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Optical sideband generation in a nonlinear-magnon-mediated cavity
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We investigate optical sideband generation via the nonlinear magnon in a hybrid cavity-optomagnonical
system consisting of a yttrium iron garnet sphere, a microwave copper cavity, and an optical cavity. By using a
perturbation method to solve the nonlinear Heisenberg-Langevin equations, we obtain the analytical formulation
of the nonlinear-magnon-induced optical second-order sideband (OSS) generation. It is found that the number
of peaks in the OSS spectrum can change from 2 to 4 with the increase of the effective optical cavity-magnon
coupling strength (EOCCS) within the experimental parameter range, which is caused by the gradual increase
in overlap between the first- and second-order spectra. Moreover, the results show that the maximum value
of the OSS will appear with an increase of the EOCCS, and the microwave cavity-magnon coupling strength
(MCCS) will regulate the size and location of the maximum value. Subsequently, the output spectrum of
the optical high-order sidebands is investigated using numerical simulations to demonstrate the modulation
behavior of the OSS by the EOCCS and MCCS. In addition to providing insight into the interaction of the
magnon with a microwave and light, our results may offer a new perspective for the development and design of
microwave-controlled optical frequency combs.
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I. INTRODUCTION

Cavity optomagnonics [1–3], which is the study of the
interaction between magnetism and light, has recently be-
come a focus of extensive research. The magnons, as the
quanta of collective spin excitations in yttrium iron garnet
(YIG) magnetic material, have high spin density, low damping
rate, and long coherence time, which provide a completely
new platform for cavity optomagnonics [4–6]. Experimen-
tally, strong and ultrastrong couplings between magnons and
microwave photons have been realized via magnetic dipole
interaction [7,8]. Some interesting phenomena have been ob-
served in the microwave photon-magnon coupling system,
such as the magnon Kerr effect [9,10], non-Hermitian physics
[11–14], optical chaos [15], and dissipative coupling [16,17].
In previous studies, the coupling effects between magnons and
photons in the optical frequency range mainly focused on the
Faraday effect [1]. In this case, the electromagnetically in-
duced transparency effect, the Purcell effect, and the Brillouin
scattering effect were observed [18–21]. Based on the interac-
tion of the magnon mode with optical and microwave modes,
conversion [22–25] and entanglement [26–29] between mi-
crowave and optical fields have become possible.

The generation of the optical sideband is an essentially
nonlinear phenomenon that can be considered as a paramet-
ric process [30]. As is well known, the equidistant optical
sideband spectra come from frequency combs [31]. Many
methods for generating frequency combs have been proposed
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as research has progressed, for example, optomechanical
frequency combs [32] and optomagnonic frequency combs
[33]. In addition, frequency combs have also been theo-
retically predicted and experimentally demonstrated in the
area of spin waves [34,35]. The study of optical sideband
generation has thus become an essential component in the
field of precision measurement [31]. The study of high-order
sidebands has been reported in a hybrid optomechanical sys-
tem [30,36,37], a hybrid optomagnonical system [38–40], an
atom-microcavity coupling hybrid system [41], and semicon-
ductors [42,43]. The study of optical sidebands in the hybrid
cavity-optomagnonical system of light-magnetic material in-
teraction opens up a new direction for precision measurement.
Despite the similarities between cavity optomechanics [44]
and cavity optomagnonics in many aspects, the direct analysis
of optical sideband generation in the optical range through a
perturbation method [30] and the influence of magnon Kerr
nonlinearity [9,10,45] has not been well studied.

In this work we propose an intriguing scheme to realize
the interaction of a magnon with an optical (and microwave)
photon in a hybrid cavity-optomagnonical system consisting
of a single small YIG crystal sphere, a three-dimensional
(3D) rectangular copper cavity, and an optical cavity with
two mirrors. By using a perturbation method, we solve
the nonlinear Heisenberg-Langevin equations and obtain ex-
act analytical forms of nonlinear-magnon-induced optical
second-order sideband (OSS) generation. The simulation re-
sults show that the number of peaks in the OSS spectrum
can change from 2 to 4 with an increase of the effective
optical cavity-magnon coupling strength (EOCCS) within the
experimental parameter range. The splitting phenomenon is
mainly caused by the gradual increase in overlap between the
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FIG. 1. (a) Schematic diagram of a hybrid cavity-
optomagnonical system. (b) Equivalent mode-coupling model
of the TM optical cavity mode a, the TE optical cavity mode b, the
magnon mode m, and the microwave cavity mode c. The optical
cavity mode interacts with the magnon mode through linear and
quadratic magneto-optical coupling [18], i.e., gabm. The microwave
cavity mode and magnon mode frequency ranges are close enough
to allow direct coupling, i.e., J .

first- and second-order spectra. As the EOCCS increases, a
maximum value of OSS will be reached, while the microwave
cavity-magnon coupling strength (MCCS) can regulate the
size and location of the maximum value. Furthermore, we give
the output spectrum of the optical high-order sidebands by
numerical simulations. Our scheme may offer new prospects
for the development of optomagnonic frequency combs and
other precision measurements.

II. MODEL AND EQUATIONS

The physical model used in our study is shown in Fig. 1,
which consists of a YIG sphere, a microwave 3D copper
cavity, and an optical cavity. The YIG sphere is located at
the central intersection of a microwave cavity and an optical
cavity. A uniform external magnetic field H is applied in the z
direction to bias the YIG sphere. The microwave cavity and
the YIG sphere are driven by the power of the microwave
driving fields Pc and Pm, respectively. It should be pointed
out that the YIG sphere can be driven directly by a loop drive
antenna connected to the end of a superconducting microwave
line for the current experimental operation [9]. The driving
strength εi = √

Pi/h̄ωl (i = m, c), with ωl the frequency of
the driving field. The optical cavity is driven by two light
control fields at frequency ωa,d and probed by a weak light
signal field at frequency ωp, and their amplitudes are defined
as ε j = √

Pj/h̄ω j ( j = a, d, p), with Pj the input power. The
total Hamiltonian of the present hybrid system (h̄ = 1) can be
written as

Ĥ = ωaâ†â + ωbb̂†b̂ + ωmm̂†m̂ + ωcĉ†ĉ + Km̂†m̂m̂†m̂

+ gabm(âb̂†m̂ + â†b̂m̂†) + J (ĉ + ĉ†)(m̂ + m̂†)

+√
κc(ĉ†εce−iωl t + H.c.)

+√
κm(m̂†εme−iωl t + H.c.)

+√
κa(â†εae−iωat + H.c.)

+√
κb

[
b̂†(εd e−iωd t + εpe−iωpt

) + H.c.
]
, (1)

where â (â†), b̂ (b̂†), m̂ (m̂†), and ĉ (ĉ†) are the annihilation
(creation) operators of the TM optical cavity mode, TE opti-

cal cavity mode, magnon mode, and microwave cavity mode
with frequencies ωa, ωb, ωm, and ωc, respectively. The term
Km̂†m̂m̂†m̂ represents the magnon Kerr nonlinearity with the
nonlinear coefficient. It is worth noting that the coefficient K
is inversely proportional to the volume of the YIG sphere [45].

Here gabm = ν c
nr

√
2

nspinVsp
is the coupling strength of the two

optical modes and the magnon mode, where the Verdet con-
stant ν = 3.77 rad/cm, the refractive index nr = 2.19, the spin
density nspin = 2.1 × 1028 m−3, the speed of light in vacuum
c = 2.9979 m/s, and Vsp is the volume of YIG. In addition, J
is the coupling strength of the microwave cavity mode and the
magnon mode and κa, κb, κm, and κc are the decay rates of
the TM optical mode, TE optical mode, magnon mode, and
microwave cavity mode, respectively.

For the sake of simplicity, we can linearize the interaction
Hamiltonian Ĥabm = gabm(âb̂†m̂ + â†b̂m̂†) of the two (TM
and TE) optical modes and the magnon mode. Under the
condition in which the TM optical mode â is pumped by
the light control field of frequency ωa, the TM optical mode
can be treated as a classical light field. So we can achieve
Ĥabm = G(b̂†m̂e−iωat + b̂m̂†eiωat ), where G = gabmα, with α

the average amplitude of the TM optical field. The Hamilto-
nian (1) becomes

Ĥ = ωbb̂†b̂ + ωmm̂†m̂ + ωcĉ†ĉ + Km̂†m̂m̂†m̂

+ G
(
b̂†m̂e−iωat + b̂m̂†eiωat

) + J (ĉ + ĉ†)(m̂ + m̂†)

+√
κc

(
ĉ†εce−iωl t + H.c.

)
+√

κm
(
m̂†εme−iωl t + H.c.

)
+√

κb
[
b̂†

(
εd e−iωd t + εpe−iωpt

) + H.c.
]
. (2)

By applying the unitary transformation Û (t ) =
exp[−i(ωa + ωl )b̂†b̂t − iωl m̂†m̂t − iωl ĉ†ĉt] and the
rotating-wave approximation, the simplified Hamiltonian
in Eq. (2) can be written in the form

Ĥ ′ = �bb̂†b̂ + �mm̂†m̂ + �cĉ†ĉ + Km̂†m̂m̂†m̂

+ G(b̂†m̂ + b̂m̂†) + J (ĉm̂† + ĉ†m̂)

+√
κcεc(ĉ† + ĉ) + √

κmεm(m̂† + m̂)

+√
κb

[
b̂†

(
εd e−i�d t + εpe−i�pt

) + H.c.
]
, (3)

where �b = ωb − ωa − ωl , �m = ωm − ωl , �c = ωc − ωl ,
�d = ωd − ωa − ωl , and �p = ωp − ωa − ωl are the detun-
ings. This interaction in the optomagnetic system is subject
to the rule of angular momentum and the energy conservation
requirement, i.e., ωb − ωa = ωm [21,46,47]. As noted above,
we have assumed ωm = ωc = ωb − ωa; thus, we can obtain
�m = �c = �b. To make the driving terms time indepen-
dent, we consider the detuning �d = 0, i.e., ωd = ωa + ωl =
ωb − �b.

According to the Heisenberg-Langevin equations (HLE)
approach, the dynamic evolutions of the hybrid system can
be described by

ṁ = (−i�m − κm)m − iGb − iJc

− i(2Km∗m + K )m − i
√

κmεm, (4)

ḃ = −(i�b + κb)b − iGm − i
√

κb
(
εd + εpe−i�pt

)
, (5)

ċ = (−i�c − κc)c − iJm − i
√

κcεc. (6)
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In this work we are interested in the mean response of the hy-
brid system to the probe field, so the operators can be reduced
to their expectation values, viz., 〈b̂(t )〉 ≡ b(t ), 〈m̂(t )〉 ≡ m(t ),
〈ĉ(t )〉 ≡ c(t ), 〈b̂†(t )〉 ≡ b∗(t ), 〈m̂†(t )〉 ≡ m∗(t ), and 〈ĉ†(t )〉 ≡
c∗(t ). In this case, the quantum and thermal noise terms can
be dropped due to 〈b̂in(t )〉 = 0, 〈m̂in(t )〉 = 0, and 〈ĉin(t )〉 = 0.
It should be noted that the control field is proposed to be
much stronger than the probe field in this article. In this
case, the nonlinear equations (4)–(6) cannot be solved exactly,
because the steady-state response contains an infinite number
of components of different frequencies. Instead, the system
is treated as a perturbed system and the perturbation method
can be used to deal with Eqs. (4)–(6). The control field pro-
vides a steady-state solution of the system, while the probe
field is treated as the small perturbation of the steady state
[30,48]. To this end, the operators can be described by b =
bs + δb, m = ms + δm, and c = cs + δc, where bs, ms, and cs

are the steady-state solutions, respectively, and δb, δm, and
δc express the corresponding small perturbation on steady-
state solutions. The steady-state solutions of the HLEs are
obtained as

ms = iGbs + iJcs + i
√

κmεm

−i�m − κm − i(2K|ms|2 + K )
, (7)

bs = iGms + i
√

κbεd

−i�b − κb
, (8)

cs = iJms + i
√

κcεc

−i�c − κc
. (9)

We now consider the perturbation made by the probe field.
By substituting these perturbation terms δb, δm, and δc into
Eqs. (4)–(6), the perturbation HLEs can be obtained:

δṁ = (−i�m − κm)δm − iJδc − iGδb − iKδm

− 2iK (ms)2δm∗ − 2iKms
∗δm2

− 4iK|ms|2δm − 4iKmsδm∗δm, (10)

δḃ = (−i�b − κb)δb − iGδm − i
√

κbεpe−i�pt , (11)

δċ = (−i�c − κc)δc − iJδm. (12)

To solve the term of the input probe field εpe−i�pt , we
assume that the perturbation terms δb, δm, and δc have
the forms δo = O−

1 e−i�pt + O+
1 ei�pt + O−

2 e−2i�pt + O+
2 e2i�pt

(o = b, m, c correspond to O = B, M,C, respectively). Here
O−

1 (O−
2 ) is the coefficient of the first- (second)-order up-

per sideband with the frequency ωd + �p (ωd + 2�p) and
O+

1 (O+
2 ) is the coefficient of the first- (second)-order lower

sideband with the frequency ωd − �p (ωd − 2�p). The first
upper sideband is referred to as the anti-Stokes field and
the first lower sideband is known as the Stokes field. In the
present work we consider only the first- and second-order
sidebands, while the high-order sidebands are ignored since
they can be obtained in a similar procedure. For simplic-
ity, we give only O−

1 (O−
2 ) [O+

1 (O+
2 ); see the Appendix].

Substituting the above assume into Eqs. (10)–(12), we

can get

M−
1 = G

√
κbεp f (i�p)∗

δ(i�p)[ f (−i�p) f (i�p)∗ − 4K2|ms|4]
, (13)

B−
1 = iGM−

1 + i
√

κbεp

δ(i�p)
, (14)

C−
1 = iJM−

1

−i�c − κc + i�p
, (15)

where δ(x) = −i�b − κb + x and f (x) = i�m + κm + x +
4iK|ms|2 + iK + J2

i�c+κc+x + G2

i�b+κb+x . We also can solve the
equations and obtain B−

2 as

M−
2 = (m + n)(M−

1 )2

[ f (−2i�p) f (2i�p)∗ − 4K2|ms|4][ f (i�p)∗]2 , (16)

B−
2 = iGM−

2

δ(2i�p)
, (17)

C−
2 = iJM−

2

−i�c − κc + 2i�p
, (18)

where

m = 16iK3(ms)∗|ms|4 f (i�p)∗

− 2iK (ms)∗[ f (i�p)∗]2 f (2i�p)∗, (19)

n = −16K4(ms)∗|ms|6
+ 8K2(ms)∗|ms|2 f (i�p)∗ f (2i�p)∗. (20)

Subsequently, according to the input-output notation Sout =
Sin − i

√
κbb, the output transmission field can be expressed as

Sout = ϑ0e−iωd t − ϑ1e−iωpt − i
√

κbB+
1 e−i(ωd −�p)t

− i
√

κbB−
2 e−i(ωd +2�p)t

− i
√

κbB+
2 e−i(ωd −2�p)t , (21)

where ϑ0 = εd − i
√

κbbs and ϑ1 = i
√

κbB−
1 − εp. The trans-

mission of the probe pulse can be defined as tp = ϑ1/εp,
with |tp|2 the optical transmission strength. The dimensionless
quantities η2 = |i√κbB−

2 /εp| and β2 = |i√κbB+
2 /εp| can be

defined to describe the conversion efficiency of the upper and
lower OSSs, respectively. The output intensity of the optical
sideband generation can be scaled about the strength of the
input probe field. In the following, we will discuss η2 in detail
in response to the efficiency of the OSS, while the results for
β2 are not presented here as the properties are similar.

III. RESULTS AND DISCUSSION

In this section the generation and control of the optical
sidebands are illustrated in the cavity-magnon hybrid system.
Considering that the OSS is typical of high-order sidebands,
the efficiency η2 of the OSS will be discussed in detail. We
first show the features of the OSS generation when the mi-
crowave cavity mode decouples with the magnon mode, i.e.,
J = 0. Figure 2 illustrates the conversion efficiency η2 as a
function of the EOCCS G and the detuning �p. It should
be pointed out that, with the increase of G, the conversion
efficiency η2 (%) reaches its maximum value near G/κ =
0.32, as shown by the white dashed line in Fig. 2. For ease
of explanation and illustration, the EOCCS G/κ = 0.32 is
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FIG. 2. Conversion efficiency η2 (%) versus the detuning �p/κ

and the coupling strength G/κ for ωm = 6.75 GHz, 2κm = 1 MHz,
2κb = 15 MHz, 2κc/2π = 3.3 MHz, J = 0, K/2π = 10−6, �c =
�m = �b = 0, Pd = Pc = 15 mW, Pm = 0.05 µW, λd = 1550 nm,
εp = 0.05εd , and κ = 10 MHz.

taken as the boundary, defined as the weak-coupling–strong-
coupling regime between the magnon mode and the TE optical
cavity mode, respectively. In the weak-coupling regime G of
Fig. 2, i.e., G/κ < 0.32, we can observe two asymmetrically
highlighted regions appearing on the left and right sides of the
detuned �p = 0 as the EOCCS increases. When the EOCCS
G is pushed into the strong-coupling regime, i.e., G/κ > 0.32,
it can be seen in Fig. 2 that four bright lines split from the
red-yellow region, representing the four peak values of η2.
In addition, as the EOCCS G increases, the position of the
sideband peaks moves away from �p = 0 and the peaks’
values gradually decrease, as shown in Fig. 2.

For direct insight into the influence of the G on the OSS
spectra and the transmission spectra, we show in Fig. 3 that
the transmission |tp|2 of the probe field and the efficiency η2

(%) of the OSS process vary with the detuning for different
values of G/κ = 0.3, 1, 2. For the EOCCS G = 0.3/κ , the
spectrum of |tp|2 shows two slightly asymmetry absorbed
valleys and a transparent window near �p/κ = 0 [Fig. 3(a)].
Further, the OSS spectrum η2 shown in Fig. 3(b) exhibits a line
shape of two asymmetric peaks. The asymmetry of the OSS
spectra arises from the constructive and destructive interfer-
ence between the process of the direct OSS generation and the
process of the up-converted first-order sideband [49]. From
the two slightly asymmetric absorption valleys in Figs. 3(c)
and 3(e) it can be observed that the transmission spectrum
|tp|2 moves to both sides and the transparent window becomes
wider with the increase of G. As G increases from 0.3κ to 1κ

in Fig. 3(d), the spectrum of η2 (%) displays two asymmetric
peaks that shift towards both sides and the efficiency of η (%)
is reduced rapidly. This indicates that the EOCCS G/κ > 0.32
suppresses the generation of the OSS. As G increases from 1κ

to 2κ in Fig. 3(f), the spectrum of η2 (%) displays asymmetric
peaks that shift towards both sides, accompanied by the split-
ting of two peaks into four peaks, and the efficiency of η (%)
is reduced rapidly.

Under the condition of the microwave cavity mode decou-
pling from the magnon mode (i.e., �b = 0 and �m = 0), the
physical picture of the transmission |tp|2 spectrum splitting is

1 2.5

1 0.5

-5 0 5
0

1

-5 0 5
0

0.08

)b()a(

(d)(c)

(f)(e)

FIG. 3. Transmission rate of the probe pulse |tp|2 and the con-
version efficiency η2 (%) versus the detuning �p/κ for (a) and
(b) G/κ = 0.3, (c) and (d) G/κ = 1, and (e) and (f) G/κ = 2. The
other parameters are the same as in Fig. 2.

rather clear, as shown in Figs. 3(a), 3(c), and 3(e). To explain
this interesting phenomenon, we can express the eigenfre-
quencies by the magnon-photon coupling as [40]

ω± = 1
2 K〈m∗m〉 ± 1

2

√
(K〈m∗m〉)2 + 4G2. (22)

The OSS generation, as a parametric transformation based
on the first-order sideband, is accompanied by more com-
plex physical mechanisms. Therefore, we cannot explain the
splitting of two peaks into four peaks mechanism of the OSS
spectrum in Figs. 3(d) and 3(f). According to Eqs. (16)–(20),
the OSS generation efficiency can be expressed as

η2 =
∣∣∣∣−G

√
κb(m + n)F1F2

εp

∣∣∣∣, (23)

where

F1 = (M−
1 )2

[ f (i�p)∗]2 , (24)

F2 = 1

[ f (−2i�p) f (2i�p)∗ − 4K2|ms|4]δ2
. (25)

The expression (23) of the OSS clearly contains a first-
order correlation term (24) and a second-order correlation
term (25). It is worth noting that we consider that in the
strong-coupling regime G � K , so the m + n term can be
approximated as a constant term. Then we can redefined the
dimensionless quantities

η1
2 =

√∣∣∣∣−G
√

κb(m + n)

εp

∣∣∣∣|F1| (26)

and

η2
2 =

√∣∣∣∣−G
√

κb(m + n)

εp

∣∣∣∣|F2| (27)

of the conversion efficiency η2 (%) just associated with the
first-order term and the second-order term, respectively. The
transmission rate of the probe pulse |tp|2 and the efficiency
of η2 (%), η1

2, and η2
2 are plotted versus the detuning �p/κ
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FIG. 4. Transmission rate of the probe pulse |tp|2 and the effi-
ciency of η2 (%), η1

2, and η2
2 versus the detuning �p/κ for G/κ = 2

and the other parameters the same as in Fig. 2.

in Fig. 4. It can be seen in Fig. 4(c) that the spectrum of η1
2

features a two-peak line shape at the position �p/κ = ±2.
The positions of these two peaks correspond to the positions
of the two absorption valleys of |tp|2 in Fig. 4(a) and the outer
two peaks of η2 (%) in Fig. 4(b). The spectrum of η2

2 shown
in Fig. 4(d) exhibits a two-peak line shape at the position
�p/κ = ±1 corresponding to the positions of the inner two
peaks of η2 (%) in Fig. 4(b). This means that the splitting of
the two peaks into four peaks shown by the spectrum of η2 (%)
is mainly due to the frequency difference between the first-
order term and the second-order term during the parametric
conversion process.

In the following, we investigate the effect of the MCCS J
of the microwave cavity mode and the magnon mode on the
generation of optical sidebands, i.e., J 	= 0. The conversion
efficiency η2 versus the detuning �p and the MCCS J is plot-
ted in Fig. 5. When G/κ = 0.3, it can be observed in Fig. 5(a)
that as the MCCS J increases, the two asymmetric highlighted
lines near �p = 0 split into four asymmetric highlighted lines,
representing the four peaks of η2. The physical mechanism
of the two peaks splitting into four peaks can be seen from
the expressions (24)–(27). We note that the lines with �p > 0
are brighter than the lines with �p < 0. Furthermore, as J
increases, the position of the sideband peaks moves further
from �p = 0 and the peak values steadily diminish. When
the value of G is pushed into the strong-coupling regime, i.e.,
G/κ = 2, it can be seen from Fig. 5(b) that the four high-
lighted lines representing the four peaks of η2 (%) gradually
become brighter as J . This indicates that the OSS conversion
efficiency increases gradually with the increase of J for the
value of G/κ = 2.

In order to clearly show the effect of the MCCS J on
the conversion efficiency η2 whether the EOCCS G is in the
weak-coupling or the strong-coupling regime, the maximal
values of η2 versus G with and without J are depicted in
Fig. 6. In the absence of the MCCS J , the maximum value

(a)
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FIG. 5. Conversion efficiency η2 (%) versus the detuning �p/κ

and the coupling strength J/κ for (a) G = 0.3κ and (b) G = 2κ and
the other parameters the same as in Fig. 2.

of η2 at G/κ = 0.32 shows a single peak (ηmax
2 < 2.5%) that

first increases exponentially and then decreases in inverse pro-
portion. In contrast to the single-peak profile in a TE optical
cavity-magnon coupling system, it can be seen from Fig. 6
that the peak profile of the maximum value of η2 is frequency
shifted toward the G strong coupling and is accompanied by
a decrease in the peak when the MCCS J is included. It is
worth noting that when G/κ < 0.32 the maximum value of
η2 increases with increasing G, and the growth rate of the
maximum value of η2 for J/κ = 0 is greater than the growth
rate of the maximum value of η2 for the MCCS J/κ = 0.006.
When G is pushed into the regime 0.32 < G/κ < 0.8, the

FIG. 6. Maximum efficiency of η2 (%) as a function of the TE
optical cavity-magnon coupling strength G/κ for two different situ-
ations, i.e., without J (violet line) and with J (green line). The other
parameters are the same as in Fig. 2.
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FIG. 7. Frequency spectrum output of the optical high-order
sidebands (in logarithmic scale) under two different coupling
strengths G and J for (a) and (c) G/κ = 0.32 and (b) and (d) G/κ =
0.8 and (a) and (b) J/κ = 0 and (c) and (d) J/κ = 0.006. The other
parameters are the same as in Fig. 2.

maximum value of η2 for J/κ = 0 decreases with increasing
G; however, the maximum value of η2 for J/κ = 0.006 con-
tinues to increase with increasing G. When G is pushed to
G/κ > 0.8, the maximum value of η2 decreases with increas-
ing G. Interestingly, the maximum value of η2 at the MCCS
J/κ = 0 is consistently smaller than the maximum value of
η2 at J/κ = 0.006 as the EOCCS G increases. This makes it
possible for us to control the optical sidebands by tuning the
microwave field.

In all of the above discussion, we mainly focused on
the OSS based on the analytical solution by a perturbation
method. Next we turn to discuss the role of J and G in
the optical high-order sideband generation. Figure 7 shows
the output spectrum of the optical high-order sidebands by
direct numerical simulation according to Eqs. (4)–(6). The
frequency domain output spectrum can be obtained by the fast
Fourier transform of Sout, i.e., S(ω) ∝ | ∫ ∞

−∞ Sout (t )e−iωt dt |,
where ω is the spectroscopy frequency from the optical cavity
field [37,38]. The observed optical higher-order sidebands are
spaced at multiples of the beating frequency �p between the
driving components around the rotating frequency ωd . This is
analogous to generating a series of higher harmonics in the
spectral density of a wandering respirator [50]. As a result,
the frequency of the optical high-order sidebands of order n
can be formulated by the relationship ωn = ωd ± n�p, where
n is the number of sidebands. It is obvious that the zeroth-
order signal (n = 0) corresponds to the control field. The
first-order upper sideband at the probe pulse frequency ωd +
�p originates from anti-Stokes processes, while the second-
order upper sideband with frequency ωd + 2�p stems from
the magnon nonlinearity in the present system. The optical
higher-order sidebands are caused by the coupling and beating
between the nonlinear magnon and optical (microwave) cavity
modes in resonance, as shown in Fig. 7. The amplitude of
the optical high-order sidebands decreases rapidly as the order
number of the sideband increases gradually. Figures 7(a) and
7(c) show, for the EOCCS G/κ = 0.32, the output spectrum
of the optical high-order sidebands with the MCCSs J/κ = 0
and 0.006, respectively. As shown in Fig. 7(c), the amplitude
of the OSS can be suppressed compared with that in Fig. 7(a).
Furthermore, Figs. 7(b) and 7(d) show the output spectrum

of the optical high-order sidebands with J/κ = 0 and 0.006,
respectively, at the G/κ = 0.8. As also shown in Fig. 7(d), the
amplitude of the OSS can be enhanced compared with that
in Fig. 7(b). From the above analysis, these phenomena are
consistent with the results in Fig. 6.

Before ending this section, we briefly discuss the possi-
ble experiment setup for the experimental techniques using
a single small YIG crystal sphere, a 3D microwave cavity,
and an optical cavity. The 3D microwave cavity is made of
oxygen-free copper with inner dimensions of 44.0 × 20.0 ×
6.0 mm3. The optical cavity consists of two mirrors. The
YIG sphere located at the central intersection of the mi-
crowave and optical cavities is highly polished from pure
single-crystal YIG. The magnon frequency ωm = 6.75 GHz is
determined by the bias magnetic field H and gyromagnetic ra-
tio γ /2π = 28 GHz/T, with ωm = γ H . So the bias magnetic
field H ≈ 38 mT. The YIG sphere has the Verdet constant
ν = 3.77 rad/cm, the refractive index nr = 2.19, and the
spin density nspin = 2.1 × 1028 m−3. Other feasible parame-
ters are Pd = Pc = 15 mW, Pm = 0.05 µW, λd = 1550 nm,
2κm = 1 MHz, 2κb = 15 MHz, and 2κc/2π = 3.3 MHz. The
above parameters are mostly based on Refs. [9,19,20,22]. For
cavity optomagnonics, the strength of the coupling between
light and magnetic material is important for the frequency
conversion of the sideband. The volume Vsp of YIG affects the
EOCCS, i.e., G = gabmα [19]. The average amplitude of the

TM optical field α =
√

2
κa

Pa
h̄ωa

[51]. For example, considering a

200-μm-diam YIG sphere, if Pd = Pa, κa = κb, and λa = λd ,
then G can reach approximately 43 MHz. Furthermore, J =
gs

√
nspinVsp [45], with gs/2π = 39 mHz [7]. For example,

considering a 200-μm-diam YIG sphere, J can reach approxi-
mately 72 MHz. In this article, the values of G and J are taken
in accordance with the above taken limits. We believe that the
proposed structure is experimentally realizable and deserves
to be explored using the present experimental technique.

IV. CONCLUSION

In summary, we have presented a scheme for optical
sideband generation via the nonlinear magnon in a hybrid
cavity-optomagnonical system consisting of a single small
YIG crystal sphere, a microwave cavity, and an optical cavity.
We obtained analytical expressions of the OSS generation by
solving the nonlinear Heisenberg-Langevin equations using a
perturbation method. It was demonstrated that the overlap be-
tween the first- and second-order spectra gradually increases
with the increase of the EOCCS within the experimental pa-
rameter range, and the number of peaks in the OSS spectra
changes from 2 to 4. Furthermore, the results have shown that
the OSS exhibits a maximum value as the EOCCS increases
and the MCCS can regulate the size and location of the max-
imum value of the OSS. Our research may have important
implications in the modulation of microwave-optical conver-
sion and higher-precision measurement.
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APPENDIX: EXPLICIT EXPRESSION FOR O+
1 (O+

2 )

Substituting δo into Eqs. (10)–(12), we can get O+
1 as

M+
1 = −2iK (ms)2(M−

1 )∗

f (i�p)
, (A1)

B+
1 = iGM+

1

δ(−i�p)
, (A2)

C+
1 = iJM+

1

−i�c − κc − i�p
. (A3)

We can also solve the equations and obtain O+
2 as

M+
2 = −2iK[2ms(M−

1 )∗M+
1 + (ms)∗(M+

1 )2]

f (2i�p)

− 2iK (ms)2(M−
2 )∗

f (2i�p)
, (A4)

B+
2 = iGM+

2

δ(−2i�p)
, (A5)

C+
2 = iJM+

2

−i�c − κc − 2i�p
. (A6)
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