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Direct measurement of the coherent light proportion from a practical laser source
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We present a technique to estimate the proportion of coherent emission in the light emitted by a practical
laser source without spectral filtering. The technique is based on measuring interferometric photon correlations
between the output ports of an asymmetric Mach-Zehnder interferometer. With this, we characterize the fraction
of coherent emission in the light emitted by a laser diode when transiting through the lasing threshold.
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I. INTRODUCTION

The invention of lasers can be traced to work describ-
ing the emission process of the light from an atom to be
spontaneous or stimulated [1]. An ensemble of atoms under-
going stimulated emission will emit coherent light that has
a well-defined phase, while spontaneous emission will lead
to randomly phased incoherent light [2]. Coherent light is at
the core of many applications, including interferometry [3],
metrology [4], and optical communication. The concepts of
coherent and incoherent light also generated a fundamental
interest in the statistical properties of light sources, including
light sources containing a mixture of coherent and incoherent
light [5–8].

In traditional models of macroscopic lasers [9–11], the
emitted light is modeled to originate dominantly from stimu-
lated emission. These models predict a phase transition of the
nature of emission with increasing pump strength, separating
two regimes where light emitted is either spontaneous (below
threshold) or stimulated (above threshold).

However, experiments on small lasers have shown that
the transition from spontaneous to stimulated emission is not
abrupt [12–16]. Instead, light emitted from the laser can be de-
scribed as a mixture of spontaneous and stimulated emission
across a transition range.

In these experiments, the transition from spontaneous
to stimulated emission was characterized by measuring the
second-order photon correlation g(2), using a Hanbury-Brown
and Twiss scheme [17]. The measurement result can be ex-
plained using Glauber’s theory of optical coherence [5], where
incoherent light from spontaneous emission would exhibit a
“bunching” signature with g(2)(0) > 1, while coherent light
from stimulated emission exhibits a Poissonian distribution
with g(2) = 1.

The bunching signature associated with incoherent light
has a characteristic timescale inversely proportional to its
spectral width according to the Wiener-Khintchine theo-
rem [18–20]. In a practical measurement, the amplitude of the
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bunching signature scales with the ratio of the characteristic
timescale of the light to the timing response of the detec-
tors [21]. Thus, when the spectral width of incoherent light
is so broad that the characteristic timescale of the bunching
signature is smaller than the detector timing uncertainty, inco-
herent light may exhibit g(2) ≈ 1, like coherent light.

To overcome the limited detector timing uncertainty, a nar-
row band of incoherent light can be prepared with filters from
a wide optical spectrum of an incoherent light source [22].
The narrow spectral width of a filtered incoherent light has
a correspondingly larger characteristic coherence timescale,
which may be long enough to be resolvable by the detectors.

However, when characterizing the transition of a laser from
spontaneous to stimulated emission, such spectral filtering
presents some shortcomings. First, as spectral filtering dis-
cards light outside the transmission window of a filter, a result
would be inconclusive for the full emission of the source.
Second, spectral filtering requires a priori information or
an educated guess of the central frequency and bandwidth
of stimulated emission. Third, it has been shown that spec-
tral filtering below the Schawlow-Townes linewidth of the
laser results in g(2)(0) > 1, similar to light from spontaneous
emission [23].

Light emitted by a laser is also incoherent in multimode
operation [24,25], where a laser may emit coherent light in
multiple transverse and/or longitudinal modes. The light in
each mode may be coherent, but a combination of multiple
modes may result in a randomly phased light and therefore
appear incoherent.

This motivates the search for methods for quantifying the
proportion of coherent light emitted by a source without the
need for spectral filtering. A method to characterize the stim-
ulated and spontaneous emission from a pulsed laser has been
demonstrated before [26,27].

In this paper, we present a method to quantify bounds for
the proportion of coherent light for a continuous-wave laser.
Specifically, we investigate the brightest mode of coherent
emission from a semiconductor laser diode by using interfer-
ometric photon correlations, i.e., a correlation of photoevents
detected at the output ports of an asymmetric Mach-Zehnder
interferometer. Earlier methods of interferometric photon
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FIG. 1. Experimental setup for measuring interferometric pho-
ton correlations. Light from a laser diode enters an asymmetric
Mach-Zehnder interferometer. Single-photon avalanche photodiodes
(APDs) at each output port of the interferometer generate photode-
tection events, which are time-stamped to extract the correlations
numerically.

correlation measurements were used to study spectral diffu-
sion in organic molecules embedded in a solid matrix [28,29].
The method of interferometric photon correlation we use here
was originally applied to differentiate between incoherent
light and coherent light with amplitude fluctuations [30]. In
contrast to second-order photon correlations, this method can
clearly distinguish between finite-linewidth coherent light and
broadband incoherent light through separable correlation fea-
tures [31]. These separable features have characteristic time
constants inversely proportional to the corresponding spec-
tral widths of coherent and incoherent light components. The
fraction of coherent light is extracted from its associated cor-
relation feature, which decays over a characteristic timescale
corresponding to the coherence time. This coherence time
is typically long enough to be easily resolved by the single
photodetectors with a time resolution below 1 ns. This method
also allows us to obtain the spectral bandwidth of the coherent
component without a spectral filter. For the incoherent compo-
nent, the spectral feature is typically too wide to be detected in
a time-domain photon correlation with limited detector timing
resolution. Nevertheless, we can use this method to extract the
fraction of coherent light emitted by the laser diode over a
range of pump powers across the lasing threshold.

II. INTERFEROMETRIC PHOTON CORRELATIONS

The setup for an interferometric photon correlation mea-
surement g(2X ) is shown in Fig. 1. Light emitted by the laser
diode is sent through an asymmetric Mach-Zehnder interfer-
ometer, with a propagation delay � between the two paths of
the interferometer that exceeds the coherence time of the light.

With a light field E (t ) at the input, the light fields at the
output ports A, B of the interferometer are

EA,B(t ) = E (t ) ± E (t + �)√
2

, (1)

with the relative phase shift π acquired by one of the output
fields from the beamsplitter.

Using these expressions for the electrical fields, the tem-
poral correlation of photodetection events between the two

output ports is given by

g(2X )(t2 − t1) = 〈E∗
A (t1)E∗

B (t2)EB(t2)EA(t1)〉
〈E∗

A (t1)EA(t1)〉〈E∗
B (t2)EB(t2)〉 . (2)

Here, 〈 〉 indicates an expectation value and/or an ensem-
ble average. Using Eq. (1), g(2X )(t2 − t1) can be grouped into
several terms:

g(2X )(t2 − t1)

= 1
4 [〈E∗(t1)E∗(t2)E (t2)E (t1)〉
+ 〈E∗(t1 + �)E∗(t2 + �)E (t2 + �)E (t1 + �)〉
+ 〈E∗(t1 + �)E∗(t2)E (t2)E (t1 + �)〉
+ 〈E∗(t1)E∗(t2 + �)E (t2 + �)E (t1)〉
− 〈E∗(t1 + �)E∗(t2)E (t2 + �)E (t1)〉
− 〈E∗(t1)E∗(t2 + �)E (t2)E (t1 + �)〉]. (3)

The first two terms have the form of conventional second-
order photon correlation functions g(2)(t2 − t1). The next two
terms are conventional second-order photon correlation func-
tions, time-shifted forward and backward in their argument
by the propagation delay �. The last two terms reduce g(2X ),
leading to a dip at zero time difference t2 − t1 = 0, with a
width given by the coherence time of the light.

The expectation values appearing in Eq. (3) can be evalu-
ated by using statistical expressions [2] of E (t ) for incoherent
and coherent light [31].

For incoherent light, g(2X ) exhibits a bunching signature
peaking at time differences ±�, g(2X )(±�) = 1 + (1/4). At
zero time difference, the expected bunching signature from
conventional second-order photon correlation functions in the
first two terms and the dip from the last two terms of Eq. (3)
cancel each other, resulting in g(2X )(0) = 1.

For coherent light, the second-order photon correlation
function g(2) = 1 combines with the negative contributions
from the last two terms of Eq. (3) such that g(2X )(0) = 1/2.
As these negative contributions are related to the first-order
coherence of the light source, the shape of the dip can be
used to obtain the spectral distribution of this light source
component through a Fourier transform.

III. FRACTION OF COHERENT LIGHT IN A MIXTURE

In order to obtain an interpretation of the nature of the
light emitted beyond just presenting the components of g(2X ),
we consider a light field that is neither completely coherent
nor incoherent. We assume that light emitted by the laser
is a mixture of a coherent light field Ecoh and a light field
Eunc uncorrelated to Ecoh. The nature of Eunc can be coherent,
incoherent, or a coherent-incoherent mixture. As Eunc may
also be a mixture of uncorrelated coherent modes, Ecoh here
represents the coherent mode in the mixture with the highest
intensity. In the following, we extract quantitative information
about the components of the light field from interferometric
photon correlations g(2X ), namely the fraction of optical power
in the brightest coherent component.

We model the light field mixture with an electrical field

Emix(t ) = √
ρEcoh(t ) +

√
1 − ρEunc(t ), (4)
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FIG. 2. Combinations of g(2)
unc(0) and g(2X )

mix (0) that correspond to
physical and real-valued ρ. In shaded areas, no such solution exist.
Inset: Zoom into the region 1 � g(2)

unc(0) � 2, where the uncorrelated
light source is assumed to be a mixture of coherent and completely
incoherent light and thermal light.

where ρ is the fraction of optical power of the brightest
coherent emission and the respective light field terms are
normalized such that |Emix| = |Ecoh| = |Eunc|.

Evaluating photon correlation in Eq. (3) with this light
model and further assuming that first, the propagation delay
in the interferometer is significantly longer than the coherence
timescale of the light source and, second, the interferometer
has good visibility yields

g(2X )
mix (0) = 2ρ − 3ρ2

2
+ (1 − ρ)2

2
g(2)

unc(0) (5)

at zero time difference, with only two remaining parameters,
ρ and g(2)

unc(0), the second-order photon correlation of the
uncorrelated field at zero time difference (see Appendix A).

The connection in Eq. (5), together with the physical re-
quirement 0 � ρ � 1 for the fraction of coherent light, limits
the possible combinations of g(2)

unc(0) and g(2X )
mix (0), shown as

nonshaded areas in Fig. 2; the exact expressions for the bound-
aries are given in Appendix B.

We can now further assume that the uncorrelated light
source generates some mixture of coherent and completely
incoherent light [g(2)(0) = 1] and thermal light [g(2)(0) = 2].
This constrains the second-order photon correlation of the
uncorrelated light:

1 � g(2)
unc(0) � 2. (6)

We impose these bounds in Eq. (5) and extract the bounds to
the fraction of optical power in the brightest coherent emission
ρ with an upper bound,

ρ �
√

2 − 2 g(2X )(0), (7)

and a lower bound,

ρ �
{

1
2 + 1

2

√
3 − 4 g(2X )(0) for 1

2 � g(2X )(0) � 3
4

2 − 2 g(2X )
mix (0) for 3

4 � g(2X )(0) � 1,
(8)

with g(2X )
mix (0) ranging from 1/2 for fully coherent light to 1 for

fully incoherent light.

In practice, these two bounds for ρ are quite tight and allow
us to extract the fraction ρ in an experiment with a small
uncertainty.

IV. EXPERIMENT

In our experiment, we measure interferometric photon
correlations of light emitted from a temperature-stabilized
distributed feedback laser diode with a central wavelength
around 780 nm.

The setup is shown in Fig. 1. Interferometric photon cor-
relations are obtained from an asymmetric Mach-Zehnder
interferometer, formed by 50 : 50 fiber beamsplitters and a
propagation delay � of about 900 ns through a 180-m-long
single-mode optical fiber in one of the arms. Photoevents at
each output port of the interferometer were detected with ac-
tively quenched silicon single-photon avalanche photodiodes
(APDs). The detected photoevents were time-stamped with a
resolution of 2 ns for an integration time T .

The correlation function g(2X ) is extracted by drawing a
histogram of all time differences t2 − t1 between detection
event pairs in the interval T numerically, which allows for a
clean normalization.

The shape of the dip in g(2X ) is related to the spectral line
shape of the coherent light through a Fourier transform. If
we assume that the coherent light emitted by a laser has a
Lorentzian line shape [32], the resulting correlation can be
modeled by a two-sided exponential function,

g(2X )(t2 − t1) = 1 − A · exp

(
−|t2 − t1|

τc

)
, (9)

where τc is the characteristic time constant of the coherent
light and A is the amplitude of the dip. The value of g(2X )(0)
is extracted from the fit as 1 − A. Examples of measured
correlation functions and corresponding fits for different laser
powers are shown in Fig. 3.

A. Transition from incoherent to coherent light

A transition from incoherent to coherent emission is ex-
pected as the laser current is increased across the lasing
threshold of the laser. We identify the lasing threshold of a
laser diode IT by measuring the steepest increase of optical
power with the laser current (Fig. 4). For our diode, we find
IT = 37 mA.

To observe the transition from incoherent to coherent emis-
sion, we extract the fraction ρ of optical power in the brightest
coherent component in the light field at different values of
the laser current IL across the lasing threshold from measure-
ments of g(2X ) (Fig. 5, top panel). The amplitude of the dip is
extracted by fitting these correlations to Eq. (9), from which
the upper bound and lower bound of ρ are extracted (Fig. 5,
middle panel).

From the fit, ρ remains near 0 below threshold. Above the
threshold, ρ increases quickly with IL in a phase-transition
manner, reaching ρ = 0.986 (90% confidence interval, 0.982–
0.989) at IL = 120 mA. This agrees with the expectation that
the emission of the laser diode is increasingly dominated by
stimulated emission when driven with current above the lasing
threshold [33,34].
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FIG. 3. Interferometric photon correlations g(2X ) for different
laser currents IL , extracted from a histogram of photodetector time
differences (green symbols). The error range at a specific time bin
indicates an expected uncertainty according to Poissonian counting
statistics. The black solid curves show a fit to Eq. (9), resulting in val-
ues for A (from top to bottom) of −0.0006 ± 0.0003, 0.326 ± 0.008,
and 0.455 ± 0.002, respectively.

The upper and lower bounds for ρ from Eqs. (7) and (8)
are quite tight even near the lasing threshold, suggesting that
the mixture model equation (4) captures the nature of the light
through the phase transition well.

The coherence time of the coherent light τc can also be ex-
tracted by fitting g(2X ) measurements to Eq. (9) (Fig. 5, bottom

10-4

10-3

10-2

10-1

100

101

102

 0  20  40  60  80  100  120

po
w

er
 (m

W
)

current (mA)

FIG. 4. Measured laser power against laser current IL . The
sharpest change is observed at IT = 37 mA, indicating the threshold
current (dashed line).
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FIG. 5. Top: Interferometric photon correlations g(2X ) for differ-
ent laser currents IL . Middle: Corresponding upper bound of fraction
ρ of coherent light (red) extracted via Eq. (C1), and the lower bound
(blue) extracted via Eq. (C2) from g(2X )(0). The dip in ρ is a result of
emission at multiple chip modes as explained in Sec. IV B. The inset
shows the extracted bounds for ρ at finer steps of laser current near
the lasing threshold. Bottom: Coherence time of coherent light τc

extracted from g(2X ). The dashed line indicates the threshold current
IT = 37 mA.

panel). We observe that the coherence time increases with the
current after the threshold current, before reaching a steady
value between 300 and 350 ns. The increase of coherence time
corresponds to a narrowing of the emission linewidth. This
observation agrees with predictions from laser theory that line
narrowing is expected with increased pumping [34]. A small
modulation of the coherence time becomes visible for larger
laser currents, with a periodicity of about 6 mA.

B. Light statistics near a mode hop

Above the threshold, the laser can oscillate at different
longitudinal modes for different laser currents. It is interesting
to observe the presented method for extracting the fraction of
coherent emission near such a mode hop, where two coherent
emission modes compete.

For this, the spectrum of light emitted by the laser diode
was recorded at different laser currents with an optical spec-
trum analyzer with a spectral resolution of 2 GHz (Bristol
771B-NIR). The laser diode emitted light into two distinct
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a mode competition regime. Top: Power ratios rα,β as a function of
current for the chip modes α and β around 780.07 nm (solid squares)
and 780.34 nm (open circles), respectively. Bottom: Upper bound of
the fraction ρ of coherent light (red) extracted via Eq. (C1), and the
lower bound (blue) extracted via Eq. (C2) from g(2X )(0).

narrow spectral bands with a changing power ratio in the laser
current range between 49 and 52 mA. Outside this window,
only one of the modes could be identified. Below 49 mA,
the laser emission was centered around 780.07 nm, and above
52 mA it was centered around 780.34 nm.

The power fractions rα,β of these two chip modes α and β

near the mode hop,

rα,β = Pα,β

Pα + Pβ

, (10)

undergo a nearly linear transition (Fig. 6, top panel).
We measured g(2X ) in the same transition regime and ex-

tract ρ as described above (Fig. 6, bottom panel). In the
transition regime, ρ decreases when both chip modes are
present. This can be interpreted as coherent light in one emis-
sion band being uncorrelated to coherent light in the other one,
but we did not carry out a measurement that would test for a
phase relationship between the two modes.

V. CONCLUSION

We presented a method to extract the fraction of coher-
ent light in the emission of a laser by using interferometric
photon correlations. As a demonstration, we analyzed light
emitted from a diode laser over a range of laser currents
and observe a continuously increasing fraction of coher-
ent light with increasing laser current above the lasing

threshold. Applying this technique to light emitted near a
mode hop between longitudinal modes suggests a reduction of
the fraction of coherent light in the transition regime and an in-
terpretation that the two longitudinal modes can be viewed as
mutually incoherent coherent emissions. Apart from the char-
acterization of lasers, this method can be useful in practical
applications of continuous-variable quantum key distribution
protocols, where the noise of lasers as a source of coherent
states needs to be carefully characterized to ensure security
claims [35–37].
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APPENDIX A: INTERFEROMETRIC PHOTON
CORRELATION FOR A MIXTURE OF LIGHT FIELDS

The evaluation of g(2X ) via Eq. (3) requires the conven-
tional second-order photon correlation function g(2)(t1 − t2) =
〈E∗(t1)E∗(t2)E (t2)E (t1)〉. For the light field mixture equa-
tion (4), this is

g(2)
mix(t2 − t1)

= ρ2 g(2)
coh(t2 − t1) + (1 − ρ)2 g(2)

unc(t2 − t1)

+ 2ρ(1 − ρ)
(
1 + Re

[
g(1)

coh(t2 − t1) g(1)∗
unc (t2 − t1)

])
,

(A1)

where g(1) is the first-order field correlation function for the
respective component light fields, g(1)∗ is its complex conju-
gate, and Re[· · · ] extracts the real part of its argument.

The last term in Eq. (3) can be written as

〈E∗
mix(t1)E∗

mix(t2 + �)Emix(t2)Emix(t1 + �)〉
= ρ2

∣∣g(1)
coh(t2 − t1)

∣∣2 + (1 − ρ)2
∣∣g(1)

unc(t2 − t1)
∣∣2

+ 2ρ(1 − ρ) Re
[
g(1)

coh(t2 − t1) g(1)∗
unc (t2 − t1)

]
+ 2ρ(1 − ρ) Re

[
g(1)

coh(�) g(1)∗
unc (�)

]
, (A2)

where g(1)(�) ≈ 0 for our experimental situation of the prop-
agation delay � being significantly larger than the coherence
times of the respective light sources. Note that all terms in
Eq. (A2) are real valued.

With this, the interferometric photon correlation at zero
time difference in Eq. (3) is given by

g(2X )
mix (0)

= 1
4

[
g(2)

mix(�) + g(2)
mix(−�)

+ 2
(
ρ2 g(2)

coh(0) + (1 − ρ)2 g(2)
unc(0) + 2ρ(1 − ρ)

)
− 2

(
ρ2

∣∣g(1)
coh(0)

∣∣2 + (1 − ρ)2
∣∣g(1)

unc(0)
∣∣2)]

. (A3)

We further assume that (1) the propagation delay in the
interferometer � is significantly longer than the coherence
timescale of the light source, such that g(2)

mix(±�) ≈ 1, (2)
the interferometer has high visibility such that |g(1)(0)| ≈ 1,
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and (3) the second-order correlation of the coherent light field
is g(2)

coh(0) = 1. With this, Eq. (A3) leads to the relationship
shown in Eq. (5).

APPENDIX B: BOUNDARIES OF PHYSICALLY
MEANINGFUL COMBINATIONS OF INTERFEROMETRIC

CORRELATIONS IN A MIXTURE

Assuming a binary mixture of the light field as per Eq. (4),
the interferometric correlation of the mixture, g(2X )

mix (0), and
the conventional second-order correlation of the incoherent
light, g(2)

unc(0), at zero time difference are constrained by rela-
tion equation (5). Further assuming the physical requirement
0 � ρ � 1 for the fraction ρ gives a lower bound for g(2)

unc(0),

g(2)
unc(0) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, g(2X )
mix (0) � 2

3

3 + 1
1−2g(2X )

mix (0)
, g(2X )

mix (0) ∈ [
2
3 , 1

]
2g(2X )

mix (0), g(2X )
mix (0) � 1.

(B1)

For g(2X )
mix (0) ∈ [0, 1

2 ), there is an upper bound

g(2)
unc(0) � 2g(2X )

mix (0). (B2)

APPENDIX C: ERROR PROPAGATION FROM FITTING
OF g(2X ) MEASUREMENT

Standard error propagation techniques of experimental data
through Eqs. (7)–(9) lead to infinite uncertainties for some dip
amplitudes A and are therefore not used. Instead, we extract
upper and lower bounds of ρ. Equation (7) provides an upper
bound

ρ �
√

2A, (C1)

and Eq. (8) provides the lower bound

ρ �
{

2A for 0 � A � 1
4

1
2 + 1

2

√
4A − 1 for 1

4 � A � 1
2

(C2)

for ρ. The probability density for values of A in a mea-
sured ensemble is assumed to be a normal distribution, with
a mean value and standard deviation extracted from the fit
of measured g(2X ) to Eq. (9). This can be transformed into
a probability distribution for upper and lower bounds for ρ

using Eqs. (C1) and (C2). We exclude nonphysical values of ρ

outside 0 � ρ � 1 and renormalize the resulting distribution
to compute an expectation value of ρ and a 90% confidence
interval shown in Fig. 6.
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