c) Visualizing the collective spin
squeezing on a Bloch sphere in the two-level system. The squeezing
is along Ŝx . The visualization shows a particular example where
the steady state is near θc = π/2. (d) Steady-state squeezing vs θ0

in the two-level case, obtained from an exact numerical calculation
with N = 100 atoms (solid line). The black dashed line plots the HP
prediction, cos θ0, and the blue dotted line plots 
c

X X in the coherent
state. (e) The best squeezing achievable vs N has a scaling close
to N−1/3.

when the spin length is order N [18,35], and is analogous to
spin squeezing for spin-1/2 atoms.

The simplest way to calculate 
c is in the Bogoliubov
framework. As argued above, the dynamics brings the system
to a steady state where the occupation of the Bogoliubov
modes associated to b̂α0 and b̂α1 relaxes to the vacuum value,
any correlations associated with b̂α0 or b̂α1 decay to zero, and
correlations of all other Bogoliubov modes are left untouched.

Analogous to 
c, we define 
b = (

b

XX 
b
XY

(
b
XY )T 
b

YY
) where

X̂ b
μ = b̂μ+b̂†

μ√
2

and Ŷ b
μ = b̂μ−b̂†

μ

i
√

2
, and 
b

XX , 
b
YY , and 
b

XY are
defined similar to Eq. (26) but in terms of quadratures of Bo-
goliubov b-bosonic operators instead of Schwinger c bosons.
We obtain 
c by inverting the Bogoliubov transformation, and
the squeezing can be inferred from the eigenvalues of 
c. Note
that since the Bogoliubov transformation is not unitary, the
eigenvalues of 
c are different from those of 
b.

In the following sections, we show concrete examples of
this procedure using effective two-level (Sec. V) and multi-
level (Sec. VI) systems.

V. TWO-LEVEL SYSTEM

First, we review the driven-dissipative dynamics of an
effective two-level system realized within the |g, F 〉 and
|e, F + 1〉 manifold of a system with Fg = F and Fe = F + 1,
when driven by right-circularly polarized light as shown in
Figs. 2(a) and 3(a). Even though the driven-dissipative dy-
namics of two-level systems has been studied extensively in
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the literature [24–26,29–34] we discuss it first to facilitate
the understanding of the more complex multilevel systems
presented below.

The jump operator for emission of right-circularly polar-
ized light is D̂−

R . The left-handed polarization is irrelevant.
The only relevant term in D̂−

R for the two levels is CF
R Ŝ−

F,R

with Ŝ−
F,R = ∑

i ŝ−
F,i,R, and all the relevant dynamics can be

visualized on one Bloch sphere whose axes are Ŝα
F,R, α ∈

{x, y, z}. The Clebsch-Gordan coefficient for this transition is
CF

R = 1. For brevity in this section, we will refer to Ŝα
F,R as

simply Ŝα , dropping the subscripts referring to the angular
momentum and polarization. The mean spin direction on this
Bloch sphere, i.e., the mean Bloch vector, initially points
along ŜBloch = (0, sin θ0,− cos θ0), where θ0 is the angle that
the Bloch vector makes with the south pole.

From Sec. III, the superradiance potential for the two-
level system is V (ζ , 0; �) = sin2 ζ+θ0

2 . The mean-field state
is stationary if �R = N


2 sin θ0. Figure 2(b), which plots
d2V/dζ 2|ζ=0, shows that the system is stable in the region
−π

2 < θ0 < π
2 , as discussed in Sec. III.

A. Quantum correlations

The system has quantum fluctuations along the directions
(1,0,0) and (0, cos θ0, sin θ0), which are the two directions
perpendicular to the Bloch vector ŜBloch on the Bloch sphere.
The driven-dissipative dynamics squeezes and antisqueezes
the quantum noise in these orthogonal directions, which we
calculate with the Bogoliubov framework in the HP approxi-
mation.

To do this, we define two Schwinger c bosons via

ĉ0 = cos
θ0

2
âg,F + i sin

θ0

2
âe,F+1,

ĉ1 = i sin
θ0

2
âg,F + cos

θ0

2
âe,F+1. (27)

This determines gα,μν :

↔
g R =

(
0

√
N

2 (1 + cos θ0)√
N

2 (1 − cos θ0) − i
2 sin θ0

)
, (28)

and thus D̂−
R =

√
N
2 (X̂ c

1 + i cos θ0Ŷ c
1 ) − i sin θ0

2 (X̂ c
1 + iŶ c

1 )

(X̂ c
1 − iŶ c

1 ). The Schwinger c-bosonic variables X̂ c
1 and Ŷ c

1
are proportional to the orthogonal spin variables Ŝx and
cos θ0Ŝy + sin θ0Ŝz, respectively. Following Sec. IV C, we

define the Bogoliubov b boson b̂R = X̂ c
1 +i cos θ0Ŷ c

1√
2 cos θ0

. At leading

order, D̂−
R = √

N cos θ0 b̂R.

The master equations for the elements of 
b are

∂t

b
XX = N
 cos θ0

(
1 − 
b

XX

)
+ 
 sin2 θ0

(

b

YY

cos2 θ0
− 
b

XX

)
︸ ︷︷ ︸

finite size

,

∂t

b
YY = N
 cos θ0

(
1 − 
b

YY

)
+ 
 sin2 θ0

(

b

XX cos2 θ0 − 
b
YY

)︸ ︷︷ ︸
finite size

,

∂t

b
XY = −(N
 cos θ0 + 4
 sin2 θ0)
b

XY . (29)

The higher-order terms are highlighted with an underbrace
for clarity, and we will use them to calculate the finite-size
corrections for the steady-state squeezing. Solving Eqs. (29)
and inverting the Bogoliubov transform, we obtain the leading
[O(N
)] and subleading [O(
)] terms for the time evolution
of the covariance matrix for the Schwinger c bosons. The
solution for 
c due to only the leading [O(N
)] terms is


c
XX = cos θ0 + (1 − cos θ0)e−N
t cos θ0 ,


c
YY = 1

cos θ0
+
(

1 − 1

cos θ0

)
e−N
t cos θ0 ,


c
XY = 0. (30)

Therefore, 
c is diagonal, and its eigenvalues are 
c
XX

and 
c
YY . Of these, 
c

XX < 1 (for 0 < |θ0| < π
2 ), and is

therefore squeezed. The squeezing is along X̂ c
1 ∝ Ŝx, and

reaches a steady-state value of cos θ0 as t → ∞, at the rate
1/(N
 cos θ0). The antisqueezing is along Ŷ c

1 ∝ sin θ0Ŝz +
cos θ0Ŝy, with a steady-state value 1/ cos θ0. The squeezing

c

XX approaches zero in the steady state at the critical points
θc = ±π

2 . In Figs. 3(b) and 3(c) we illustrate the steady-state
noise distribution in the Bogoliubov basis (X̂ b

R , Ŷ b
R ), in the

Schwinger basis (X̂ c
1 , Ŷ c

1 ), and on the Bloch sphere.

B. Finite-size corrections in the steady state

Although to leading order the squeezing at the critical
points goes to zero, in reality, higher-order corrections limit
the amount of attainable squeezing.

The squeezing including higher-order effects can be ob-
tained by solving Eq. (29):(


b
XX


b
YY

)
= e−�t

(
sec θ0

cos θ0

)
+ (1 − e−�t )�−1

(
N
 cos θ0

N
 cos θ0

)
(31)

where

� =
(−N
 cos θ0 − 
 sin2 θ0 
 tan2 θ0


 sin2 θ0 cos2 θ0 −N
 cos θ0 − 
 sin2 θ0

)
. (32)

Explicit calculation of e−�t yields


b
XX = sec2 θ0

2(N cos θ0 + 2 sin2 θ0)

(
−N cos θ0 sin2 θ0e−
t (N cos θ0+2 sin2 θ0 )

− e−N
t cos θ0 4 sin2 θ0

2
(N cos θ0 + 2 sin2 θ0) + 2[N cos3 θ0 + sin2 θ0(1 + cos2 θ0)]

)
,
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b
YY = 1

2(N cos θ0 + 2 sin2 θ0)

(
− N cos θ0 sin2 θ0e−
t (N cos θ0+2 sin2 θ0 )

− e−N
t cos θ0 4 sin2 θ0

2
(N cos θ0 + 2 sin2 θ0) + 2[N cos θ0 + sin2 θ0(1 + cos2 θ0)]

)
. (33)

The squeezing is 
c
XX = 
b

XX cos θ0, and the antisqueezing is

c

YY = 
b
YY / cos θ0.

Close to the critical points we have cos θ0 ≈ 0. Setting t →
∞ for the steady state and expanding in powers of cos θ0, the
steady-state squeezing is


c
XX ≈ cos θ0 + 1

N cos2 θ0︸ ︷︷ ︸
finite size

. (34)

This shows that the squeezing reaches an optimum value of
3

(4N )1/3 when the Bloch vector’s angle with the south pole is

θ0 ∼ π
2 − ( 2

N )1/3.
Figure 3(d) shows the steady-state squeezing versus θ0,

obtained from an exact numerical calculation with N = 100
atoms. The squeezing agrees well with the HP leading-order
prediction 
c

XX = cos θ0, until finite-size effects kick in and
set a limit on squeezing. Figure 3(e) shows that the best
squeezing reaches an N−1/3 scaling in agreement with previ-
ous literature [25,26,34,36], and close to the scaling predicted
by our analysis.

VI. MULTILEVEL SYSTEM

Next, we consider the squeezing generated in multilevel
atoms. In principle, there are multiple level structures and
initial conditions one may consider. However, our main con-
clusions will be the same for most other internal structures or
initial states.

(1) The system generally hosts two squeezed modes for
each relevant cavity polarization. If only one polarization is
relevant [21], two modes are squeezed; if both polarizations
are relevant, four modes are squeezed, as we show below.

(2) The best squeezing attainable close to the critical point
generally scales as N−1/4.

We note that there are some fringe cases where the system
behaves like a two-level system for emission of one of the
polarizations, and the number of squeezed modes is reduced
to either 1 or 3. We will explain these fringe cases in Sec. VI C.

To illustrate these findings, we choose the example of
Fig. 2(c) with Fg = Fe = 3/2, where all � = 8 internal levels
and both cavity polarizations are relevant. We choose to de-
compose the polarizations in the linear basis, such that the sys-
tem’s evolution is governed by h̄ dρ

dt = L�[ρ] + L�[ρ], where
the respective jump operators for L� and L� are D̂−

� and D̂−
� .

A. Holstein-Primakoff approximation and Bogoliubov
transformation

The jump operators D̂−
� and D̂−

� expressed in terms of the
Schwinger c-boson operators are

D̂−
� =

√
N
∑
μ>0

(
x�,μX̂ c

μ + iy�,μŶ c
μ

) +
∑
μν>0

g�,μν ĉ†
μĉν,

D̂−
� =

√
N
∑
μ>0

(
x�,μX̂ c

μ + iy�,μŶ c
μ

) +
∑
μν>0

g�,μν ĉ†
μĉν . (35)

The values of x�(�),μ, y�(�),μ, and g�(�),μν depend on the
basis states |μ〉 used to define the Schwinger c bosons.
Appendix D gives the values of �x�(�) and �y�(�) for one
particular choice of basis:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ĉ0

ĉ1

ĉ3

...

ĉ7

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos β

2 0 sin β

2 0 · · ·
0 i 0 · · ·

−i sin β

2 0 i cos β

2 0 · · ·
0 0 0 i 0 · · ·
... 1 · · ·
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× eiθ0dx
�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

âg,−3/2

âg,−1/2

âg,1/2

...

âe,3/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(36)

where dx
� is the matrix for d̂x

i,� in the {|g, m〉, |e, m〉} basis.
Following Sec. IV C, we define two Bogoliubov b bosons:

b̂� =
7∑

μ=1

x�,μX̂ c
μ + iy�,μŶ c

μ√
2�x� · �y�

,

b̂� =
7∑

μ=1

x�,μX̂ c
μ + iy�,μŶ c

μ√
2�x� · �y�

, (37)

such that D̂−
� = √

N�x� · �y� b̂� + O(1) and D̂−
� =√

N�x� · �y� b̂� + O(1). Additionally, there are (� − 3) = 5
more Bogoliubov b bosons, which we can write as

b̂ν =
7∑

μ=1

yν,μX̂ c
μ + ixν,μŶ c

μ√
2

. (38)

The normalization condition [b̂ν, b̂†
ν] = 1 is equivalent to set-

ting �xν · �yν = 1. Because of the commutation relations and
using an appropriate choice of basis, all the �x vectors can be
made mutually orthogonal to each other, and the �y vectors can
be made mutually orthogonal to each other (see Appendix C).
This is why for convenience we reversed the definition of
x and y in Eq. (38) compared to Eq. (37).

Since H is diagonal for this choice of polarization ba-
sis and |�(α0, θ0; �β )〉, the system is critical to emission of
α-polarized light if �xα · �yα = 0, (α = �,�).

B. Quantum correlations

Next, we calculate the 14 × 14 covariance matrix for
the Bogoliubov b bosons, and invert the Bogoliubov
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transformation to get the covariance matrix for the Schwinger
c bosons. As in the two-level system (Sec. V), we again have

b

XY = 0 at all times for our choice of initial conditions, and
therefore 
b is block diagonal. Similar to the two-level system
[Eq. (29)], we write and solve the master equations for the
elements of 
b

XX and 
b
YY .

The initial values for the elements of 
b
XX are

〈
X̂ b

α X̂ b
β

〉 = �xα · �xβ

4
√

(�xα · �yα )(�xβ · �yβ )
,

〈
X̂ b

α X̂ b
μ

〉 = �xα · �yμ

2
√

2�xα · �yα

,

〈
X̂ b

μX̂ b
ν

〉 = 1

2
�yμ · �yν = 1

2
δμν, (39)

where α, β ∈ {�,�} and μ, ν �= �,�. Their subsequent
evolution at leading order is governed by the master equations

∂t
〈
(X̂ b

α )2
〉 = N
�xα · �yα

(
1 − 2

〈(
X̂ b

α

)2〉)
,

∂t
〈
X̂ b

�X̂ b
�

〉 = −N
(�x� · �y� + �x� · �y�)
〈
X̂ b

�X̂ b
�

〉
,

∂t
〈
X̂ b

α X̂ b
μ

〉 = −N
�xα · �yα

〈
X̂ b

α X̂ b
μ

〉
,

∂t
〈
X̂ b

μX̂ b
ν

〉 = 0. (40)

The solution to the first line is that 〈(X̂ b
α )2〉 exponentially

decays to its value in the vacuum state, 〈(X̂ b
α )2〉SS = 1/2. The

second and third lines describe correlations between X̂ b
�(�)

and a different quadrature, and they exponentially decay to
zero. The correlation in the last line stays constant. Similar
equations can be obtained for the elements of 
b

YY . Thus,
the steady-state solution for the covariance matrices for the
Bogoliubov bosons is


b
XX = diag(1, 1, �y1 · �y1, �y2 · �y2, . . .),


b
YY = diag(1, 1, �x1 · �x1, �x2 · �x2, . . .),


b
XY = 0. (41)

C. Squeezing in the multilevel system

The steady-state covariance matrices of the Schwinger c
bosons, obtained by inverting the Bogoliubov transformation,
have a nontrivial form, and host squeezed modes. Inverting
the Bogoliubov transformation for the 14 × 14 dimensional
matrix, and understanding why there is squeezing, is non-
trivial. However, an appropriate basis rotation of the |μ > 0〉
states makes the calculations simpler and gives a geometric
understanding of the generation of squeezing (the squeezing
itself is independent of the basis transformation).

We make the basis transformation∑
μ>0

x�,μ

‖�x�‖ X̂ c
μ → X̂ c

1 ,

∑
μ>0

x�,μ

‖�x�‖ X̂ c
μ → X̂ c

2 ,

∑
μ>0

x1,μ

‖�x1‖ X̂ c
μ → X̂ c

3 ,

FIG. 4. Visualization of the evolution of the quantum noise
distribution, projected onto the Ŷ c

1 -Ŷ c
2 plane (see text), and the emer-

gence of squeezing and/or antisqueezing. The noise distribution in
the initial coherent state is isotropic (dashed circle), and the evolution
conserves the noise along Ŷ c

2 . (a) When φ� �= 0 [see Eq. (43)],
the circular noise distribution shears into an ellipse, leading to one
squeezed and one antisqueezed mode. (b) When φ� = 0, the circular
noise distribution fattens into an ellipse if ‖�y�‖ < ‖�x�‖, leading to
one antisqueezed mode but no squeezed modes (and shrinks into a
narrower ellipse with one squeezed mode if ‖�y�‖ > ‖�x�‖).

∑
μ>0

x2,μ

‖�x2‖ X̂ c
μ → X̂ c

4 ,

∑
μ>0

xν,μ

‖�xν‖ X̂ c
μ → X̂ c

ν+2, ν > 2 (42)

where �x1 = �y� − �x�
�x� ·�y�

‖�x�‖2 , �x2 = �y� − �x�
�x�·�y�

‖�x�‖2 (see
Appendix C), and all the �xν are orthogonal to each other.
This basis transformation transforms the �xα and �yα vectors to

�x� = ‖�x�‖(1, 0, 0, . . .),

�y� = ‖�y�‖(cos φ�, sin φ�, 0, . . .),

�x� = ‖�x�‖(0, 0, 1, 0, 0, . . .),

�y� = ‖�y�‖(0, 0, cos φ�, sin φ�, 0, . . .),

�x1 ∝ (0, 1, 0, . . .),

�y1 ∝ (− sin φ�, cos φ�, 0, . . .),

�x2 ∝ (0, 0, 0, 1, 0, . . .),

�y2 ∝ (0, 0,− sin φ�, cos φ�, 0, . . .),

xμ,ν = yμ,ν = δμ,ν+2 (μ > 2). (43)

After this transformation, the relation between the Bogoliubov
b bosons and the Schwinger c bosons is simpler. In particular,
for the X̂ variables we find

X̂ b
� = ‖x�‖√

�x� · �y�

X̂ c
1 ,

X̂ b
� = ‖x�‖√

�x� · �y�

X̂ c
2 ,

X̂ b
1 = ‖�y1‖

(
sin φ�X̂ c

1 − cos φ�X̂ c
3

)
,

X̂ b
2 = ‖�y2‖

(
sin φ�X̂ c

2 − cos φ�X̂ c
4

)
,

X̂ b
μ>2 = X̂ c

μ+2, (44)
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where cos φα = �xα ·�yα

‖�xα‖‖�yα‖ , �y1 = �x� − �y�
�x� ·�y�

‖�y�‖2 , and

�y2 = �x� − �y�
�x�·�y�

‖�y�‖2 (see Appendix C). This basis transforma-
tion is useful because it block diagonalizes the covariance
matrix of the Schwinger c bosons at all times. This is because
in this basis b̂� and b̂1 only depend on ĉ1,2, b̂� and b̂2

only depend on ĉ3,4, and b̂μ�3 = ĉμ+2. This facilitates the
visualization of each pair of squeezed and corresponding
antisqueezed modes in a two-dimensional space that is
independent of the other squeezed and antisqueezed modes,
as we explain below.

Equation (40) shows that the X̂ quadratures evolve inde-
pendently from the Ŷ quadratures, so we will consider them
separately, focusing first on the Ŷ quadratures and applying a
similar argument to the X̂ quadratures. Because of the struc-
ture of the basis choice in Eq. (43), the covariances of Ŷ c

1 and
Ŷ c

2 have coupled master equations, the covariances of Ŷ c
3 and

Ŷ c
4 have coupled master equations, and all other covariances

evolve independently. Thus, we will focus on the evolution of
Ŷ c

1 and Ŷ c
2 first.

The two most important elements to understand the evolu-
tion of these covariances are the following.

(I) The noise along Ŷ b
� ∝ (cos φ�Ŷ c

1 + sin φ�Ŷ c
2 ) evolves

towards its vacuum value, as discussed previously.
(II) The noise in Ŷ c

2 is conserved, since Ŷ c
2 commutes with

D̂−
� and D̂−

� [see Eqs. (37), (38), and (43)].
Note that the initial noise of Ŷ c

1 and Ŷ c
2 in the initial coher-

ent state is equal, i.e., the noise has a circular distribution.
In the general case where φ� �= 0, the conservation of Ŷ c

2
sets a constraint on Ŷ b

� resulting in an evolution that shears
the circle into an ellipse as shown in Fig. 4(a), which leads
to one squeezed and one antisqueezed mode. Similar shear-
ing on the Ŷ c

3 -Ŷ c
4 plane due to emission of � polarization

leads again to one squeezed and one antisqueezed mode, and
a similar process happens in the X̂ c quadratures. In total,
there are four squeezed and four antisqueezed modes. Their
values can be obtained from diagonalizing the Schwinger
bosons’ covariance matrix. In the transformed basis,
for example,


c
XX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�x� ·�y�

‖x�‖2 0
√

‖x�‖2‖y�‖2−(�x� ·�y� )2

‖x�‖2 · · ·
0 �x�·�y�

‖x�‖2 0 · · ·
√

‖x�‖2‖y�‖2−(�x� ·�y� )2

‖x�‖2 0 ‖y�‖2

(�x� ·�y� ) + ‖x�‖2‖y�‖2

(�x� ·�y� )2 − �x� ·�y�

‖x�‖2 · · ·
0 0 · · ·
0 0 0 0 1 · · ·
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (45)

The covariance matrix elements of 
c
YY can be similarly computed. The nontrivial eigenvalues of 
c

XX and 
c
YY are

ξ 2
X,α,sq = �yα · �yα

�xα · �yα

(
1 + �xα · �xα

�xα · �yα

)
−
√( �yα · �yα

�xα · �yα

)2(
1 + �xα · �xα

�xα · �yα

)2

− 4
�yα · �yα

�xα · �yα

,

ξ 2
Y,α,sq = �xα · �xα

�xα · �yα

(
1 + �yα · �yα

�xα · �yα

)
−
√( �xα · �xα

�xα · �yα

)2(
1 + �yα · �yα

�xα · �yα

)2

− 4
�xα · �xα

�xα · �yα

,

ξ 2
X,α,anti−sq = �yα · �yα

�xα · �yα

(
1 + �xα · �xα

�xα · �yα

)
+
√( �yα · �yα

�xα · �yα

)2(
1 + �xα · �xα

�xα · �yα

)2

− 4
�yα · �yα

�xα · �yα

,

ξ 2
Y,α,anti−sq = �xα · �xα

�xα · �yα

(
1 + �yα · �yα

�xα · �yα

)
+
√( �xα · �xα

�xα · �yα

)2(
1 + �yα · �yα

�xα · �yα

)2

− 4
�xα · �xα

�xα · �yα

. (46)

ξ 2
X,α,sq and ξ 2

Y,α,sq are the values of squeezing, and ξ 2
X,α,anti−sq

and ξ 2
Y,α,anti−sq are the antisqueezing values.

The special case φ� = 0 is qualitatively different from the
general case of φ� �= 0 [see Fig. 4(b)]. In this case, we have

Ŷ b
� =

√
||�y� ||
‖�x�‖ Ŷ c

1 and thus its evolution towards the vacuum

value is unconstrained by Ŷ c
2 . Therefore, the noise in Ŷ b

�

increases to its vacuum state value if ‖�y�‖ < ‖�x�‖ leading
to antisqueezing in Ŷ c

1 , and the noise in Ŷ b
� decreases to its

vacuum state value if ‖�y�‖ > ‖�x�‖ leading to squeezing in

Ŷ c
1 . The opposite happens in X̂ b

� and X̂ c
1 . Because of this,

the number of squeezed modes is reduced by 1 compared to
the general case φ� �= 0. This is essentially what happens
in the two-level system of Sec. V, where we had that �xR was
parallel to �yR (instead of �x� and �y�).

Figure 5 plots the steady-state values of the squeezing
versus θ0 and β. Figures 5(a) and 5(b) show the value
of the squeezing in two modes if the system collectively
emitted �-polarized light only. Figure 5(c) shows the value of
the squeezing if the system collectively emitted �-polarized
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FIG. 5. Steady-state squeezing for the eight-level system shown
in Fig. 2(c). (a), (b) Squeezing in a combination of the X̂ and Ŷ
quadratures, respectively, when the system collectively emits only
�-polarized light. (c) Squeezing when the system collectively emits
only �-polarized light. There are two squeezed modes, one in a com-
bination of X̂ quadratures and one in a combination of Ŷ quadratures,
and they both have the same value. Red and blue dashed lines are
critical lines, and white regions are unstable. (d)–(f) Squeezing when
the system collectively emits light of both polarizations. The system
is squeezed only in the regions where it is stable to emission of both
polarizations, and the value of the squeezing in this region is the same
as in (a)–(c).

light only. In the latter case, two modes are squeezed but the
amount of squeezing in both modes is the same, so we plot
them together. The white regions are unstable to quantum
fluctuations, and critical lines (dashed) separate the stable and
unstable regions (the small white gaps between the critical
lines and the gray regions are due to truncating the squeezing
at 10−2). Note that emissions of �- and �-polarized light
have different regions of stability. For example, the system
may be stable to emission of �-polarized light, but unstable to
emission of �-polarized light, or vice versa. Figures 5(d)–5(f)
plot the squeezing in the same four modes as Figs. 5(a)–5(c),
but only in the region where the system is stable to emission of
both polarizations, which is the physically relevant case. The
squeezing due to emission of �-polarized light approaches
zero near the red lines, the squeezing due to emission of
�-polarized light approaches zero near the blue lines, and
squeezing in all four modes approaches zero near the green
lines and points.

D. Finite-size corrections in the steady state

As in the two-level system (Sec. V A), the best squeezing
reachable near the critical point is limited by N . Here, we
calculate the finite-size corrections to the steady-state squeez-
ing by including the higher-order terms in the HP approxima-
tion.

Near any critical point in a multilevel system, �xα · �yα

approaches zero, which means generally that the angle φα

[Eq. (43)] between them approaches π/2 (for the two-level-
like case [see Fig. 4(b)], ‖�yα‖ approaches zero near the
critical point, and the arguments below do not apply). From
Fig. 4(a), we see that for φα ≈ π/2, the squeezed variable is

approximately Ŷ c
α,sq ≡

∑
μ yα,μŶ c

μ

‖�yα‖ ∝ Ŷ b
α . Similarly, X̂ c

α,sq ≡∑
μ xα,μX̂ c

μ

‖�xα‖ ∝ X̂ b
α , and the antisqueezed quadratures are

X̂ c
α,antisq =

∑
μ yα,μX̂ c

μ

‖�yα‖ and Ŷ c
α,antisq =

∑
μ xα,μŶ c

μ

‖�xα‖ , α = �,�.
Since �xα · �yα approaches zero, we expand the squeezing and
antisqueezing in powers of �xα · �yα . Focusing on only one pair
of these variables, X̂ c

α,sq and X̂ c
α,anti−sq, as an example, their

steady-state values are [see Eq. (46)]

ξ 2
X,α,sq ≈ 2

�xα · �yα

�xα · �xα

+ O(1/N ),

ξ 2
X,α,anti−sq ≈ ξ 2

Y,α,anti−sq ≈ 2
(�xα · �xα )(�yα · �yα )

(�xα · �yα )2
+ O(1/N ).

(47)

The O(1/N ) terms in both equations arise due to the higher-
order terms, i.e., the gα,μν>0 terms, in the master equation. As
the critical point is approached, those O(1/N ) terms increase
proportionally to (ξ 2

X,α,anti−sq )/(�xα · �yα ). This in particular af-
fects the squeezing:

ξ 2
X,α,sq ≈ �xα · �yα

�xα · �xα

+ A

N (�xα · �yα )3︸ ︷︷ ︸
finite size

, (48)

where A is some constant. Thus, the squeezing does not de-
crease monotonically; instead it increases as the critical point
is approached. The optimal value of �xα · �yα scales as �xα · �yα ∝
N−1/4, and the optimum squeezing also scales ∝ N−1/4 (see
also Ref. [21]).

VII. DISCUSSION

We described a method to produce a collective four-mode
squeezed state of matter using the interplay of driving and
dissipation in a cavity. For the model considered, there are
two main differences in the nature of the squeezing dynamics
in the multilevel systems as compared to the well-known case
of two-level systems.

First, driven-dissipative dynamics in two-level systems
generate only one squeezed mode, whereas dynamics in mul-
tilevel systems can generically produce up to two squeezed
modes per polarization. In Ref. [21], we studied cases when
only one cavity polarization is relevant and explained that
squeezing emerges from shearing perpendicular to two con-
served spin variables. Here we generalized the analysis for
the more general case when two polarizations are in play.

The second difference between two-level and multilevel
systems is the finite-size scaling of the best squeezing near
the critical points. Near the critical point, the squeezing gets
an admixture of the antisqueezing, which limits the best
squeezing achievable. The antisqueezing increases faster in
the multilevel system than in the two-level system, as the
critical point is approached. Therefore, the scaling of the best
squeezing in a multilevel system is usually worse (∝ N−1/4)
than a two-level system (∝ N−1/3).

We have focused on a specific level structure and type of
initial conditions. However, there is still a large parameter
space to explore the dynamics and squeezing generation of
multilevel atoms. While our results hold for cases with a
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single ground and excited manifold, one might consider more
general level structures with multiple hyperfine ground or
excited manifolds, which could be relevant to alkali-metal
atoms. These more general cases might show richer behaviors.
We note that our formalism can be straightforwardly applied
to these richer cases as well.

For the sake of simplicity, we only considered cases when
the mean-field dynamics starts at a stable stationary state.
However, extending the analysis to more general situations
where the mean-field dynamics is nontrivial could lead to
more interesting steady states and phases. For example, quan-
tum fluctuations may drive an initially unstable state towards
a mixture of stable macroscopic steady states which could be
entangled. Furthermore, the large number of steady states and
unstable regions anticipates a rich phase diagram with super-
radiant to normal transitions analogous to two-level atoms, as
well as potentially other types of transitions such as superra-
diant to superradiant.

While we considered the generation of squeezing in a
system with only coherent driving and collective emission of
light, the cavity can also mediate elastic interactions between
the atoms via exchange of photons [26,37,38]. The interplay
between elastic interactions and the dissipation could be an
interesting question for the evolution and finite-size scaling of
the squeezing. The effects of other decoherence sources such
as spontaneous emission or dephasing on the squeezing, as
well as the effect of experimental details such as inhomoge-
neous couplings, are also important questions to address in
future work.

Finally, in Ref. [21] we showed that it is possible to prepare
a squeezed state and rotate it into a state that is dark to emis-
sion on one polarization by taking advantage of the conserved
quadratures. That analysis can be extended to the case of two
polarizations, such that the four squeezed modes discussed
here can be preserved in dark states. Furthermore, since atoms
with many levels will contain many conserved quadratures
(� − 3), it is in principle possible to create squeezing, store
it in a conserved quadrature, then create squeezing again and
store it in the remaining conserved quadratures. This would al-
low the creation of multilevel spin states with many squeezed
directions which might be useful for multiparameter quantum
sensing protocols [39].
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APPENDIX A: DERIVING THE EFFECTIVE
MULTILEVEL SPIN MODEL

The dynamics of the atom-light system is modeled by the
Lindblad master equation:

h̄
dρ

dt
= −i[Ĥtot, ρ] + Lcav[ρ]. (A1)

Here, Ĥtot = ĤA + ĤL + ĤAL is a Hamiltonian including con-
tributions from the atoms, cavity modes, atom-light coupling,
and external driving:

ĤA = h̄ωn̂e,

ĤL =
∑

α

h̄ωâ†
α âα + ih̄εα

2
(â†

αeiωt − âαe−iωt ),

ĤAL = h̄g
∑

α

âαD̂+
α + H.c., (A2)

and Lcav[ρ] describes the dissipation terms due to leakage of
photons out of the cavity at rate κ:

Lcav[ρ] = h̄κ
∑

α

(
âαρâ†

α − 1

2
â†

α âαρ − 1

2
ρâ†

α âα

)
. (A3)

In the above equations, n̂e is the occupation in the excited
manifold, and âα annihilates a photon in the cavity mode with
polarization α.

It is convenient to move to a rotating frame that rotates at
the atomic and photon frequency ω. In this frame, the atomic
angular frequency, cavity frequency, and laser frequency are
shifted by ω, yielding the Hamiltonian

Ĥtot =
∑

α

ih̄εα

2
(â†

α − âα ) + h̄g(âαD̂+
α + H.c.), (A4)

and the same Lindblad jump operators as before.
The master equation for the photon operators is

∂t 〈âα〉 =
〈
−κ

2
âα − igD̂−

α + εα

2

〉
. (A5)

Assuming the bad cavity limit, κ � g
√

N , the photons’ evo-
lution follows the spins:

âα → iεα + 2gD̂−
α

iκ
. (A6)

We adiabatically eliminate the photons by substituting
Eq. (A6) into Eqs. (A2) and (A3), and obtain

Ĥeff = 0, L̂eff =
√

h̄κ (iεα + 2gD̂−
α )

iκ
. (A7)

The Lindbladian equation due to L̂eff is identical to the master
equation due to Ĥdrive [Eq. (1)] and L [Eq. (2)], with �α =
2εαg
κ

and 
 = 4g2

κ
.

APPENDIX B: HIGHER-ORDER EFFECTS ON THE
STABILITY OF THE MEAN-FIELD STATE

In the main text, we derived the leading-order condition for
the stability of the mean-field state by looking at the evolution
of two-body observables and arguing that 〈D̂+

αi
D̂−

α j
〉 = 0 to

leading order at the steady state. We assumed that λi j is
constant, 〈D̂−

α 〉 = 0, and that the cumulant approximation is
valid. Here we use the HP approximation to show that Eq. (9)
is indeed correct to the order in N considered, and argue that
higher-order corrections become relevant only at timescales
of order O(1/

√
N
).
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In the HP approximation, λi j ≡ 〈[D̂−
αi

, D̂+
α j

]〉 =
2N

√
(�xαi · �yαi )(�xα j · �yα j )〈[b̂αi

, b̂†
α j

]〉 + O(
√

N ). The leading-
order term in λi j is proportional to the commutator of
[b̂αi

, b̂†
α j

], which is a constant. If the polarization basis is
chosen such that the Bogoliubov b bosons commute, then
λi j = 2N (�xαi · �yαi )δi j + O(

√
N ).

Similarly, in the HP expansion we have the correlation
〈D̂+

αi
D̂−

α j
〉 = 2N

√
(�xαi · �yαi )(�xα j · �yα j )〈b̂†

αi
b̂α j

〉 + O(
√

N ). The

master equation for 〈b̂†
αi

b̂α j
〉 is

∂t
〈
b̂†

αi
b̂α j

〉 = ∑
α

N
 �xα · �yα

〈[
b̂†

α, b̂†
αi

b̂α j

]
b̂α

+ b̂†
α

[
b̂†

αi
b̂α j

, b̂α

]〉 + O(
√

N
). (B1)

Expanding the commutators and inserting the definition of λi j

yields

∂t
〈
b̂†

αi
b̂α j

〉 = −


2

∑
α

√
�xα · �yα

×
(

λα j ,α√�xα j · �yα j

〈b̂†
αi

b̂α〉 + λα,αi√
�xαi · �yαi

〈
b̂†

α b̂α j

〉)

+ O(
√

N
). (B2)

Reverting from the Bogoliubov b-boson correlator b̂†
α b̂β back

to the spin correlator 1
2N

√
(�xα ·�yα )(�xβ ·�yβ )

〈D̂+
α D̂−

β 〉 gives

∂t 〈D̂+
αi

D̂−
α j

〉 = −


2

∑
α

(
λα j ,α

〈
D̂+

αi
D̂−

α

〉
+ λα,αi

〈
D̂+

α D̂−
α j

〉) + O(
√

N
). (B3)

The leading terms give Eq. (9), and drive dynamics on the
timescale of 1/(N
), since λi j ∼ O(N ). The subleading terms
can drive dynamics on the timescale of O(1/

√
N
), which

is much longer than the O(1/N
) timescale of the dominant
dynamics.

APPENDIX C: RELATION BETWEEN THE�x AND�y
VECTORS

Here, we show that for the state |�〉 ≡ |�(α0, θ0; �β )〉 con-
sidered here, we can make an appropriate basis choice such
that all the �x vectors are orthogonal to each other, and all the
�y vectors are orthogonal to each other, and also that �x� · �y� =
�x� · �y� = 0. We will do this in three steps.

1. �x� and�y� orthogonal to�x� and�y�

The jump operators are D̂−
α = D̂ x

α − iD̂ y
α , where their

real and imaginary parts are D̂ x
α = √

N
∑

μ>0 xα,μX̂ c
μ and

D̂ y
α = √

N
∑

μ>0 yα,μŶ c
μ .

Statement 1. �x� · �y� = 0 and �x� · �y� = 0.
Proof. Due to the choice of the quantization axis, we

have that 〈�|[D̂−
� , D̂+

� ]|�〉 = 0. We also have the operator
identity [D̂−

� , D̂−
� ] = 0. Applying the HP approximation and

the standard commutation relations for X̂ c
μ and Ŷ c

μ leads to
Statement 1.

Statement 2. �x� · �x� = 0.
Proof. Since |�〉 is the vacuum of ĉμ �=0, therefore

〈�|X̂ c
μX̂ c

ν |�〉 = 1
2δμν , and

〈�|D̂ x
�D̂ x

�|�〉 = N

2
�x� · �x�. (C1)

Since |�〉 is a coherent state, Eq. (C1) can be explicitly calcu-
lated, and it evaluates to zero. This proves Statement 2.

Statement 3. �y� · �y� = 0.
Proof. We note that

〈�|D̂ x
�D̂ x

�|�〉 =
∑

i

〈�|d̂x
i,� d̂x

i,�|�〉,

〈�|D̂ y
�D̂ y

�|�〉 =
∑

i

〈�|
(

d̂y
i,� − ��

N


)
(

d̂y
i,� − ��

N


)
|�〉. (C2)

The terms with i �= j are zero, due to Eq. (6). Next, using
the operator identity d̂y

i,� d̂y
i,� = d̂x

i,� d̂x
i,�, the fact that we do

not need a �-polarized drive, �� = 0, and the value of ��

from Eq. (7), we find that 〈�|D̂ y
�D̂ y

�|�〉 = 〈�|D̂ x
�D̂ x

�|�〉 =
0. Applying the HP approximation, this proves Statement 3.

Statement 4. Both �x� and �y� are orthogonal to both �x�

and �y�.
Proof. This follows from Statements 1, 2, and 3.

2. �xα=�,� orthogonal to�xμ�=�,� and analogously for�y vectors

The Bogoliubov operators b̂μ �=�,� are independent of b̂�

and b̂�, i.e., [b̂μ �=�,�, b̂α=�,�] = [b̂μ �=�,�, b̂†
α=�,�] = 0. This

leads to the fact that �xα=�,� are orthogonal to �xμ �=�,�, and
also that �yα=�,� are orthogonal to �yμ �=�,�.

A simple choice is to make �x1 and �y1 be coplanar with �x�

and �y� and satisfy appropriate orthogonalities, and similarly
make �x2 and �y2 be coplanar with �x� and �y� and satisfy appro-
priate orthogonalities. Explicitly, this choice is

�x1 = �x� − �x� · �x�

�x� · �y�
�y� (C3)

and so on. It is easy to check that Eq. (C3) is orthogonal to �x� .
We can then make �xμ>2 and �yμ>2 as orthogonal to these two
planes.

3. All�xμ�=�,� mutually orthogonal and analogously for�yμ

The Bogoliubov operators b̂μ �=�,� are independent of each
other, i.e., [b̂μ, b̂ν] = 0 and [b̂μ, b̂†

ν] = δμν . This leads to
�xμ · �yν = 1

2δμν . A simple choice to satisfy these is to set
�xμ>2 = �yμ>2, and choose �xμ>2 mutually orthogonal to each
other. Since we already chose �xμ>2 as orthogonal to the
planes of �x1 and �x2, therefore all the �xμ are orthogonal
to each other. Similarly, all the �yμ are orthogonal to each
other.
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APPENDIX D: SCHWINGER BOSONS FOR THE MULTILEVEL SYSTEM

For the basis chosen in Eq. (36), the �xα and �yα vectors are

�x� =
(

0, 0, 0, 0,

√
2

15
sin

β

2
− cos(β/2)√

10
, 0,− sin(β/2)√

10

)
,

�y� =

⎛
⎜⎝0,

(−3 cos β + √
3 sin β )

(
3 sin

√
3
5θ0 − sin θ0√

15

)
12

√
10

, 0, 0,
9 cos

(√
3
5θ0

)(√
3 sin β

2 − cos β

2

)− cos θ0√
15

(√
3 sin β

2 +3 cos β

2

)
12

√
10

,

0,
cos

(√
3
5θ0

)(√
3 cos β

2 − 3 sin β

2

) − cos θ0√
15

(√
3 cos β

2 + sin β

2

)
4
√

10

⎞
⎟⎠,

�x� =

⎛
⎜⎝−

cos β

2 sin 2θ0√
15√

10
, 0,

sin β

2 sin 2θ0√
15√

10
,−

√
3 cos β

2 cos2 θ0√
15

+ sin β

2 sin2 θ0√
15√

10
, 0,

1√
12

(
3 cos 2θ0√

15
− 1

)
− cos β

2 sin2 θ0√
15

6
√

10
, 0

⎞
⎟⎠,

�y� =
⎛
⎝−

sin θ0√
15

(
2 sin β

2 − √
3 cos β

2

)
√

30
, 0,− 1√

10
sin

θ0√
15

sin
β

2
,−

√
3

10
cos

β

2
cos

θ0√
15

, 0,
1√
30

sin
β

2
cos

θ0√
15

, 0

⎞
⎠. (D1)

Modifying the definition of the Schwinger c bosons in Eq. (36) would lead to a SU(� − 1) rotation on (the complex vectors)
�xα and �yα in Eq. (D1), which would leave the dot products such as �xα · �yα invariant. All physically relevant quantities such as
criticality and squeezing depend only on these SU(� − 1) invariant constants.

APPENDIX E: FINITE-SIZE CORRECTIONS TO THE SQUEEZING

The squeezed quadratures near the critical points are approximately X̂ c
α,sq =

∑
μ xα,μX̂ c

μ

‖�xα‖ ∝ X̂ b
α and Ŷ c

α,sq =
∑

μ yα,μŶ c
μ

‖�yα‖ ∝ Ŷ b
α . The

squeezing in these variables will be limited by finite-size effects, which can be captured by including the O(1) terms in the
master equation. Here, we will calculate the finite-size corrections, and the best squeezing reachable, by calculating and solving
the steady-state value of 〈(X̂ c

�,sq )2〉. The calculations of the finite-size corrections to 〈(X̂ c
�,sq )2〉 and 〈(Ŷ c

α,sq )2〉 are similar.

We separate the jump operators into their leading and subleading terms, D̂−
α = √

NL̂1,α + L̂2,α︸︷︷︸, and expand the master equa-

tion ∂t 〈(X̂ c
�,sq )2〉 = h̄


2

∑
α 〈D̂+

α [(X̂ c
�,sq )2, D̂−

α ] + H.c.〉. It can be shown that 〈L̂†
1,α[(X̂ c

�,sq )2, L̂2,α︸︷︷︸]〉 = 0 and [(X̂ c
�,sq )2, L̂2,�︸︷︷︸] = 0.

Expanding the remaining terms in the master equation gives

∂t
〈(

X̂ c
�,sq

)2〉 = N
(�x� · �y� )2

‖�x�‖2
− 2N
(�x� · �y� )

〈(
X̂ c

�,sq

)2〉 + 


8‖�x�‖2

∑
α

〈
( �̂X c − i �̂Y c) · ↔

g †
α · ( �̂X c + i �̂Y c)

︸ ︷︷ ︸
× {

(�x� · �̂X c)[�x� · ↔
g α · ( �̂X c + i �̂Y c)] − (�x� · �̂X c)

[
�x� · ↔

g T
α · ( �̂X c − i �̂Y c)

] + [�x� · ↔
g α · ( �̂X c + i �̂Y c)](�x� · �̂X c)︸ ︷︷ ︸

−[
�x� · ↔

g T
α · ( �̂X c − i �̂Y c)

]
(�x� · �̂X c)

} + H.c.
〉︸ ︷︷ ︸

finite size

(E1)

where we have used shorthand notation �v · �̂X c = ∑
μ>0 vμX̂ c

μ and �v · ↔
g α · �̂X = ∑

μν>0 vμgα,μν X̂ c
ν .

The steady-state value of 〈X̂ c
�,sq )2〉, obtained by setting its derivative to zero, is

〈(
X̂ c

�,sq

)2〉
SS

= �x� · �y�

2‖�x�‖2
+ 1

16N‖�x�‖2(�x� · �y� )

∑
α

〈
( �̂X c − i �̂Y c) · ↔

g †
α · ( �̂X c + i �̂Y c)

︸ ︷︷ ︸
× {

(�x� · �̂X c)[�x� · ↔
g α · ( �̂X c + i �̂Y c)] − (�x� · �̂X c)

[
�x� · ↔

g T
α · ( �̂X c − i �̂Y c)

] + [�x� · ↔
g α · ( �̂X c + i �̂Y c)](�x� · �̂X c)︸ ︷︷ ︸

−[
�x� · ↔

g T
α · ( �̂X c − i �̂Y c)

]
(�x� · �̂X c)

} + H.c.
〉
SS︸ ︷︷ ︸

finite size

. (E2)
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The expectation value in Eq. (E2) is calculated in the steady state ρSS. It can be somewhat simplified using the fact that ρSS is

the vacuum of b̂� and b̂�, which means that (�x� · �̂X c + i�y� · �̂Y c)ρSS = (�x� · �̂X c + i�y� · �̂Y c)ρSS = 0 and 〈XjYk〉SS = iδ jk/2. This
simplification yields〈(

X̂ c
�,sq

)2〉
SS

= �x� · �y�

2‖�x�‖2
− 1

16N (�x� · �y� )‖�x�‖2︸ ︷︷ ︸
×
∑

α

( 〈(
�x� · ↔

g S
α · �̂Y c

)2 + (
�x� · ↔

g A
α · �̂X c

)2 + (
�x� · ↔

g A
α · �̂X c

)(
�y� · ↔

g S
α · �̂X c

) + (
�y� · ↔

g A
α · �̂Y c

)(
�x� · ↔

g S
α · �̂Y c

)︸ ︷︷ ︸
+�x� · ↔

g A
α · �y� ( �̂X c · ↔

g α · �̂X c + �̂Y c · ↔
g α · �̂Y c)

〉
SS + 2�x� · ↔

g S
α · ↔

g A
α · �x� + �y� · ↔

g A
α · ↔

g A
α · �x� − �y� · ↔

g S
α · ↔

g S
α · �x�

2

)
︸ ︷︷ ︸

finite size

(E3)

where
↔
g S

α = ↔
g α + ↔

g T
α and

↔
g A

α = ↔
g α − ↔

g T
α .

The dominant contribution to the O(1/N ) terms comes from the antisqueezed quadrature. Keeping only this dominant
contribution, the value of the steady-state squeezing is approximately

〈(
X̂ c

�,sq

)2〉
SS

� �x� · �y�

2‖�x�‖2
− ‖�y�‖2

16N (�x� · �y� )3

∑
α

⎡
⎣ (�x� · ↔

g S
α · �x� )2

‖�x�‖2︸ ︷︷ ︸
+ (�x� · ↔

g A
α · �y� )2

‖�y�‖2
+ �x� · ↔

g A
α · �y�

2

⎛
⎝3

�y� · ↔
g S

α · �y�

‖�y�‖2
− �x� · ↔

g S
α · �x�

‖�x�‖2

⎞
⎠
⎤
⎦

︸ ︷︷ ︸
finite size

. (E4)

The coefficient of the second term,
1

N (�x� · �y� )3︸ ︷︷ ︸, tends to a constant value as the critical point is approached. This constant value

is denoted A in Eq. (48).
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