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Interactions between Rydberg atoms can result in a dipole blockade for which the probability Pn to have
n atomic excitations is reduced significantly when n � 2. Ideally, this allows one to create a single collective
Rydberg excitation in an atomic ensemble with P1 = 1. A single-photon source is realized by mapping this
atomic excitation into a propagating light field. Even if Pn �= 0 for n � 2, a single-photon source can be
approximated if interaction-induced dephasing damps the contributions from multiply excited collective states
into the preferred spatial field mode. Two quantities that can be used as figures of merit for these single-photon
sources are the second-order correlation function g(2) associated with the phase-matched field emitted by the
sample and the second-order correlation function g(A) associated with the atoms. Here we demonstrate that
interaction-induced dephasing can lead to significant differences between g(2) and g(A) even if P2 � P1 ≈ 1.
Theoretical expressions are derived for these quantities and it is shown that g(2) � g(A). It is also shown that there
is a distinct advantage for minimizing g(2) and g(A) by using adiabatic pulsed fields rather than constant amplitude
fields to excite the ensemble. These results maybe useful for optimizing Rydberg single-photon sources.
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I. INTRODUCTION

Proposed originally by Lukin et al. [1], the dipole blockade
has become an important component of quantum information
protocols involving Rydberg atoms. When fully operational,
the dipole blockade inhibits all but a single collective Rydberg
excitation in an ensemble of atoms following excitation by
pulsed optical field(s) that are resonant with the ground to
Rydberg transition. The strong interactions between Rydberg
atoms produce level shifts that prevent multiple excitations
in the ensemble. Experimental confirmation of the Rydberg
blockade has been reported for both two-atom [2] and many-
atom [3] systems. If the blockade is not perfect, there could be
more than one Rydberg excitation.

Let us denote the probability of n excitations in the en-
semble by Pn. We are interested in the limit that P2 � P1 and
assume that the incident field(s) creates at most two excita-
tions in an ensemble of N atoms. In other words, we assume
that the state vector can be written as

|ψ (t )〉 = c0(t )|g〉 +
N∑

j=1

c j (t )| j〉e−iω0t

+
N∑

j, j′=1
j′> j

c j j′ (t )| j j′〉e−2iω0t , (1)

where |g〉 = |1 . . . 1 . . . 1〉 is the state with all atoms in their
ground states, | j〉 = |1 . . . 2 j1 . . . 1〉 is the state with atom
j in state 2 and all the other atoms in their ground states,
| j j′〉 = |1 . . . 2 j1 . . . 2 j′1 . . . 1〉 is the state with atoms j and
j′ in state 2 and all the other atoms in their ground states,
and ω0 is the transition frequency between states 2 and 1. We

neglect all spatial phase factors since they will not contribute
in the phase-matched direction. The initial condition is that the
ensemble is in the ground state before the fields are applied.
For the state vector given in Eq. (1),

P0(t ) = |c0(t )|2, (2a)

P1(t ) =
∣∣∣∣∣∣

N∑
j=1

c j (t )

∣∣∣∣∣∣
2

, (2b)

P2(t ) = 2

∣∣∣∣∣∣∣∣∣
N∑

j, j′=1
j′> j

c j j′ (t )

∣∣∣∣∣∣∣∣∣

2

. (2c)

The limit of at most two excitations can be achieved in two
ways. If the driving field is sufficiently weak to ensure that

√
NA � 1, (3)

where A is the pulse area, then the average number of excita-
tions in the ensemble is much less than unity. We refer to this
as the perturbation theory limit. Alternatively, for a maximum
effective Rabi frequency � of the field(s) and a characteristic
Rydberg-Rydberg interaction shift � that satisfy

√
N�

|�| � 1, (4)

the blockade limit is approached, in which the number of
double excitations is much less than unity. If neither of these
inequalities hold, it is necessary to include terms beyond the
doubly excited states.
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There are essentially two ways to measure the effectiveness
of the blockade. The first is a direct measurement of the num-
ber of Rydberg excitations [3]. In doing so, one can construct
the second-order correlation function of the atomic ensemble
at zero time delay, defined by

g(A)(t ) = 〈n̂2〉
〈n̂〉2

− 1

〈n̂〉 =
∑N

j, j′=1〈σ ( j)
+ σ

( j′ )
+ σ

( j)
− σ

( j′ )
− 〉(∑N

j=1〈σ ( j)
+ σ

( j)
− 〉)2 , (5)

where

n̂ =
N∑

j=1

σ
( j)
+ σ

( j)
− (6)

and σ
( j)
± are raising and lowering operators for atom j associ-

ated with the Rydberg transition. For the state vector given in
Eq. (1) [4],

g(A)(t ) = 2P2(t )

[P1(t ) + 2P2(t )]2 ≈ 2P2(t )

[P1(t )]2 . (7)

An alternative method to probe the blockade is to apply a
readout pulse that leads to phase-matched emission from the
sample [4]. In this case, the second-order correlation function
at zero time delay, g(2)(t ), of the phase-matched emission
can serve as a measure of the effectiveness of the blockade.
Clearly, g(2)(t ) = g(A)(t ) = 0 if P2 = 0. You might think that
g(2)(t ) ≈ g(A)(t ) → 0 if P2 � P1 ≈ 1, but this is not necessar-
ily true. In fact, the purpose of this paper is to demonstrate
that interaction-induced dephasing can lead to significant dif-
ferences between g(2)(t ) and g(A)(t ) even if P2 � P1 ≈ 1. In
effect, we want to calculate g(2)(T ) and g(A)(T ), where T is
the duration of the excitation pulse. We shall assume that the
readout pulse is applied shortly after the excitation pulse(s)
and is sufficiently short to avoid any dephasing following the
excitation.

In general, the correlation function g(2)(T ) can also be
used as a figure of merit in applications involving single-
photon sources. Rydberg-based single-photon sources can be
divided into two distinct protocols. The first involves the ex-
citation of symmetric collective states in the regime of the
Rydberg blockade, followed by a linear mapping of the col-
lective atomic state into a light pulse, resulting in g(2)(T ) =
g(A)(T ) = 0 with unit efficiency [1,4]. The second involves
an excitation pulse whose duration T is sufficiently short to
result in g(A)(T ) ≈ g(2)(T ) ≈ 1. The excitation is followed
by a storage period Ts during which time interaction-induced
dephasing results in g(2)(T + Ts) → 0 for sufficiently long
Ts, with a maximum efficiency of 1/e [5,6]. The value of
g(A)(T ) is unchanged during the storage period, g(A)(T +
Ts) = g(A)(T ). Some of the first realizations of both cold-
atom- and hot-atom-based Rydberg sources have been carried
out using the excitation-induced dephasing [7]. The Rydberg
blockade limit can be approached if larger principal quan-
tum numbers of the Rydberg levels are used or if the size
of the ensemble is reduced [8]. Recently, optimized single-
photon sources were used to demonstrate high-purity single-
photon wave packets and high-fidelity photonic quantum
logic [9,10].

The difference between g(A) and g(2) can be important
when considering schemes that are designed to produce

single-photon sources immediately following the excitation
pulse. The true measure of a single-photon source is to
have g(2)(T ) → 0, which is achieved for a perfect blockade.
However, it is rarely possible to produce a perfect Rydberg
blockade or to limit the number of excitations in the sample
to a single excitation. That is, to obtain observable signals,
one is often required to work in regimes when there is a non-
vanishing probability to have two excitations in the sample.
Once there is even a small probability to have two excitations
in the sample, the values of g(2)(T ) and g(A)(T ) can differ
significantly.

You may ask why the values of g(2)(t ) and g(A)(t ) differ.
The difference can be traced to the state vector given in
Eq. (1). If all the c j j′ (t ) were equal, the state vector would be
symmetric on the interchange of particles and one would find
that g(2)(t ) = g(A)(t ). However, in the presence of Rydberg-
Rydberg interactions the c j j′ (t ) are not equal, depending on
the positions of the atoms. As such, when averaging over
the interatomic separations, the resulting interaction-induced
dephasing is different for g(2)(t ) and g(A)(t ). Although there
are many papers devoted to the state dynamics of the sym-
metric states in the Rydberg blockade, there are far fewer that
explore the role of nonsymmetric states [11]. We will see that,
in the presence of interaction-induced dephasing, g(2)(t ) =
|〈 f (t )〉|2, while g(A)(t ) = 〈| f (t )|2〉, where f (t ) is some func-
tion that depends on interatomic separations and the average
is over interatomic separations. Clearly, g(A)(t ) � g(2)(t ).

In this paper we analyze the atom field dynamics in the
limit that the driving field creates at most two excitations in
the ensemble. We consider the combined action of the dipole
blockade and interaction-induced dephasing during the time
period in which the excitation field acts. We shall see that in
the regime that we study there can be significant differences
between g(A) and g(2).

II. CALCULATION OF g(2) AND g(A)

The second-order correlation of the phase-matched emis-
sion is given by

g(2)(t ) = B(t )/I (t )2, (8)

where

I (t ) = 〈S+S−〉 (9)

is proportional to the field intensity and

B(t ) = 〈S+S+S−S−〉. (10)

The ladder operators S± are defined as

S± = 1√
N

N∑
j=1

σ
( j)
± . (11)

In writing these expressions, we have assumed that the raising
and lowering operators for the transition on which the signal
is emitted are proportional to those of the Rydberg transition.

We first imagine that the state vector is fully symmetric
upon interchange of particles, that is,

|ψ〉 = p0(t )|P0〉 + p1(t )e−iω0t |P1〉 + p2(t )e−2iω0t |P2〉, (12)
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where

|P0〉 = |g〉, (13a)

|P1〉 = 1√
N

N∑
j=1

| j〉, (13b)

|P2〉 =
√

2

N (N − 1)

N∑
j, j′=1
j′> j

∣∣ j j′
〉
. (13c)

From Eqs. (1), (12), and (13), it is clear that for the fully
symmetric state

c0(t ) = p0(t ), (14a)

c j (t ) = p1(t )/
√

N, (14b)

c j j′ (t ) = p2(t )

√
2

N (N − 1)
. (14c)

Using

S−|Pq〉 = √
q

√
N − q + 1

N
|Pq−1〉, (15a)

S+|Pq〉 =
√

q + 1

√
N − q

N
|Pq+1〉, (15b)

we can calculate

I (t ) = P1(t ) + 2
N − 1

N
P2(t ), (16a)

B(t ) = 2
N − 1

N
P2(t ), (16b)

g(2)(t ) = 2 N−1
N P2(t )[

P1(t ) + 2 N−1
N P2(t )

]2 , (16c)

g(A)(t ) = 2P2(t )

[P1(t )]2 , (16d)

where Pn = |pn|2. Note that if N 
 1 and P2 � P1, then

g(2)(t ) ≈ 2P2(t )

[P1(t )]2 = g(A)(t ). (17)

Thus, in the limit that N 
 1 and P2 � P1, any difference
between g(2) and g(A) arises from the the fact that, owing to
atom-atom interactions, the state vector cannot be expressed
solely in terms of fully symmetric states.

We next consider the state vector given in Eq. (1), which
is not restricted to fully symmetric states. It follows from
Eqs. (1), (8), (10), (11), and (5) that

I (t ) = 1

N

∣∣∣∣∣∣
N∑

j=1

c j (t )

∣∣∣∣∣∣
2

+ 1

N

N∑
j=1

∣∣∣∣∣∣
N∑

j′ �= j=1

c̃ j j′ (t )

∣∣∣∣∣∣
2

, (18a)

B(t ) =

∣∣∣∣∣∣∣∣∣
2

N2

N∑
j, j′=1
j′> j

c j j′ (t )

∣∣∣∣∣∣∣∣∣

2

, (18b)

g(2)(t ) =

∣∣∣∣∣ 2
N2

∑N
j, j′=1
j′> j

c j j′ (t )

∣∣∣∣∣
2

(
1
N

∣∣∑N
j=1 c j (t )

∣∣2 + 1
N

∑N
j=1

∣∣∑N
j′ �= j=1 c̃ j j′ (t )

∣∣2
)2 ,

(18c)

g(A)(t ) =
2

∑N
j, j′=1
j′> j

∣∣c̃ j j′ (t )
∣∣2

(∑N
j=1

∣∣c j (t )
∣∣2

)2 , (18d)

where c̃ j j′ = c j′ j if j′ < j.
The problem then reduces to finding values of c j and c j j′

for a given excitation scheme and atom-atom interaction. We
take as our Hamiltonian in an interaction representation

H = h̄χ (t )
N∑

j=1

(σ ( j)
+ + σ

( j)
− ) +

N∑
j, j′=1
j′> j

h̄� j j′σ
( j)
2 σ

( j′ )
2 , (19)

where χ (t ) (assumed real) is one half of the effective
Rabi frequency that drives the Rydberg transition, � j j′ is a
Rydberg-Rydberg interaction shift, and σ

( j)
2 is the excited-

state population operator of atom j. The incident field is
assumed to resonantly drive the transition. The second term
in Eq. (19) contributes to both the dipole blockade and the
interaction-induced dephasing and leads to differences be-
tween g(A) and g(2).

With this Hamiltonian, the equations of motion for the state
amplitudes are

ċ0 = −iχ (t )
N∑

j=1

c j, (20a)

ċ j = −iχ (t )c0 − iχ (t )
N∑

j′ �= j=1

c̃ j j′ , (20b)

ċ j j′ = −iχ (t )(c j + c j′ ) − i� j j′c j j′ . (20c)

In general these equations are difficult to solve; however,
when the inequality in Eq. (3) (perturbation theory) or in
Eq. (4) is satisfied (dipole blockade), an analytic solution can
be obtained. In carrying out the calculations we assume that
N 
 1, so that we can replace

N∑
j, j′=1
j′> j

≈ 1

2

N∑
j, j′=1
j′ �= j

≡ 1

2

∑
j, j′

. (21)

In what follows, we suppress the condition j′ �= j in any sums
over j and j′; it is implicit.

A. Perturbation theory

In perturbation theory, to ensure that c0 ≈ 1, it is necessary
that

√
NA(t ) � 1, (22)

where

A(t ) = 2
∫ t

−∞
χ (t ′)dt ′. (23)
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In this limit,

c j (t ) ≈ −i
∫ t

−∞
χ (t ′)dt ′,

c j j′ (t ) ≈ −2
∫ t

−∞
χ (t ′)e−i� j j′ (t−t ′ )dt ′

∫ t ′

−∞
χ (t ′′)dt ′′,

and

g(2)(t ) =

∣∣∣ 2
N2

∑
j, j′

∫ t
−∞ χ (t ′)e−i� j j′ (t−t ′ )dt ′ ∫ t ′

−∞ χ (t ′′)dt ′′
∣∣∣2

∣∣∫ t
−∞ χ (t ′)dt ′∣∣4 ,

(24)

g(A)(t ) =
∑

j, j′

∣∣∣2 ∫ t
−∞ χ (t ′)e−i� j j′ (t−t ′ )dt ′ ∫ t ′

−∞ χ (t ′′)dt ′′
∣∣∣2

N2
∣∣∫ t

−∞ χ (t ′)dt ′∣∣4 .

(25)

If � j j′ = 0, then g(2) = g(A) = 1, the result for a product state.
The time t in these expressions refers to a time just following
the excitation pulse(s).

We take

� j j′ = C∣∣r j − r j′
∣∣6 . (26)

Going over to continuum variables and setting r = r j − r j′ , it
is possible to write g(2)(t ) as

g(2)(t )

=

∣∣∣2 ∫
drW (r)

∫ t
−∞ χ (t ′)e−iC6(t−t ′ )/r6

dt ′ ∫ t ′

−∞ χ (t ′′)dt ′′
∣∣∣2

∣∣∫ t
−∞ χ (t ′)dt ′∣∣4

(27)

and g(A)(t ) as

g(A)(t )

=
∫

drW (r)
∣∣∣2 ∫ t

−∞ χ (t ′)e−iC6(t−t ′ )/r6
dt ′ ∫ t ′

−∞ χ (t ′′)dt ′′
∣∣∣2

∣∣∫ t
−∞ χ (t ′)dt ′∣∣4 ,

(28)

where W (r) is the nearest-neighbor distribution. For W (r), we
take a uniform spherical distribution of atoms for which [12]

W (r) = 3
r2

R3
− 9

4

r3

R4
+ 3

16

r5

R6
, 0 � r � 2R. (29)

We consider two pulse shapes, a constant amplitude pulse and
a Gaussian pulse amplitude,

χ (t ) = χ1�(t )�(T − t ), (30)

χ (t ) = χ2e−t2/T 2
p , (31)

where �(t ) is a Heaviside function.

B. Dipole blockade limit

The second case for which an analytic approximation is
valid is when

√
N

∣∣∣∣χ (t )

� j j′

∣∣∣∣ � 1, (32)

allowing us to treat c j j′ in perturbation theory. In this limit, it
follows from Eqs. (20) that

c0(t ) = cos[
√

NA(t )/2], (33a)

c j (t ) = −i
sin[

√
NA(t )/2]√

N
, (33b)

c j j′ (t ) ≈ −2χ (t )

� j j′
c j = 2iχ (t )

sin[
√

NA(t )/2]√
N� j j′

, (33c)

such that

g(2)(t ) ≈
∣∣∑

j, j′ c̃ j j′ (t )
∣∣2

∣∣∑
j c j (t )

∣∣4 =
4χ (t )2

∣∣∣∑ j, j′
1

� j j′

∣∣∣2

N3 sin2
[√

NA(t )/2
]

= 4χ (t )2
∣∣∫ drW (r)r6/C6

∣∣2

sin2
[√

NA(t )/2
] (34)

and

g(A)(t ) =
∑

j, j′
∣∣c̃ j j′ (t )

∣∣2

[∑
j

∣∣c j (t )
∣∣2

]2 =
4χ (t )2 ∑

j, j′

∣∣∣ 1
� j j′

∣∣∣2

sin2
[√

NA(t )/2
]

= 4χ (t )2
∫

drW (r)r12/C2
6

sin2[
√

NA(t )/2]
. (35)

Recall that
∑

j, j′ excludes j = j′. For the limits considered in
this paper, it follows from Eqs. (27), (28), (34), and (35) that
g(2)(t ) � g(A)(t ).

III. CONSTANT AMPLITUDE PULSES

A. Perturbation theory limit

If χ (t ) is given by Eq. (30),

g(2)
1 (T ) =

∣∣∣2χ2
1

∫
drW (r)

∫ T
0 e−iC6(t−t ′ )/r6

dt ′ ∫ t ′

0 dt ′′
∣∣∣2

χ4
1

∣∣∫ t
0 dt ′∣∣4

=
∣∣∣∣∣2

∫
drW (r)

1 − e−iC6T/r6 + iC6T/r6

(C6T/r6)2

∣∣∣∣∣
2

(36)

or

g(2)
1 (τ1) =

∣∣∣∣∣2
∫

dsP(s)
1 − e−iτ1/s6 + iτ1/s6

τ 2
1 /s12

∣∣∣∣∣
2

, (37)

where

P(s) = 3s2 − 9

4
s3 + 3

16
s5, 0 � s � 2, (38a)

τ1 = C6T/R6. (38b)
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FIG. 1. Graphs of g(2)
1 (solid red curve) and g(A)

1 (dashed blue
curve) as a function of τ1.

It turns out you can get analytic (long) expressions for the
integrals, which are not reproduced here. The quantity τ1 is a
characteristic phase shift for the uniform density distribution.

The results can be compared with those for g(A),

g(A)
1 (T ) =

∫
drW (r)

∣∣∣∣∣21 − e−iC6T/r6 + iC6T/r6

(C6T/r6)2

∣∣∣∣∣
2

,

g(A)
1 (τ1) =

∫
dsP(s)

∣∣∣∣∣21 − e−iτ1/s6 + iτ1/s6

τ 2
1 /s12

∣∣∣∣∣
2

, (39)

for which analytic expressions are also available. Results are
shown in Fig. 1 with the red solid curve giving g(2)

1 (τ1) and
the blue dashed curve giving g(A)

1 (τ1). The characteristic decay
time of τ1 ≈ 4 depends to a large extent on the definition of τ1

given in Eq. (38b), in which the phase corresponds to atoms
separated by R. If τ1 = 1, most of the atoms separated by
distances greater than R would have phase shifts much less
than unity since the phase shift falls off as separation to the
minus 6 power. It would take a value of τ1 = 64 to ensure that
the phase for all atomic separations is greater than unity. For
τ1 
 1,

g(2)
1 ∼ 16 384

225τ 2
1

, (40a)

g(A)
1 ∼ 4096

15τ 2
1

, (40b)

g(2)
1

g(A)
1

∼ 4

15
. (40c)

It is interesting to plot the results for equal � j j′ , even if this
limit has no physical basis. We set � j j′ = C6/R6 and replace
C6/r6 by C6/R6 in Eqs. (37) and (39) to obtain

g(2)
1 (τ1) = g(A)

1 (τ1) =
∣∣∣∣21 − e−iτ1 + iτ1

τ 2
1

∣∣∣∣
2

. (41)

As shown in Fig. 2, the two curves now overlap and have
a different shape. The dipole blockade still results in values
of g(2)

1 (τ1) and g(A)
1 (τ1) much less than unity for sufficiently

large τ1. However, it is the interaction-induced dephasing that
originates from a distribution of � j j′ that results in g(2)

1 (τ1) �=

FIG. 2. Graphs of g(2)
1 (solid red curve) and g(A)

1 (dashed blue
curve) as a function of τ1 for equal level shifts.

g(A)
1 (τ1) and the more rapid decrease in g(2)

1 (τ1) than in g(A)
1 (τ1)

for early times seen in Fig. 1.

B. Dipole blockade limit

In the second approximation,

g(2)
1 (T ) ≈

4χ2
1

∣∣∣∑ j, j′
1

� j j′

∣∣∣2

N3 sin2(
√

Nχ1T )
= 4Nβ2

1

∣∣∫ dsP(s)s6
∣∣2

sin2(
√

Nχ1T )
(42)

and

g(A)
1 (T ) =

4χ2
1

∑
j, j′

∣∣∣ 1
� j j′

∣∣∣2

N sin2(
√

Nχ1T )
= 4Nβ2

1

∫
dsP(s)s12

sin2(
√

Nχ1T )
, (43)

where

β1 = χ1

C6/R6
, (44)

and we have gone over into continuum variables. In this case,
aside from the sin2(

√
NχT ) factor, both g(2) and g(A) are time

independent, since we have assumed that |� j j′ |T 
 1. The
integrals can be carried out to obtain

g(2)
1 (T ) = 16 384Nβ2

1

225 sin2(
√

Nχ1T )
≈ 72.8

Nβ2
1

sin2(
√

Nχ1T )
,

(45a)

g(A)
1 (T ) = 4096Nβ2

1

15 sin2(
√

Nχ1T )
≈ 273

Nβ2
1

sin2(
√

Nχ1T )
.

(45b)

Note that in the perturbation theory limit given by Eq. (3),
these reduce to

g(2)
1 ∼ 16 384

225τ 2
1

, (46a)

g(A)
1 ∼ 4096

15τ 2
1

, (46b)

g(2)
1

g(A)
1

∼ 4

15
. (46c)

Equations (46) are valid only for times τ1 for which g(2)
1 � 1

and g(A)
1 � 1. These results are identical to the perturbation
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theory results of Eqs. (40) in the limit that τ1 � 250. Such
large values of τ1 guarantee that only singly excited states
contribute in the perturbation theory limit.

IV. GAUSSIAN PULSES

We next consider the Gaussian pulses given by Eq. (31).
The excitation pulse is assumed to be adiabatic; that is,

τ2 
 1, (47)

where τ2 is defined as

τ2 = C6Tp/R6. (48)

We can dispense of the dipole blockade limit immediately.
If inequality (4) holds, the c j j′ adiabatically follow the field,

implying that

g(2)
2 = g(A)

2 ≈ 0 (49)

following the pulse.
We are left with the perturbation theory limit. To illustrate

the relevant physics, we compare only g(A)
2 with g(A)

1 (but not
g(2)

2 with g(2)
1 ) since dephasing reduces g(2)

2 (but not g(A)
2 ) for

times t 
 Tp, when the pulse amplitude is very small. As a
consequence, we can integrate out to t = ∞ in calculating g(A)

2
without introducing any significant dephasing for times t 

Tp. We set

Tp = T/
√

π, (50)

which leads to the same probability of excitation for a single
atom for the constant and Gaussian pulses. For the Gaussian
pulse,

g(A)
2 (τ2) =

∫
dsP(s)

∣∣∣2 ∫ ∞
−∞ e−τ ′2

eiτ2τ
′/s6

dτ ′ ∫ τ ′

−∞ e−τ ′′2
dτ ′′

∣∣∣2

∣∣∫ ∞
−∞ e−τ ′2 dτ ′∣∣4

=
∫

dsP(s)
∣∣2 ∫ ∞

−∞ e−τ ′2
eiτ2τ

′/s6
dτ ′[1 + �(τ ′)]

∣∣2

4π

=
∫

dsP(s)

∣∣∣∣e−(τ2/s6 )2
/4

[
1 − �

(
iτ2/s6

2
√

2

)]∣∣∣∣
2

, (51)

where �(τ ) is an error function. A comparison of g(A)
2 (τ2) with

g(A)
1 (

√
πτ2) is given in Fig. 3. The red solid curve is for the

Gaussian field envelope and the blue dashed curve is for a
finite duration, constant field amplitude. As you can see, there
does not appear to be much difference, whereas we might have
expected a much smaller value with adiabatic excitation.

How can we understand these results? We have already
seen that, in the perturbation theory limit, the contributions
from the doubly excited state is fully damped only for large
values of τ1. That is, we should expect adiabaticity to play a
significant role only when most of the atoms experience level
shifts that lead to state amplitude phases that are greater than

FIG. 3. Graphs of g(A)
2 (τ2) (solid red curve) and g(A)

1 (
√

πτ2)
(dashed blue curve) as a function of τ2.

unity. This occurs only for τ1 
 1. Thus, it is only in this
limit that we would expect the adiabaticity to lead to values
of g(A)

2 (τ2 = τ1/
√

π ) to approach 0, a result that is illustrated
in Fig. 4.

V. DISCUSSION

We have shown that interaction-induced dephasing dur-
ing the excitation process always results in g(2) � g(A). For
example, for a uniform density of atoms in a spherical vol-
ume, the ratio g(2)/g(A) approaches 4/15 at long times. These
observations imply that in typical realizations of Rydberg
single-photon sources, the values of g(A) were likely much

FIG. 4. Graphs of g(A)
2 (τ2) (solid red curve) and g(A)

1 (
√

πτ2)
(dashed blue curve) as a function of τ2.
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larger than the observed values of g(2) due to suppression of
the latter by the interaction-induced dephasing. We have also
shown that it is desirable to use pulsed adiabatic excitation
to produce a Rydberg-based single-photon source having the
lowest value of g(2)(0). Our discussion has been limited to
a uniform spherical density, but the results will be qualita-
tively similar for other density distributions, although the ratio

g(2)/g(A) at long times can differ. For example, a Gaussian
atomic density results in this ratio being g(2)/g(A) → 0.102.
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