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Entangling two Dicke states in a periodic modulated quantum system
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We propose a theoretical approach for entangling two Dicke states in a periodic modulated quantum system.
By considering two qubit ensembles that are nonuniformly coupled to a common resonator, we can derive
an effective Hamiltonian whose energy levels depend nonlinearly on the excitation number of each qubit
ensemble. A more simplified effective Hamiltonian can be obtained by selecting the appropriate driving
parameters and initial state. Based on the dynamic evolution of the effective Hamiltonian, we can selectively
achieve Dicke state transitions and generate entangled Dicke states controllably. For a special case, we can
obtain ensemble-ensemble entangled states by performing a projective even-odd cat-state measurement. By
implementing Gaussian soft temporal modulation, we can effectively suppress off-resonant contributions in
the interaction and enhance the fidelity of target states. Furthermore, by utilizing the Holstein-Primakoff
transformation, we study the resonator-ensemble coupling system in the thermodynamic limit and investigate
the generation of entangled magnon states. Additionally, we propose a scheme of creating magnon NOON states
through frequency modulation and study the influence of decoherence on the fidelity of target states.
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I. INTRODUCTION

Quantum entanglement, as a valuable resource for quan-
tum information processing [1–6], has garnered significant
attention due to its pivotal role in testing the fundamentals
of quantum mechanics [7–10]. Recently, it has demonstrated
a wide range of potential applications across various sys-
tems, encompassing atomic systems [11,12], photons [13–15],
superconducting systems [16–21], trapped ions [22,23], and
waveguides [24]. However, for large numbers of atoms, these
schemes that rely on global control of the spin ensemble
typically require intricate measurement-based feedback, high-
fidelity control, and extensive preparation times, resulting in
costly entangling gate operations between them [25–27]. Con-
sequently, strategies for optimizing such schemes remain a
significant challenge that requires attention [28].

Dicke states [29–31], originally introduced in the context
of superradiance phenomenon [32,33], represent a special
type of multiparticle entangled state. Due to their favorable
properties, they hold promise for providing a reliable ap-
proach to address this issue in quantum sensing [34–37].
Compared with other states typically used in quantum sens-
ing, Dicke states have been demonstrated to possess greater
robustness to diverse sources of noise, such as qubit de-
phasing, qubit damping, and fluctuations in spin number
[38–40]. It is noteworthy that utilizing entangled states has
the potential to enhance measurement sensitivity beyond the
standard quantum limit, in principle [41]. Considering the
challenges involved in achieving precise control over indi-
vidual spin qubits, global control over a collective of spins
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facilitates the realization of optimal sensitivity through en-
tangled Dicke states [42,43]. On the other hand, periodic
driving has significant advantages in enhancing controllability
of systems. This technique has been widely utilized in var-
ious areas of quantum physics, such as the investigation of
exotic quantum phenomena in artificial materials [44], anal-
ysis of stochastic processes [45], Floquet engineering [46],
and so on. Through periodic driving, one can effectively
promote selective resonant transitions while suppressing un-
desired transitions within the targeted Hilbert subspace. As a
result, a broad spectrum of controllable and selective interac-
tions can be achieved, enabling enhanced controllability and
selectivity [47].

The concept of selective interaction plays an important role
in the preparation of controllable quantum entangled states
[48–51]. This approach exploits the nonlinearity of energy
levels to generate desired entangled states. In Refs. [47,52],
the authors investigated the generation of Dicke states by
means of selective interactions. By employing selective
preparation of Dicke states, the initialization of a permutation-
invariant quantum error-correction code was explored in
Ref. [53]. This method facilitated the rapid generation of
highly symmetric codes with exceptional fidelity. To real-
ize the permutation-invariant quantum error-correction code,
each logical qubit is encoded on several physical qubits. How-
ever, previous studies have paid little attention to methods
for entangling states of two or several quantum systems in a
controlled manner. A natural question arises regarding how to
entangle logical qubits with selective interaction. This moti-
vates us to delve into entanglement of multiple systems.

In this paper, we present a theoretical proposal for generat-
ing entangled Dicke states in the ultrastrong coupling regime.
A series of unitary transformations have been applied to the
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Hamiltonian to derive the effective interaction. Additionally,
we investigate how to utilize selective resonant interactions to
obtain entangled Dicke states in a finite system [54–58]. Fur-
thermore, by utilizing the soft temporal quantum control, we
can effectively mitigate unwanted off-resonant contributions.
This approach allows for an accurate description of high-
fidelity quantum states even in scenarios involving strong
perturbations and long evolution times [59]. The collective
operators can be mapped to Bosonic operators by means of
Holstein-Primakoff transformation [60], thereby opening up
an exciting possibility for employing the same approach to
generate magnon NOON states.

This paper is structured as follows. In Sec. II, we derive
the effective Hamiltonian by choosing appropriate unitary
transformations. Section III presents a detailed scheme for
generating entangled Dicke states with a high-fidelity quan-
tum state using Gaussian soft control techniques. In Sec. IV,
the Holstein-Primakoff transformation is utilized to establish
selective interactions between two distinct magnons, thereby
providing the potential for generating magnon NOON states
in the thermodynamic limit. Furthermore, in Sec. V, we ana-
lyze the influence of decoherence on the dynamical evolution
and evaluate the experimental feasibility of our proposed
scheme. The results reveal that our approach can still achieve
entangled target states with high fidelity. Finally, we draw our
conclusions in Sec. VI.

II. THE EFFECTIVE HAMILTONIAN FOR FINITE QUBITS

We consider two qubit ensembles, each consisting of two-
level systems, that are situated with a common quantum
resonator. The jth ensemble comprising Nj qubits is coupled
to the corresponding periodically driving field. The Hamilto-
nian is given by (h̄ = 1 throughout this work)

Ĥ = Ĥ0 + Ĥint + Ĥd (t ), (1)

where

Ĥ0 = ωcâ†â −
2∑

j=1

ε j Ŝ
z
j,

Ĥint =
2∑

j=1

g j (â + â†)Ŝx
j ,

Ĥd (t ) =
2∑

j=1

[
ωq j + Aj cos (ωt )

]
Ŝx

j . (2)

The notation â† (â) denotes the creation (annihilation) op-
erator of the cavity field with frequency ωc, the notation ε j is
the atomic frequency in the jth ensemble, and gj denotes the
coupling strength between the resonator and qubits in the jth
ensemble. The jth ensemble is subjected to a periodic driving
field with amplitude Aj and frequency ω. The notation ωq j

represents the static energy split of the biased term for the jth
driving field. Ŝα

j = ∑Nj

r j=1 ŝα
r j

(α = x, y, z) are the collective
operators with ŝα

r j
being the atomic operators acting on the

r j th site of the jth ensemble. We can verify that each ensem-
ble operator satisfies the su(2) algebra relations: [Ŝα

i , Ŝβ
j ] =

iδi jεαβγ Ŝγ
j (α, β, γ ∈ {x, y, z}), with δi j and εαβγ being the

Kronecker delta and Levi-Civita symbols. To achieve a better
understanding of the system, we apply the following unitary
transformation:

Û = exp

⎡
⎣ 2∑

j=1

g j

ωc
(â − â†)Ŝx

j

⎤
⎦× exp

⎡
⎣i

π√
2

2∑
j=1

(
Ŝx

j + Ŝz
j

)⎤⎦.

The transformed Hamiltonian can be expressed as

Ĥ ′(t ) = Û †ĤÛ = Ĥ ′
0(t ) + Ĥ ′

int, (3)

where

Ĥ ′
0(t ) = ωcâ†â + F̂

(
Ŝz

1, Ŝz
2

)+
2∑

j=1

Aj cos (ωt )Ŝz
j,

Ĥ ′
int = −

2∑
j=1

ε j

2
[D̂(β j )Ŝ

+
j + D̂†(β j )Ŝ

−
j ],

where D̂(β j ) = exp(β j â† − β∗
j â) is the displacement operator

with β j = g j/ωc, and

F̂ (Ŝz
1, Ŝz

2) =
2∑

j=1

ωq j Ŝ
z
j − ωc

2∑
j=1

(
β j Ŝ

z
j

)2 − 2
g1g2

ωc
Ŝz

1Ŝz
2.

Moving to the rotating frame defined by

Û0(t ) = exp

[
−i
∫ t

0
dτ Ĥ ′

0(τ )

]
, (4)

we further obtain the following transformed Hamiltonian [61]:

Ĥ ′
I (t ) = −

2∑
j=1

ε j

2
[D̂(β je

iωct )Ŝ+
j eiη j sin (ωt )ei f̂ j (Ŝz

1,Ŝ
z
2 )t + H.c.],

(5)

where

f̂1(Ŝz
1, Ŝz

2) = F̂
(
Ŝz

1 + 1, Ŝz
2

)− F̂
(
Ŝz

1, Ŝz
2

)
= ωq1 − 2g1g2

ωc
Ŝz

2 − g2
1

ωc

(
2Ŝz

1 + 1
)
,

f̂2
(
Ŝz

1, Ŝz
2

) = F̂
(
Ŝz

1, Ŝz
2 + 1

)− F̂
(
Ŝz

1, Ŝz
2

)
= ωq2 − 2g1g2

ωc
Ŝz

1 − g2
2

ωc

(
2Ŝz

2 + 1
)
.

Utilizing the Jacobi-Anger identity [62]

eiη j sin (ωt ) =
∞∑

q=−∞
Jq(η j )e

iqωt , (6)

with Jq(η j ) being the qth order Bessel function of the first
kind with η j = Aj/ω, the Hamiltonian in Eq. (5) can be
rewritten as

Ĥ ′
I (t ) = −

∞∑
q=−∞

×
2∑

j=1

[ε j

2
Jq(η j )D̂[β j (t )]Ŝ+

j ei[qω+ f̂ j (Ŝz
1,Ŝ

z
2 )]t + H.c.

]
,

(7)
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where β j (t ) = β jeiωct . Since the Hamiltonian is permuta-
tion symmetric for each qubit ensemble, we introduce the
following normalized Nj-qubit Dicke states with k j atomic
excitations for convenience [63,64]:∣∣W kj

Nj

〉 = (
C

Nj

k j

)−1/2 ∑
m

Pm|e1, e2, . . . , ekj , gkj+1, . . . , gNj 〉,

where
∑

m Pm(•) indicates the sum over all particle permu-
tations for jth qubit ensembles and C

Nj

k j
= Nj!/k j!(Nj − k j )!

is the binomial coefficient. In the Dicke states basis, the
collective operators can be reduced to the following (Nj + 1)-
dimensional permutation symmetric subspace:

Ŝz
j =

Nj∑
k j=0

(k j − Nj

2
)
∣∣W kj

Nj

〉〈
W

kj

Nj

∣∣, (8a)

Ŝ+
j =

Nj∑
k j=0

h j (Nj, k j )
∣∣W kj+1

Nj

〉〈
W

kj

Nj

∣∣, (8b)

Ŝ−
j =

Nj∑
k j=0

h j (Nj, k j )
∣∣W kj

Nj

〉〈
W

kj+1
Nj

∣∣, (8c)

where h j (Nj, k j ) = √
(k j + 1)(Nj − k j ). In terms of the Fock

state basis [47], the displacement operator can be rewritten as

D̂[β j (t )] =
∞∑

m,n=0

〈m|D̂[β j (t )]|n〉Âmn, (9)

where Âm,n = |m〉〈n| and matrix elements Dmn[β j (t )] =
〈m|D̂[β j (t )]|n〉 can be written as

Dmn
[
β j (t )

] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e− 1
2 β2

j L(0)
n

(
β2

j

)
, m = n;

e− 1
2 β2

j βs
je

isωct
√

n!
m! L

(s)
n

(
β2

j

)
, m > n;

e− 1
2 β2

j (−β j )se−isωct
√

m!
n! L(s)

m

(
β2

j

)
, m < n.

Here, L(s)
n (β2

j ) is an associated Laguerre polynomial with
s = |m − n|. The cases s = 0 and s > 0 correspond to carrier
transition and the sth sidebands transition, respectively. In
terms of Dicke states and Fock states, the Hamiltonian in
Eq. (7) can be reduced to the following Dicke state subspace:

Ĥ ′
I (t ) = Ĥcar (t ) + Ĥred(t ) + Ĥblue(t ), (10)

where

Ĥcar (t ) =
∞∑

n=0

∑
k1,k2

[
G(0)

1 (k1, η1)eiδ(0)
1 tŴ k1+1,k1

N1
⊗ Ŵ k2,k2

N2
⊗ Ân,n + G(0)

2 (k2, η2)eiδ(0)
2 tŴ k1,k1

N1
⊗ Ŵ k2+1,k2

N2
⊗ Ân,n

]+ H.c.,

Ĥred(t ) =
∞∑

n=0

∞∑
s=1

∑
k1,k2

[
G(s)

1 (k1, η1)eiδ(s)
1 tŴ k1+1,k1

N1
⊗ Ŵ k2,k2

N2
⊗ Ân+s,n + G(s)

2 (k2, η2)eiδ(s)
2 tŴ k1,k1

N1
⊗ Ŵ k2+1,k2

N2
⊗ Ân+s,n

]+ H.c.,

Ĥblue(t ) =
∞∑

n=0

∞∑
s=1

∑
k1,k2

[
(−1)sG(s)

1 (k1, η1)eiδ(−s)
1 tŴ k1+1,k1

N1
⊗ Ŵ k2,k2

N2
⊗ Ân,n+s

+ (−1)sG(s)
2 (k2, η2)eiδ(−s)

2 tŴ k1,k1
N1

⊗ Ŵ k2,k2+1
N2

⊗ Ân,n+s
]+ H.c.. (11)

Here, Ŵ
kj ,k′

j

Nj
= |W kj

Nj
〉〈W k′

j

Nj
| and G(s)

j (k j, η j ) = − 1
2ε jJq(η j )

h j (Nj, k j )Dmn(β j ), with δ
(±s)
j = qω + � j ± sωc and

�1(k1, k2) = ωq1 + g2
1

ωc
(N1 − 2k1 − 1) + g1g2

ωc
(N2 − 2k2),

�2(k1, k2) = ωq2 + g2
2

ωc
(N2 − 2k2 − 1) + g1g2

ωc
(N1 − 2k1).

Obviously, we can tune the driving parameters to obtain
the desired effective Hamiltonians. If the driving frequency
ω = −�1(k1, k2)/q0, −�1(k1 − 1, k2)/q0, −�2(k1, k2)/q0,
or −�2(k1, k2 − 1)/q0, the on-resonance terms only appear
in the carrier terms [i.e., Ĥcar (t ) in Eq. (10)]. Neglecting
the off-resonance terms in the expansion of the Hamiltonian
Ĥ ′

I (t ), we can obtain the effective Hamiltonian based on the
secular approximation [65]. Then, we can investigate the
desired Dicke state transitions based on the selective interac-
tions. Furthermore, assuming the initial state of the system is
|W k1

N1
〉 ⊗ |W k2

N2
〉 ⊗ |0〉 under the new frame, we can verify that

such an initial state corresponds to the following state in the

original frame:∣∣W k1
N1

〉
x ⊗ ∣∣W k2

N2

〉
x ⊗ |ξk1,k2〉 = Û

∣∣W k1
N1

〉⊗ ∣∣W k2
N2

〉⊗ |0〉, (12)

where |ξk1,k2〉 = e−|ξk1 ,k2 |2/2 ∑∞
n=0(ξ n

k1,k2
/
√

n!)|n〉, with ξk1,k2 =
(N1/2 − k1)β1 + (N2/2 − k2)β2, and Û is given by Eq. (3).

In fact, |W kj

Nj
〉x is also a Dicke state, such that Ŝ

2
j |W kj

Nj
〉x =

Nj/2(Nj/2 + 1)|W kj

Nj
〉x and Ŝx

j |W kj

Nj
〉x = (k j − Nj/2)|W kj

Nj
〉x. It

is worth mentioning that if we consider the conditions ε j →
0, ωq j > 0 and without driving, the ground state in the
frame associated with unitary transformation Û is |W 0

N1
〉 ⊗

|W 0
N2

〉 ⊗ |0〉, which corresponds to the state |W 0
N1

〉x ⊗ |W 0
N2

〉x ⊗
|ξ0,0〉 with ξ0,0 = (N1β1 + N2β2)/2 in the original frame. By
tuning the driving frequency to satisfy the on-resonant con-
dition and choosing the proper initial state, we can obtain
a subspace spanned by involved states. For instance, if we
tune the driving frequency ω = −�1(k1, k2)/q0 and choose
|W k1

N1
〉 ⊗ |W k2

N2
〉 ⊗ |0〉 as the initial state, we can obtain the sub-

space spanned by {|W k1
N1

〉 ⊗ |W k2
N2

〉 ⊗ |0〉, |W k1+1
N1

〉 ⊗ |W k2
N2

〉 ⊗
|0〉}. For our choice, the carrier transition is activated and the
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FIG. 1. Schematic diagram of transition, taking quantum state
|W k1

N1
,W k2

N2
〉 as an example. Different driving Rabi frequencies

G(0)
1 (k1, η1) (solid magenta line), G(0)

1 (k1 − 1, η1) (solid green line),
G(0)

2 (k2, η2) (solid blue line), and G(0)
2 (k2 − 1, η2) (solid cyan line)

close to resonant transition result in selective transitions.

field part of the state remains on the “vacuum” state. Consider-
ing this is such a special case, we will omit it in the following
discussions and hereafter study the generation of Dicke states
in the new frame for simplicity, unless specified otherwise.
The transition diagram for two Dicke states is displayed in
Fig. 1. In this figure, we choose quantum state |W k1

N1
,W k2

N2
〉

(|W k1
N1

,W k2
N2

〉 ≡ |W k1
N1

〉 ⊗ |W k2
N2

〉) to be the initial state as an ex-
ample. Driving a carrier transition close to resonance results in
different effective interactions. Based on these properties, we
can realize the so-called selective interactions, which allows
to entangle two Dicke states by tuning the desired driving
parameters.

The terms of Ŵ
k′

1+1,k′
1

N1
⊗ Ŵ

k′
2,k

′
2

N2
and its Hermitian

are time independent only when the driving frequency
ω = −�1(k′

1, k′
2)/q0 is tuned. To safely disregard the impact

of nonresonant terms within the effective Hamiltonian, it is
necessary to satisfy the rotating wave approximation (RWA)
condition, which effectively suppresses undesired transitions.
Therefore, the conditions |qω + �2(k1, k2)| � |G(0)

2 (k2, η2)|
and |qω + �1(k1, k2)| � |G(0)

1 (k1, η1)| for k1 = k′
1 or k2 = k′

2
or q = q0 need to be fulfilled within the ultrastrong coupling
regime. According to the constraint, only the transition
|W k′

1
N1

,W
k′

2
N2

〉 ↔ |W k′
1+1

N1
,W

k′
2

N2
〉 is possible, and the other

transitions are not permitted. In this case, the effective
Hamiltonian is given as

Ĥ (1)
eff = G(0)

1 (k′
1, η1)

[
Ŵ

k′
1+1,k′

1
N1

⊗ Ŵ
k′

2,k
′
2

N2
+ H.c.

]
. (13)

The terms of Ŵ
k′

1,k
′
1

N1
⊗ Ŵ

k′
2+1,k′

2
N2

and its Hermitian are
time independent only when the driving frequency reaches
the resonance condition ω = −�2(k′

1, k′
2)/q0. Similarly,

the conditions |qω + �1(k1, k2)| � |G(0)
1 (k1, η1)| and

|qω + �2(k1, k2)| � |G(0)
2 (k2, η2)| for k1 = k′

1 or k2 = k′
2

or q = q0 need to be satisfied in the ultrastrong coupling
regime. Under these circumstances, only the transition
|W k′

1
N1

,W
k′

2
N2

〉 ↔ |W k′
1

N1
,W

k′
2+1

N2
〉 is permitted, and other transitions

are forbidden. Accordingly, the effective Hamiltonian

FIG. 2. Numerical results of the entangled Dicke states based on
the selective resonant interaction. [(a) and (b)] Average population
of initial state |W 1

4 ,W 1
4 〉 as the function of driving frequency ω and

parameter η j . [(c) and (d)] Population transferred from the initial
state |W 1

4 ,W 1
4 〉 to the Dicke states |W 1

4 ,W 0
4 〉, |W 0

4 ,W 1
4 〉, |W 2

4 ,W 1
4 〉,

and |W 1
4 ,W 2

4 〉 as the function of ω/ωc at the fixed parameter η j =
1.09. [(e) and (f)] Population from the initial state |W 1

4 ,W 1
4 〉 to the

Dicke states |W 0
4 ,W 1

4 〉 and |W 1
4 ,W 0

4 〉 at the fixed driving parameter
ω = 3.3025 or 5.9053. The dynamics is governed by the Hamiltonian
in Eq. (2). The other parameters are chosen as ωc/2π = 2.2 GHz,
g1 = 0.25ωc, g2 = 0.49ωc, ε1 = ε2 = 0.01ωc, ωq1 = 2.87ωc, and
ωq2 = 4.94ωc.

reads

Ĥ (2)
eff = G(0)

2 (k′
2, η2)

[
Ŵ

k′
1,k

′
1

N1
⊗ Ŵ

k′
2+1,k′

2
N2

+ H.c.
]
. (14)

Based on the conditions described above, we can achieve
the desired transition between the initial and final states. In
the following section, we will explore the applications of the
so-called selective interactions.

III. THE APPLICATIONS OF SELECTIVE TRANSITION

A. Selective interaction dynamics in two qubit ensembles

Through the implementation of controllable interactions,
we possess the capability to generate a wide range of
entangled Dicke states. To illustrate selective transitions, we
will explain how to achieve the desired state in a specific
example. Considering that each ensemble constitutes four
qubits (i.e., N1 = N2 = 4, q0 = −1) with the initial state
|W 1

4 ,W 1
4 〉, one can selectively obtain various final states such

as |W 1
4 ,W 0

4 〉, |W 0
4 ,W 1

4 〉, |W 2
4 ,W 1

4 〉, and |W 1
4 ,W 2

4 〉. With the
mechanism of the dominated role of the selective interaction
in the dynamics of the system at hand, we have shown the
calculated time-averaged population: P = 1

T

∫ T
0 |〈β|ψ (t )〉|2dt

with |β〉 = |W 1
4 ,W 1

4 〉 as a function of the modulation
frequency and modulation index in Fig. 2. In the regime
of high modulation frequency (ω � G(0)

j ), the dynamics
is relatively robust and dictated by the Bessel functions. It
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. Numerical results of the dynamics evolution based on the
selective resonant interaction. [(a), (c), (e), and (g)] Population of the
states |W 0

4 ,W 1
4 〉, |W 1

4 ,W 0
4 〉, |W 2

4 ,W 1
4 〉, and |W 1

4 ,W 2
4 〉 generated from

|W 1
4 ,W 1

4 〉 versus ω/ωc. [(b), (d), (f), and (h)] Dynamics evolution
of the Dicke states |W 0

4 ,W 1
4 〉, |W 1

4 ,W 0
4 〉, |W 2

4 ,W 1
4 〉, and |W 1

4 ,W 2
4 〉

generated from |W 1
4 ,W 1

4 〉 versus time t . The dynamics is governed
by the Hamiltonian in Eq. (2). The other parameters are chosen
as η1 = η2 = 1.09, ωc/2π = 2.2 GHz, g1 = 0.25ωc, g2 = 0.49ωc,
ε1 = ε2 = 0.01ωc, ωq1 = 2.87ωc, and ωq2 = 4.94ωc.

can be easily seen that the pearl stripes align along the η j

axis at resonances, while the local minima along the chains
indicate the values of η j at which population trapping takes
place. Between the stripes (along the ω/ωc axis), the average
population of |W 1

4 ,W 1
4 〉 remains due to the atoms being driven

far off-resonance. In Figs. 2(c) and 2(d), we further show how
the population of each quantum state changes with the driving
frequency, while assuming a fixed value for the parameter
η j . The resonances can be identified at the intersection of
peaks and dips. Once the resonance condition is satisfied, the
population dynamics exhibits coherent Rabi oscillations at
those peaks. Far away from the resonances, the system has a
small probability of evolution due to the off-resonance. We
also note that the effective Rabi coupling is directly propor-
tional to Jq(η j ). Consequently, at the zeros of Bessel function
[Jq(η j ) = 0], the dynamics freezes and leads to population
trapping [66]. In Figs. 2(e) and 2(f), we show the results for
the case of resonances, and the peaks appear at the zeros of
Jq(η j ) = 0. We find that the dynamical evolution is switched
off and the corresponding transition is strongly suppressed.
Through an appropriate choice of η j , we observe either
population trapping or coherent dynamics between the initial
state and final states. In short, an invariant population at the
driving-induced resonance indicates the population trapping.

For highlighting the nonlinearity of energy level and char-
acteristic selective transitions, a comprehensive analysis of
both Figs. 2 and 3 reveals that assuming the driving frequency

FIG. 4. The population of entangled Dicke state for N1 = N2 = 4
from (|W 4

4 ,W 0
4 〉 + |W 0

4 ,W 4
4 〉)/

√
2 versus time t . The dynamics is

governed by the Hamiltonian in Eq. (2). The other parameters are
chosen as η1 = η2 = 0.18, ωc/2π = 2.2 GHz, g1 = 0.25ωc, g2 =
0.49ωc, ε1 = ε2 = 0.01ωc, ωq1 = 2.87ωc, and ωq2 = 4.94ωc.

ω = �1(0, 1) = 3.3025ωc, the Rabi oscillation between
|W 1

4 ,W 1
4 〉 and |W 0

4 ,W 1
4 〉 can be obtained with a period of ap-

proximately T1 = 2π/[G(0)
1 (0, 1.09)] ≈ 0.1002 µs. Similarly,

we can manipulate the driving frequency ω = �2(1, 0) =
5.9053ωc to achieve the evolution state from |W 1

4 ,W 1
4 〉 to

|W 1
4 ,W 0

4 〉 with the time period of T2 = 2π/[G(0)
2 (0, 1.09)] ≈

0.1095 µs. Furthermore, when the driving frequency ω =
�1(1, 1) = 3.1775ωc, the evolution of the system leads to
the population transfer from |W 1

4 ,W 1
4 〉 to |W 2

4 ,W 1
4 〉 with

the period of T1 = 2π/[G(0)
1 (1, 1.09)] ≈ 0.0818 µs. While

adjusting the driving frequency ω = �2(1, 1) = 5.4251ωc,
the Hamiltonian in Eq. (2) results in the creation of the
quantum state |W 1

4 〉 ⊗ |W 2
4 〉 with the time period of T2 =

2π/[G(0)
2 (1, 1.09)] ≈ 0.0894 µs.

B. Generation of entangled Dicke states

In terms of implementing the controllable interaction, it
is also possible to achieve the desired entangled Dicke states
through a multistep process. Here, we present an example of
entangling two Dicke states by desired interaction. The target
state reads

|ψ (t f )〉 = 1√
2

(∣∣W 4
4 ,W 0

4

〉+ ∣∣W 0
4 ,W 4

4

〉)
. (15)

The corresponding dynamic evolution process is shown in
Fig. 4. We will provide a detailed, step-by-step explanation of
how to achieve the target state.

(1) Initially, we prepare the entire system in the state
|ψ (t0)〉 = |W 0

4 ,W 0
4 〉. Applying the resonance Hamiltonian

with the driving frequency ω = �1(0, 0) to ensure selec-
tive resonance between |W 0

4 ,W 0
4 〉 and |W 1

4 ,W 0
4 〉, we obtain

the evolution state |ψ (t1)〉 = (|W 0
4 ,W 0

4 〉 − i|W 1
4 ,W 0

4 〉)/
√

2 at
time t1 = π/4�0

1 ≈ 0.0654 µs with �0
1 ≡ G(0)

1 (0, 0.18).
(2) Specially, we set ω = �1(1, 0) to achieve the selec-

tive resonance between |W 1
4 ,W 0

4 〉 and |W 2
4 ,W 0

4 〉 as illustrated
in Fig. 4. Then, the evolution state |ψ (t2)〉 = (|W 0

4 ,W 0
4 〉 −

|W 2
4 ,W 0

4 〉)/
√

2 after a period of time t2 = t1 + π/2�0
2 ≈

0.1722 µs with �0
2 ≡ G(0)

1 (1, 0.18).
(3) Certainly, we can adjust ω = �1(2, 0) to hold perfect

oscillations transition between |W 2
4 ,W 0

4 〉 and |W 3
4 ,W 0

4 〉. The
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TABLE I. The generation of entangled Dicke state (|W 4
4 ,W 0

4 〉 + |W 0
4 ,W 4

4 〉)/
√

2 with the initial state |W 0
4 ,W 0

4 〉. The dynamics is governed
by the Hamiltonian in Eq. (2).

Step l Driving frequency ω/ωc Time duration (μs) Final state for step l Fidelity (abrupt) Fidelity (soft)

1 3.5475 π/4G(0)
1 (0, 0.18) ≈ 0.0654 (|W 0

4 ,W 0
4 〉 − i|W 1

4 ,W 0
4 〉)/

√
2 0.9999 0.9999

2 3.4225 π/2G(0)
1 (1, 0.18) ≈ 0.1068 (|W 0

4 ,W 0
4 〉 − |W 2

4 ,W 0
4 〉)/

√
2 0.9989 0.9992

3 3.2975 π/2G(0)
1 (2, 0.18) ≈ 0.1068 (|W 0

4 ,W 0
4 〉 + i|W 3

4 ,W 0
4 〉)/

√
2 0.9954 0.9962

4 3.1725 π/2G(0)
1 (3, 0.18) ≈ 0.1308 (|W 0

4 ,W 0
4 〉 + |W 4

4 ,W 0
4 〉)/

√
2 0.9864 0.9918

5 6.1503 π/2G(0)
2 (0, 0.18) ≈ 0.0994 (|W 4

4 ,W 0
4 〉 − i|W 0

4 ,W 1
4 〉)/

√
2 0.9782 0.9877

6 5.6701 π/2G(0)
2 (1, 0.18) ≈ 0.0812 (|W 4

4 ,W 0
4 〉 − |W 0

4 ,W 2
4 〉)/

√
2 0.9700 0.9827

7 5.1899 π/2G(0)
2 (2, 0.18) ≈ 0.0812 (|W 4

4 ,W 0
4 〉 + i|W 0

4 ,W 3
4 〉)/

√
2 0.9409 0.9781

8 4.7097 π/2G(0)
2 (3, 0.18) ≈ 0.0994 (|W 4

4 ,W 0
4 〉 + |W 0

4 ,W 4
4 〉)/

√
2 0.9322 0.9624

resulting state is |ψ (t3)〉 = (|W 0
4 ,W 0

4 〉 + i|W 3
4 ,W 0

4 〉)/
√

2 at
time t3 = t2 + π/2�0

3 ≈ 0.2790 µs with �0
3 = G(0)

1 (2, 0.18).
(4) We tune ω = �1(3, 0) to attain the selective resonance

between |W 4
4 ,W 0

4 〉 and |W 3
4 ,W 0

4 〉. The quantum state evolves
into |ψ (t4)〉 = (|W 0

4 ,W 0
4 〉 + |W 4

4 ,W 0
4 〉)/

√
2 at the moment

t4 = t3 + π/2�0
4 ≈ 0.4098 µs with �0

4 ≡ G(0)
1 (3, 0.18).

(5) When the frequency ω = �2(0, 0) satisfies the condi-
tion of resonance, the evolved state changes into |ψ (t5)〉 =
(|W 4

4 ,W 0
4 〉 − i|W 0

4 ,W 1
4 〉)/

√
2 in the time t5 = t4 + π/2�0

5 ≈
0.5092 µs with �0

5 = G(0)
2 (0, 0.18).

(6) Subsequently, we set ω = �2(0, 1) to maintain se-
lective resonance almost strictly between the state |W 0

4 ,W 1
4 〉

and |W 0
4 ,W 2

4 〉. After t6 = t5 + π/2�0
6 ≈ 0.5904 µs with �0

6 =
G(0)

2 (1, 0.18), the quantum state |ψ (t6)〉 = (|W 4
4 ,W 0

4 〉 −
|W 0

4 ,W 2
4 〉)/

√
2 can be realized.

(7) After applying the effective Hamiltonian Ĥ (2)
eff =

G(0)
2 (2, 0.28)[Ŵ 0,0

4 ⊗ Ŵ 3,2
4 + H.c.] on the state |ψ (t6)〉 and

setting the driving frequency ω = �2(0, 2), we can reach
the state |ψ (t7)〉 = (|W 4

4 ,W 0
4 〉 + i|W 0

4 ,W 3
4 〉)/

√
2 at t7 = t6 +

π/2�0
7 ≈ 0.6716 µs with �0

7 = G(0)
2 (2, 0.18).

(8) Finally, we tune the driving frequency ω = �2(0, 3)
to derive the transition between |W 0

4 ,W 3
4 〉 and |W 0

4 ,W 4
4 〉.

In the series of operations, the quantum state is excited
to |ψ (t8)〉 = (|W 4

4 ,W 0
4 〉 + |W 0

4 ,W 4
4 〉)/

√
2 at time t8 = t7 +

π/2�0
8 ≈ 0.7709 µs with �0

8 = G(0)
2 (3, 0.18).

If all terms in Eq. (7) are fast-time varying, the higher-
order effective Hamiltonian will dominate the dynamics
[67]. Based on the higher-order Hamiltonian, the number of
steps can be reduced. Tuning the driving frequency to ob-
tain the two-atomic excitation process, we can reduce the
eight-step operations to four-step operations [51]. The nu-
merical results of the above eight-step protocol are listed in

Table I. The numerical simulation of the fidelity is defined as
F (|ψT 〉, |ψ (t )〉) = |〈ψT |ψ (t )〉|2, with |ψT 〉 and |ψ (t )〉 being
the target state and evolution state, respectively. Through the
aforementioned procedure, we have successfully achieved the
desired target state. The final state for the eighth step protocol
reads

|ψ (t8)〉 = 1√
2

(∣∣W 4
4 ,W 0

4

〉+ ∣∣W 0
4 ,W 4

4

〉)⊗ |0〉. (16)

In the original frame, such state can be recast as follows:

|ψ ′(t8)〉 = 1√
2

(∣∣W 4
4 ,W 0

4

〉
x
⊗ ∣∣α〉 + ∣∣W 0

4 ,W 4
4

〉
x
⊗ | − α〉),

(17)

where α = 2(β2 − β1). Hence, we obtain the tripartite entan-
gled states. Then, we will show how to obtain two entangled
Dicke states based on projective measurement. The orthog-
onal even and odd Schrödinger cat states take the following
form:

|C±
α 〉 = N−1

± (|α〉 ± | − α〉), (18)

where N± = √
2[1 ± exp(−2|α|2)] are the respective normal-

ization factors. Here, even or odd refers to the photon number
of the cat states in Fock space, that is, a state containing only
even or odd photon numbers. In terms of cat state basis, the
final states can be rewritten as

|ψ ′(t8)〉 = 1
2 [N+|D+

x 〉 ⊗ |C+
α 〉 + N−|D−

x 〉 ⊗ |C−
α 〉], (19)

where |D±
x 〉 = (|W 4

4 ,W 0
4 〉x ± |W 0

4 ,W 4
4 〉x )/

√
2 are entangled

atomic Dicke states. Performing projective measurement on
the system in the cat states basis [68], the atomic Dicke states
can be derived. If the projective measurement result is even
(odd) cat state |C±

α 〉, we can obtain the atomic final states |D±
x 〉

TABLE II. The generation of magnon NOON state (|2, 0〉 + |0, 2〉)/
√

2 with the initial state |ψ (0)〉 = |0, 0〉. The dynamics is governed
by the Hamiltonian in Eq. (24).

Step i Driving frequency ω/ωc Time duration (μs) Evolution state |ψ (ti )〉 Fidelity (abrupt) Fidelity (soft)

1 50.0900 π/4G(0)
m1(0, 0.12) ≈ 0.0140 (|0, 0〉 − i|1, 0〉)/

√
2 0.9994 0.9999

2 49.9100 π/2G(0)
m1(0, 0.12) ≈ 0.0198 (|0, 0〉 − |2, 0〉)/

√
2 0.9947 0.9998

3 82.1199 π/2G(0)
m2(0, 0.12) ≈ 0.0302 (|2, 0〉 − i|0, 1〉)/

√
2 0.9846 0.9997

4 81.6397 π/2G(0)
m2(1, 0.12) ≈ 0.0214 (|2, 0〉 + |0, 2〉)/

√
2 0.9715 0.9995
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(b)

(a)
（
   
 ）

FIG. 5. (a) Abrupt driving and soft driving as a function of
time t for step 1. (b) Fidelity of evolution state (|W 0

4 ,W 0
4 〉 −

i|W 1
4 ,W 0

4 〉)/
√

2 in step 1. Insets illustrate the fidelity of final state
under both driving conditions. The dynamics is governed by the
Hamiltonian in Eq. (2). The other parameters are chosen consistent
with Fig. 4.

with probability [1 ± exp(−2|α|2)]/2. Hence, we obtain the
entangled state for two qubit ensembles.

C. Fidelity enhancement via Gaussian soft quantum control

In Sec. III B, we assume that the drive is abruptly turned
on at an initial time tl−1 and lasts till a final time tl for the
lth step. To improve the fidelity of the entangled Dicke states,
we can employ Gaussian time-dependent control techniques,
and achieve precise coupling to resonant terms through mod-
ulation of the coupling constant over time. The Gaussian soft
control [59] offers the advantage of maintaining higher fidelity
of the corresponding target quantum states within a broader
parameter range, which accurately satisfy the conditions of
RWA and avoid unnecessary transitions. Such temporal mod-
ulation significantly suppresses the nonresonant effects of
the interaction while remaining insensitive to operation time,
which can extremely improve the robustness of the scheme.
Next, we change the time-independent Rabi frequency �0

l to
a time-dependent Gaussian form [69]

�l (t ) = μ�0
l exp

(
− [t − (tl−1 + tl )/2]2

2σ 2
l

)
, (20)

where �0
l represents the corresponding Rabi frequency. tl−1

(tl ) is the minimum (maximum) of each segment evolution
time in the eight-step operation.

√
2σl is the width of the

Gaussian pulse applied during each step of evolution. In order
to maintain the necessary coherent process for the preparation
of entangled states, the Gaussian pulses need to be satisfied,

Al =
∫ tl

tl−1

�l (t ) dt =
{

π
4 , for step 1
π
2 , for other steps.

(21)

According to Eq. (21), we have imposed a condition for
calculating the pulse area within a finite time interval, ranging
from tl−1 to tl . This condition ensures that Gaussian pulses

(a) (b)

(c) (d)

FIG. 6. (a)–(d) Populations with different magnon Fock states
as the initial states. The dynamics is governed by the Hamiltonian
in Eq. (24). The other parameters are chosen as η1 = η2 = 0.12,
ωc/2π = 2.2 GHz, g1 = 0.30ωc, g2 = 0.49ωc, ε1 = ε2 = 0.01ωc,
ωq1 = 2.78ωc, and ωq2 = 4.94ωc.

can be reliably substituted for the previous Rabi frequency
�0

l , i.e., μ > 1. Furthermore, parameter σl is determined by
the following relation:

σl =
√

π

2
√

2nμ�l (0)erf[(tl − tl−1)/(2
√

2σl )]
. (22)

Here, the function erf (x) = 2√
π

∫ x
0 dze−z2

, and n = 2 for
l = 1 and n = 1 for all other cases. We are able to achieve
soft control by applying different Gaussian pulses to each step
and then obtain high-fidelity target quantum states. In Fig. 5,
we show the temporal evolution of both drive amplitudes in
the initial state. Correspondingly, we present the fidelity of
the desired target state throughout the evolution, with insets
indicating that soft control yields a higher fidelity compared to
abrupt control upon completion of the process. The situation
can be explained as follows: when there is the absence of
a modulation for �l (t ), i.e., abrupt driving �0

l , unwanted
terms in the effective Hamiltonian can be neglected by the
RWA provided that the � j is sufficiently large compared
with �0

l . However, after applying Gaussian soft control, we
can calculate the Hamiltonian by using Mangus expansion
for a time interval of [tl−1, tl ], where the mean coefficient
gM ∝ μ�0

l exp(− 1
2σ 2

l � j ). A simple inspection of gM reveals
that the effective couplings decay exponentially with � j at
the fixed μ, and the contribution to the average Hamiltonian
decreases accordingly. In other words, the high-frequency os-
cillation term can be greatly suppressed when the detuning
amount is relatively large. In addition, we find that gM is
a monotonically increasing function with μ and larger gM

can have negative consequences on the coupling term of the
resonance as the result of selecting a high value for μ. Thus,
combined with practical implementations, it is essential to
rationally choose μ to achieve high-fidelity quantum states.
For the above consideration, we choose μ = √

6/5 to achieve
soft control. The corresponding results, presented in the last
column of Table I, show improvement in fidelity compared
to abrupt control. So our soft control scheme enables highly
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selective coupling between different resonance constituents of
composite systems.

IV. THE THERMODYNAMIC LIMIT CASE

Now, we consider the effect of nonlinear energy levels
in the thermodynamic limit (N1 � 1 and N2 � 1). With the
Holstein-Primakoff transformation, the collective operators
can be written as [60]

Ŝz
j = m̂†

j m̂ j − s j, (23a)

Ŝ+
j = m̂†

j (2s j − m̂†
j m̂ j )

1
2 , (23b)

Ŝ−
j = (2s j − m̂†

j m̂ j )
1
2 m̂ j, (23c)

where s j = Nj/2 is the pseudospin quantum number for the
jth qubit ensemble, and m̂†

j (m̂ j ) denotes the creation (an-
nihilation) operator of the two different magnons. For the
low-lying magnon excitations, i.e., 〈m̂†

j m̂ j〉/2s j � 1, we can
safely approximate the collective operators as the following
relations: Ŝ+

j ≈ √
2s jm̂

†
j , Ŝ−

j ≈ √
2s jm̂ j . Then, Eq. (7) reads

Ĥm
I (t ) = −

∞∑
q=−∞

Jq(η j )

[
ε1

√
s1

2
D̂(β1eiωct )m̂†

1ei[qω+�1+2 g1g2
ωc

(s2−m̂†
2m̂2 )+ g2

1
ωc

(2s1−2m̂†
1m̂1−1)]t

+ ε2

√
s2

2
D̂(β2eiωct )m̂†

2ei[qω+�2+2 g1g2
ωc

(s1−m̂†
1m̂1 )+ g2

2
ωc

(2s2−2m̂†
2m̂2−1)]t + H.c.

]
. (24)

In the subspace of two different magnon Fock states, the effective Hamiltonian (7) can be rewritten as

Ĥm
I (t ) =

∞∑
q=−∞

∑
m1,m2

[
G(0)

m1(m1, η1)eiqωt ei�1(m1,m2 )t M̂m1+1,m1 ⊗ M̂m2,m2 + G(0)
m2(m2, η2)eiqωt ei�2(m1,m2 )t M̂m1,m1 ⊗ M̂m2+1,m2 + H.c.

]
,

(25)

where mj is the eigenvalue of the magnon Fock
operator m̂†

j m̂ j , M̂mj ,m′
j
= |mj〉〈m′

j |, G(0)
m j (mj, η j ) =

−ε j
√

s j (mj + 1)Jq(η j )e
− 1

2 β2
j /

√
2, and

�1(m1, m2) = �1 + g2
1

ωc
(2s1 − 2m1 − 1) + 2

g1g2

ωc
(s2 − m2),

�2(m1, m2) = �2 + g2
2

ωc
(2s2 − 2m2 − 1) + 2

g1g2

ωc
(s1 − m1).

Similarly, in order to maintain the same approach as
that mentioned above, we can tune the driving frequency
ω to obtain the desired selective interactions based on
the RWA. The terms of M̂m′

1+1,m′
1
⊗ M̂m′

2,m
′
2

and its Hermi-
tian are time independent only when the driving frequency
ω = −�1(m′

1, m′
2)/q0, if one can verify that the condition

|qω + �2(m1, m2)| � |G(0)
m2(m2, η2)| holds to maintain for

any q, m1, and m2. And, |qω + �1(m1, m2)| � |G(0)
m1(m1, η1)|

for m1 = m′
1 or m2 = m′

2 or q = q0 remains valid within the
ultrastrong coupling regime. In this case, the transition occurs
between |m′

1, m′
2〉(|m′

1, m′
2〉 ≡ |m′

1〉 ⊗ |m′
2〉) and |m′

1 + 1, m′
2〉,

and the effective Hamiltonian reads

Ĥ (1)
eff = G(0)

m1(m′
1, η1)[M̂m′

1+1,m′
1
⊗ M̂m′

2,m
′
2
+ H.c.]. (26)

The terms of M̂m′
1,m

′
1
⊗ M̂m′

2+1,m′
2

and its Hermitian
are time independent only when the driving frequency
is tuned ω = −�2(m′

1, m′
2)/q0, if we can ensure that

the conditions |qω + �1(m1, m2)| � |G(0)
m1(m1, η1)| and

|qω + �2(m′
1, m′

2)| � |G(0)
m2(m2, η2)| for m1 = m′

1 or
m2 = m′

2 or q = q0 are realized in the ultrastrong coupling
regime. In such a case, the transition occurs between |m′

1, m′
2〉

and |m′
1, m′

2 + 1〉, and the effective Hamiltonian reads

Ĥ (2)
eff = G(0)

m2(m′
2, η2)[M̂m′

1,m
′
1
⊗ M̂m′

2+1,m′
2
+ H.c.]. (27)

So far, the model Hamiltonian in the thermodynamic limit
has been simplified as a controlled selective interaction under
frequency modulation. Therefore, the applications of selective
interactions can also be actualized under the thermodynamic
limit.

For the sake of brevity, we focus on a system with a large
number of qubits shown in Fig. 6, where the initial state
|ψ (0)〉 = |0, 0〉 with the total qubit number N1 = N2 = 200.
Tuning the driving frequency ω = �1(0, 0), the transition of
the quantum states between |0, 0〉 and |1, 0〉 can be achieved
with a period of time T1 = 2π/[G(0)

m1(0, 0.12)] ≈ 0.1123 µs.
When the driving frequency is set to ω = �2(0, 0), we can de-
rive the evolution state |ψ (t )〉 = cos [G(0)

m2(0, 0.12)t]|0, 0〉 −
i sin [G(0)

m2(0, 0, 12)t]|0, 1〉 with a period of time T2 =
2π/[G(0)

m2(0, 0.12)] ≈ 0.1210 µs. Similarly, supposing that the
initial state is prepared as |ψ (0)〉 = |1, 0〉, we obtain the
transition of the quantum states between |1, 0〉 and |2, 0〉
by tuning the driving frequency ω = �1(1, 0) with a period
of time T1 = 2π/[G(0)

m1(1, 0.12)] ≈ 0.0794 µs. Taking into ac-
count |ψ (0)〉 = |0, 1〉 as the initial state, the transition of
the quantum state between |0, 1〉 and |0, 2〉 can be obtained
with a period of time T2 = 2π/[G(0)

m2(1, 0.12)] ≈ 0.0856 µs by
adjusting the driving frequency ω = �2(0, 1).

In the following, we will show how to prepare the magnon
NOON states with selective resonance interaction. This is
clearly illustrated in Fig. 7 and detailed data is given in Ta-
ble II. If the magnons are not initially distributed throughout
the system, the initial state can be expressed as |ψ (0)〉 =
|0, 0〉. By tuning the driving frequency ω = �1(0, 0), the
evolved state is |ψ (t1)〉 = (|0, 0〉 − i|1, 0〉)/

√
2 after a dura-

tion of t1 = π/4G(0)
m1(0, 0.12) ≈ 0.0140 µs. Again adjusting

the driving frequency ω = �1(1, 0), the evolved state can be
expressed as |ψ (t2)〉 = (|0, 0〉 − |2, 0〉)/

√
2 at the time t2 =
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FIG. 7. (a) Populations of the magnon NOON states from |0, 0〉
versus time t . Evolution states |0, 0〉 (solid cyan line), (|0, 0〉 −
i|1, 0〉)/

√
2 (dotted blue line), (|0, 0〉 − |2, 0〉)/

√
2 (dotted ma-

genta line), (|2, 0〉 − i|0, 1〉)/
√

2 (dotted red line), and (|2, 0〉 +
|0, 2〉)/

√
2 (dotted green line). (b) Fidelity with choosing different

total qubit number N1 and N2 for generating magnon NOON states.
The dynamics is governed by the Hamiltonian in Eq. (24). The
parameters are chosen as η1 = η2 = 0.12, ωc/2π = 2.2 GHz, g1 =
0.30ωc, g2 = 0.49ωc, ε1 = ε2 = 0.01ωc, �1 = 2.78ωc, and �2 =
4.94ωc.

t1 + π/2G(0)
m1(0, 0.12) ≈ 0.0338 µs. The next step involves

tuning the driving frequency to ω = �2(0, 0), which results
in the state |ψ (t3)〉 = (|2, 0〉 − i|0, 1〉)/

√
2 after the time

t3 = t2 + π/2G(0)
m2(0, 0.12) ≈ 0.0640 µs. Ultimately, when the

driving frequency ω = �2(0, 1) is satisfied, the quantum state
becomes |ψ (t4)〉 = (|2, 0〉 + |0, 2〉)/

√
2 at the moment t4 =

t3 + π/2G(0)
m2(1, 0.12) ≈ 0.0854 µs. In addition, we have ap-

plied the Gaussian soft control to the system, and the fidelity
of the target quantum state can be found through Table II.
To further investigate the generation of the magnon NOON
state [70,71], we conduct simulations to assess the fidelity
for larger total qubit numbers N1 and N2. On the right panel
of Fig. 7, it is evident to hold high fidelity as the two total
qubit numbers increase. Notably, when N1 = N2 = 1 × 103,
the fidelity value can reach F = 0.9644. The feasibility of the
NOON state has been established by us. Strictly speaking, the
effective G(0)

m j ∝ ε j
√

Nj , as indicated by the effective Hamilto-
nian in Eq. (25). When the number of atoms becomes sizable,
a significant coupling strength emerges, and validity of the
effective Hamiltonian should be examined. To avoid undesired
transitions, an appropriate number of qubits Nj and ε j should
be considered, ensuring that the high-frequency vibration term
can be safely disregarded. By doing so, we can achieve a series
of desired entangled states with high fidelity.

V. DECOHERENCE AND EXPERIMENTAL FEASIBILITY

In this section, we first provide a detailed analysis when the
system suffers from decoherence, considering scenarios with
both a few and a large number of qubits. Subsequently, we
present experimentally feasible parameters for implementing
our proposed scheme.

A. Decoherence of the dynamic system

In order to better discuss the scheme we have proposed, we
now describe the system dynamics by considering the dissipa-
tion channels taken into account. Here, we employ a dressed-
state master equation by considering that the standard master

10-6 10-5 10-4
0.6

0.8

1

(a) (b)

(c) (d)

(e)

FIG. 8. [(a)–(d)] Dynamic evolution of the target state |W 0
4 ,W 1

4 〉,
|W 1

4 ,W 0
4 〉, |W 2

4 ,W 1
4 〉, and |W 1

4 ,W 2
4 〉 starting from the initial state

|W 1
4 ,W 1

4 〉 under various dissipative processes. (e) Fidelity of the
target state evolving half a period under different dissipation con-
ditions. The dynamics is governed by the Hamiltonian in Eq. (28).
The parameter κ = 10−5ωc and other parameters are consistent with
those shown in Fig. 2.

equation breaks down in the ultrastrong coupling regime
[72,73]. With the Born-Markov approximation and assuming
each qubit ensemble suffering collective dissipation [74–76],
the dressed-state master equation at zero temperature reads

d ρ̂

dt
= −i[Ĥ , ρ̂] +

∑
m,n>m

(
�nm

q1
+ �nm

q2
+ �nm

c

)
D[|m〉〈n|]ρ̂,

(28)

where the Lindblad operator D[Ô]ρ̂ = 2Ôρ̂Ô† − ρ̂Ô†Ô −
Ô†Ôρ̂. |m〉 and |n〉 are eigenstates of the undriven (i.e.,
Aj = 0) Hamiltonian given by Eq. (1) with eigenvalues ωm

and ωn. Here, the eigenstates are labeled by an increasing
order (i.e., ωn > ωm for n > m). The qubit ensembles and
resonator decay rates can be written as

�nm
qj

= � j

Nj

�nm

ωq j

|〈m|Ŝ−
j + Ŝ+

j |n〉|2,

�nm
c = κ

�nm

ωc
|〈m|â + â†|n〉|2,

where κ and � j are the bare loss rates for the resonator and
the jth qubit ensemble, and �nm = ωn − ωm. To evaluate
the robustness of the proposal, we introduce the definition
of the fidelity as F [|ψT 〉, ρ(t )] = 〈ψT |ρ(t )|ψT 〉, with ρ(t )
being the evolution density matrix. In Figs. 8(a)–8(d), we
depict the temporal dynamics of the selective transition under
the dissipation. We consider an initial state |W 1

4 ,W 1
4 〉 and

assume �1 = �2 for convenience. In the ideal case when
� j = 0, coherent oscillations of the initial state and target
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TABLE III. The fidelity of the corresponding target states is
obtained with the initial state |W 1

4 ,W 1
4 〉 under different dissipation

rates. The dynamics is governed by the Hamiltonian in Eq. (28).

� j = 0 � j = 10−5ωc � j = 10−4ωc∣∣W 0
4 ,W 1

4

〉
0.9963 0.9778 0.8262∣∣W 1

4 ,W 0
4

〉
0.9997 0.9749 0.7774∣∣W 2

4 ,W 1
4

〉
0.9959 0.9735 0.7891∣∣W 1

4 ,W 2
4

〉
0.9997 0.9794 0.8143

state occur, indicating that photon loss has minimal impact on
the system. However, as the rate of dissipation increases, the
coherence oscillations are destroyed by dissipation, and the
fidelity of the target states is decreased. Figure 8(e) further
shows the fidelity of the target state evolving half a period
under different dissipation rates. Table III shows that with
an increase in the dissipation, the accuracy of the target state
diminishes. Nonetheless, the results show that the selective
transition can be achieved under dissipative processes, and
the Dicke states can be created within the coherent time.

In the thermodynamic limit Nj � 1, we show the result-
ing coupling scales as ε j

√
Nj . However, we emphasize that

this previous approximation can be highly effective even in
the more practical scenario of a finite number of atoms,
specifically, when the number of excitations in the system is
significantly less than the total number Nj of atoms in the
ensemble. Hence, when �1 = �2 and N1 = N2, the dressed-
state master equation can be obtained by Holstein-Primakoff
transformation [75]. Consequently, the dressed-state master
equation after Holstein-Primakoff transformation can be re-
cast as

d ˆ̃ρ

dt
= −i[ ˆ̃H, ˆ̃ρ] +

∑
m,n>m

(
�̃nm

q1
+ �̃nm

q2
+ �̃nm

c

)
D[|m̃〉〈ñ|] ˆ̃ρ.

(29)

Here, the tilde indicates symbols after Holstein-Primakoff
transformation, and |m̃〉 and |ñ〉 are eigenstates of the undriven
Hamiltonian given by Eq. (1) after Holstein-Primakoff trans-
formation with eigenvalues ω̃m and ω̃n. The resonator and
qubit ensembles decay rates associated with the given system
can be written as

�̃nm
qj

= � j
�̃nm

ωq j

|〈m̃|m̂ j + m̂†
j |ñ〉|2,

�̃nm
c = κ

�nm

ωc
|〈m̃|â + â†|ñ〉|2,

where �̃nm = ω̃n − ω̃m. In Fig. 9, we show the evolution of
the target state under the different dissipative rates, revealing
a similar trend to the previous scenario with a noticeable
decrease in the fidelity of the target state as the dissipation rate
increases. Additionally, we provide the corresponding fidelity
values in the presence of decoherence, which aligns perfectly
with the aforementioned results. These results highlight the
high robustness of the entire system under lower levels of
dissipation. Furthermore, Table IV illustrates that as dissipa-

10-6 10-5 10-4
0.6

0.8

1

(a) (b)

(c) (d)

(e)

FIG. 9. [(a)–(d)] Dynamic evolution process of the target state
|0, 1〉, |1, 0〉, |1, 2〉, and |2, 1〉 starting from the initial state |1, 1〉
under dissipative processes. (e) Fidelity of the final state and target
state. The dynamics is governed by the Hamiltonian in Eq. (29). The
parameter κ = 10−5ωc and other selected parameters are consistent
with those shown in Fig. 6.

tion increases, the accuracy of the target state diminishes, and
coherence gradually decreases over time.

B. Experimental consideration and feasibility

To assess the feasibility of our entangled Dicke states gen-
eration scheme in a realistic experiment, we now discuss the
relevant achievable experimental parameters. As outlined in
the main text, our protocol works in the ultrastrong light-
matter coupling regime. For the case with few atoms, our
proposal can be realized in circuit QED systems. In such
superconducting circuit experiments, qubit and resonator fre-
quencies are usually in the range ωc,(q j )/2π ∼ 1–10 GHz
[77–79]. The coupling strengths range from g/ωc � 0.12 to
theoretical limits g/ωc ∼ 1–3 for flux qubits [80,81]. In this
work, we choose ωc/2π = 2.2 GHz, ωq1/2π = 2.87ωc �
6.31 GHz, and ωq2/2π = 2.87ωc � 10.87 GHz. We choose
g1/ωc = 0.25 and g2/ωc = 0.49. Thus, the physical param-
eters of the scheme are accessible in current technologies.

TABLE IV. The fidelity of the corresponding target states is
obtained with the initial state |1, 1〉 under different dissipation con-
ditions. The dynamics is governed by the Hamiltonian in Eq. (29).

� j = 0 � j = 10−5ωc � j = 10−4ωc

|0, 1〉 0.9953 0.9775 0.7961
|1, 0〉 0.9986 0.9745 0.7448
|2, 1〉 0.9951 0.9729 0.7525
|1, 2〉 0.9984 0.9783 0.7838
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Recent experimental work has also demonstrated that dissi-
pation and dephasing rates in a flux qubit are of the order
of 2π × 10 kHz [82–84]. For transmission-line resonators,
quality factors on the order of 106 have been realized [85],
which indicates that quantum coherence of systems is of the
order of 1–10 ms within current experimental capabilities
[86]. For the large number of two-level systems, our proposal
can also be studied with a hybrid system consisting of qubit
ensembles and a superconducting resonator [87]. Each qubit
ensemble can be realized using the NV centers in a diamond
crystal, and each qubit ensemble is coupled to a supercon-
ducting resonator placed between these two qubit ensembles.
The coupling strengths between the resonator and qubit en-
sembles can be tuned in to ultrastrong coupling regimes by
either engineering the hybrid structure in advance or tuning
the excitation frequencies of qubit ensembles via the external
magnetic fields.

VI. CONCLUSION

In conclusion, we have presented a scheme for entangling
two Dicke states in a periodic modulated system. The effec-
tiveness of this method can be verified through numerical
simulations. For some special cases, the ensemble-ensemble

entangled state can be obtained by means of an even-odd
cat states projective measurement. Additionally, Gaussian soft
control can be utilized to enhance the fidelity of the target
states. In the thermodynamics limit, our protocol can also
be applied to attain the selective interactions between two
distinct magnon systems by means of the Holstein-Primakoff
transformation. Furthermore, it has successfully shown the
creation of high-fidelity magnon states in a large number of
qubits, which establishes a reliable approach for generating
a magnon NOON state in the thermodynamic limit. Finally,
in the presence of decoherence during dynamical evolution,
our scheme can achieve highly reliable target entangled states.
This provides further evidence for the experimental feasibil-
ity of our approach in preparing entangled states with high
fidelity.
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