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Photocounting measurements with dead time and afterpulses in the continuous-wave regime
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The widely used experimental technique of continuous-wave detection assumes counting pulses of photocur-
rent from a click-type detector inside a given measurement time window. With such a procedure we miss out
the photons detected after each photocurrent pulse during the detector dead time. Additionally, each pulse may
initialize a so-called afterpulse, which is not associated with the real photons. We derive the corresponding
quantum photocounting formula and experimentally verify its validity. Statistics of photocurrent pulses appears
to be nonlinear with respect to the quantum state, which is explained by the memory effect of the previous
measurement time windows. Expressions—in general, nonlinear—connecting statistics of photons and pulses are
derived for different measurement scenarios. We also consider an application of the obtained results to quantum
state reconstruction with unbalanced homodyne detection.
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I. INTRODUCTION

Born’s rule [1] lies at the heart of the measurement the-
ory, which is an integral part of quantum physics. A key
feature of this rule is that outcome probabilities of quantum
measurements linearly depend on the density operators rep-
resenting quantum states of the system, see, e.g., Refs. [2,3].
Photocounting experiments conducted with quantum light are
archetypal examples of such measurements. They are em-
ployed in many fields of fundamental and applied research
such as quantum optics and quantum information.

In the most general case, the outcome of photodetectors is
given by a number n of clicks or photocurrent pulses usually
associated with the number of detected photons. According to
Born’s rule, the probability distribution for these numbers is
given by the expression

Pn = Tr
(
ρ̂�̂n

)
, (1)

which is referred to as the photocounting formula. Here ρ̂

is the density operator, characterizing the state of the given
electromagnetic-field mode and �̂n are elements of the posi-
tive operator-valued measure (POVM), describing the detector
and the measurement procedure.

An alternative form of the photocounting formula (1),

Pn =
∫
C

d2αP(α)�n(α), (2)

involves the Glauber-Sudarshan P function P(α) [4,5] and the
Q symbols of the POVM, �n(α) = 〈α|�̂n|α〉, cf. Refs. [6,7].
The latter can be interpreted as the probability distribution for
the numbers n in the case if the electromagnetic-field mode
is prepared in the coherent state |α〉. Equation (1) resembles
also the photocounting formula for classical electromag-
netic fields [8–11]. In this case, P(α) � 0 is the classical

probability distribution of the complex amplitude α of the
electromagnetic-field mode and �n(α) is the classical re-
sponse function, being the probability to get n clicks or pulses
given the classical amplitude α.

In the case of photon-number-resolved (PNR) detectors,
the POVM is given by the relation

�̂n ≡ F̂n[η] =:
(ηn̂)n

n!
exp (−ηn̂):, (3)

cf. Refs. [8,12]. Here n̂ is the photon-number operator, η ∈
[0, 1] is the detection efficiency, and :· · ·: denotes normal
ordering. Particularly, this means that F̂n[1] = |n〉〈n| is the
projector on the Fock number state |n〉. The corresponding Q
symbols read

�n(α) ≡ Fn[α; η] = (η|α|2)n

n!
exp(−η|α|2). (4)

This indicates that the photon-number distribution in the case
of coherent states or deterministic classical single-mode fields
is the Poissonian distribution.

Realistic detectors mostly cannot perfectly distinguish be-
tween adjacent numbers of photons. Typical devices may only
indicate their presence or absence. To resolve this problem
at least approximately some experimental techniques have
been proposed. An example is given by the click detectors
based on spatial [13–16] or temporal [17–19] splitting of
the light beam into several modes and then detecting each
mode separately by on-off detectors. The number of triggered
detectors is associated with the number of photons. The cor-
responding POVM has been introduced in Ref. [20]. Based
on this consideration, the importance of the true expression
for the POVM has been demonstrated. For example, click
statistics can be sub-Poissonian even for classical light with
P(α) � 0. In this case, one can use alternative solutions for
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testing nonclassicality of click statistics, e.g., those proposed
in Ref. [21].

Another widely used experimental technique is based on
counting the number of photocurrent pulses inside a mea-
surement time window (MTW) of duration τm. The number
of such pulses is associated with the number of photons.
However, the direct correspondence between the number of
photons and the number of pulses does not work due to a
number of detector imperfections; see, e.g., Refs. [22,23].
In this paper, we focus on a subset of these issues, mak-
ing a significant contribution to the interpretation of the
measurement results. First, a single pulse can correspond
to several absorbed photons. Second, most of detectors are
characterized by the dead-time interval τd. During this inter-
val, which happens after each photocurrent pulse, detectors
do not produce any clicks even if photons are absorbed.
Third, detectors can produce so-called afterpulses following
photon-associated pulses or other afterpulses, which are not
associated with photons. The first issue can be easily in-
cluded in the POVM in a way as it is considered for click
detectors [20]. The two last issues, however, require separate
considerations.

Effects of detector dead time on photocounting statistics
of classical radiation have been widely discussed in litera-
ture; see, e.g., Refs. [24–31], including the case with the
presence of afterpulses [22]. Standard considerations assume
employing the theory of point processes [32]. However, a
straightforward generalization of those results to the quantum
case is impossible for some widely used scenarios. One reason
for this is that the time remaining until the end of the measure-
ment time window (MTW) after the last pulse may be shorter
than the dead-time interval. This modification will affect the
pulse statistics in the subsequent MTW. It can be consid-
ered as a memory effect of the pulse statistics from previous
MTWs. Therefore, this effect must be accurately incorporated
into the photodetection formula. Such a formula has been
recently derived for superconducting nanowire single-photon
detectors (SNSPDs), see Ref. [33], assuming even a more
general model of smooth detector recovering after each pulse.
However, this consideration does not include the presence
of afterpulses inherent to photodiodes and photomultiplier
tubes.

In this paper we derive the photocounting formula,
accounting for dead time and afterpulses, verify it experimen-
tally, and demonstrate its applicability to problems of quantum
optics. Our focus lies in providing a consistent description
of the memory effect that is suitable for nonclassical states.
Therefore, our model is based on assumptions that restrict its
applicability in the most general case, but highlight the main
goal of the paper. First, we assume that quantum states of light
are prepared for equal nonmonochromatic time modes with
a rectangular envelope, which width is equal to the MTW
duration τm. However, this may not hold true for realistic
sources of nonclassical light. This restriction can be over-
come by applying the approach presented in Refs. [33,34]
for the considered case. Second, we consider the detectors
with nonparalyzable dead time, i.e., if a photon is absorbed
during the dead-time interval, it is lost and does not affect
the dead-time duration. Third, we assume that the detector
ability to register the next photon is instantly restored after

the dead time interval, which is a reasonable approximation
for avalanche photodiodes but should be reconsidered for the
SNSPDs [33]. Fourth, we assume that the afterpulses instantly
occur with a given probability after the dead-time interval.
The last two issues are experimentally reexamined by analyz-
ing the statistics of the time between pulses.

We consider two main scenarios. The first one, referred
to as the independent MTWs, assumes darkening detector
input after each MTW during the time interval exceeding
τd. Such a procedure prevents us from the memory effect
of previous MTWs. The same result can be reached with
a proper postselection of the MTWs. A theoretical descrip-
tion can be obtained via straightforward generalization of
equations presented in Refs. [22,24–29,31]. However, for the
sake of completeness and transparent description of further
generalizations we reestablish these results also introducing
a classification of measurement events on so-called regular-
regular (rr) and regular-irregular (ri) parts. They are related to
the cases when the dead-time interval of the last pulse does
not exceed and exceeds, respectively, the MTW.

The second scenario, referred to as the continuous-wave
(cw) detection, does not assume any darkening of detector
inputs or postselections. Its proper consideration requires a
description of irregular-regular (ir) and irregular-irregular (ii)
events. They correspond to the cases when the dead-time in-
terval from the previous MTW occupies a time interval at the
beginning of the actual MTW. For our purposes it is important
to get separate descriptions for the ir and ii events. The proper
photocounting formula for the cw detection includes a nonlin-
ear expression on the density operator ρ̂ showing the memory
effects of the previous MTWs. Elements of this formula can
be obtained as a solution of linear recursive equations. We
introduce its approximate solution and verify its validity with
numerical simulations and experimental data.

We have theoretically considered connections between
statistics of photons and photocurrent pulses. In the case of
cw detection this relation is nonlinear that demonstrates the
memory effect of the previous MTWs. We have adapted the
technique of geometrical reconstructions of expected values
of observables [35] to the scenario of independent MTWs.
This is applied to quantum-state reconstruction with unbal-
anced homodyne detection [36,37].

The paper is organized as follows: In Sec. II we adapt
the classical considerations to properly formulate the quan-
tum photocounting formula in the scenario of independent
MTWs. Here we also introduce the classification of the cor-
responding measurement events and obtain the corresponding
parts of the POVM. A nonlinear photocounting equation in
the presence of dead time and afterpulses is presented in
Sec. III. Relations between photon statistics and pulse statis-
tics are given in Sec. IV. In Sec. V we employ the obtained
photocounting formula to examples of quantum states. Appli-
cations of the obtained results to geometrical reconstruction of
expected values of observables and, particularly, to quantum-
state reconstruction with unbalanced homodyne detection is
considered in Sec. VI. Statistics of time passed between
subsequent pulses is analyzed in Sec. VII. The experimen-
tal verification of the photocounting formula is discussed in
Sec. VIII. A summary and concluding remarks are given in
Sec. IX.
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FIG. 1. The idea of photodetection with independent MTWs is
depicted. Each MTW of duration τm is followed by a time interval
with nonoperating detector (hatched areas) exceeding the dark time
τd (shaded areas). In this case, the detection events in the actual
MTW are not effected by the detection events from the previous one.

II. PHOTODETECTION WITH INDEPENDENT
MEASUREMENT TIME WINDOWS

The scheme of photodetection considered in this sec-
tion assumes no effect of detection events from the previous
MTWs on the current one. It can be implemented via dark-
ening the detector-input after each MTW. The corresponding
time interval of darkening should exceed the dead time; cf.
Fig. 1. In practice, this purpose can be achieved in different
ways, e.g., by a proper postselection of the MTWs.

The equations obtained in this section have mostly prelim-
inary character as an introduction to our main results. Most
of them can be straightforwardly obtained from the corre-
sponding classical considerations in Refs. [22,24–29,31]. For
our purposes it is, however, important to reestablish these
results with a proper classification on regular-regular (rr) and
regular-irregular (ri) events, which will be used by us in the
next sections.

A. Dead time of detection

Here we derive the photocounting formula for the case of
independent MTWs assuming no afterpulses. For such a sce-
nario, there exist two cases of placing the photocurrent pulses
inside the time window τm, see Fig. 2. The regular-regular
case, depicted as rr, corresponds to the case with the dead-time
intervals τd situated inside the MTW. The regular-irregular
case, depicted as ri, corresponds to the situation wherein the
last dead-time interval exceeds the time window on the time
τ1 � τd. Therefore, the POVM �̂(r)

n can be decomposed as

�̂(r)
n = �̂(rr)

n + �̂(ri)
n , (5)

where �̂(rr)
n and �̂(ri)

n are the POVMs for the rr and ri cases,
respectively. For the sake of simplicity, we first assume the
unite detection efficiency and absence of dark counts.

Let us start our consideration with the rr case. Our task
is to find the Q symbols of the corresponding POVM that
can be interpreted as the probability of registering n pulses
given the coherent state |α〉. Dead-time intervals effectively
decrease the efficiency of photodetection. In this context, it is
convenient to introduce the adjusting efficiency, which is the

FIG. 2. Placements of n photocurrent pulses inside the MTW for
the scenario of independent MTWs is shown. In the rr case, all pulses
with the corresponding dead-time intervals τd are situated inside the
MTWs. In the ri case, the last dead-time interval exceeds the MTW
for the time τ1 � τd.

ratio of the time free from the dead-time intervals to the length
of the MTW,

ηrr (n) = τm − nτd

τm
. (6)

This quantity explicitly depends on the number of detected
pulses n. The probability of registering n pulses is given in the
intuitively clear form by

�(rr)
n (α) = [ηrr (n)|α|2]n

n!
e−ηrr (n)|α|2 = Fn[α; ηrr (n)], (7)

where Fn(α; η) is the Q symbols of the POVM for ideal PNR
detectors, cf. Eq. (4). This equation is valid for n = 0, . . . , N ,
where

N = �τm/τd� (8)

is the maximal number of whole dead-time intervals τd com-
pletely fitted inside the MTW, and �· · · � is the floor function.

There are several ways to derive Eq. (7) accurately. The
first technique is to apply directly the methods of Ref. [33]
for the rectangular mode. The second technique is based on
discretizing time, applying combinatorial considerations, and
transitioning back to continuous time. For this purpose, we
first divide the time τm into nm time slots of duration �t , i.e.,
τm = nm�t . We assume that the dead-time interval includes
an integer number nd of times �t , i.e., τd = nd�t . In this case,
the probability of registering n pulses consists of the following
factors:

(1) the probability of registering no-photons during the
time free of dead-time intervals,

exp

[
−nm − nnd

nm
|α|2

]
= exp[−ηrr (n)|α|2];

(2) the probability of registering n pulses at fixed time
slots,

(1 − exp[−|α|2�t/τm])n;

(3) the number (
nm − nnd + n

nm − nnd

)
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of placements nm − nnd time slots free of dead-time intervals
among nm − nnd + n elements that contain those slots and the
n dead-time intervals.

Applying in the product of all these factors the transition
�t → 0, we arrive at Eq. (7). Similar consideration can be
applied in all other cases. Their common feature is that the
probability of registering n pulses can always be adjusted by
the corresponding efficiency, which is the ratio of the time free
of dead-time intervals to the measurement time τm.

Let us now consider the ri case for which the last dead-time
interval exceeds the MTW by the time τ1. The probability that
the last pulse is detected during the infinitesimal time interval
dτ1 is

|α|2 dτ1

τm
exp

(
−|α|2 dτ1

τm

)
→ |α|2 dτ1

τm
. (9)

This should be multiplied with the probability of registering
the rest (n − 1) pulses in the time free from the dead-time
intervals. The infinitesimal probability for this case is given
by

d�(ri)
n (α; τ1) = |α|2

τm
Fn−1[α; ηri(τ1; n)]dτ1. (10)

Herein the adjusting efficiency reads

ηri(τ1; n) = τm − nτd + τ1

τm
, (11)

and Fk[α; η] is given by Eq. (4). The resulting probability of
registering n pulses is obtained via the integration of Eq. (10),

�(ri)
n (α) =

∫ τd

0
dτ1

d�(ri)
n (α; τ1)

dτ1

=
n−1∑
k=0

Fk[α; ηrr (n)] −
n−1∑
k=0

Fk[α; ηrr (n − 1)]. (12)

This equation is valid for n = 1, . . . , N , where N is given by
Eq. (8).

In the case of τm/τd > N , the maximal number of pulses
is N + 1. For this scenario, only the ri case is different from
zero,

�
(ri)
N+1(α) =

∫ τd

(N+1)τd−τm

dτ1
d�

(ri)
n+1(α; τ1)

dτ1

= 1 −
N∑

k=0

Fk[α; ηrr (N )]. (13)

Evidently, for τm = Nτd this expression vanishes.
The final expression for the POVM in the case of indepen-

dent MTWs is obtained by substituting Eqs. (7), (12), and (13)
into Eq. (5). This yields the POVM,

�̂
(r)
0 = F̂0[1], (14)

�̂(r)
n =

n∑
k=0

F̂k[ηrr (n)] −
n−1∑
k=0

F̂k[ηrr (n − 1)] (15)

for n = 1, . . . , N , and

�̂
(r)
N+1 = 1 −

N∑
k=0

F̂k[ηrr (N )]. (16)

FIG. 3. Placements of n photocurrent pulses inside the MTWs in
the presence of afterpulses for the scenario of independent MTWs is
shown. The pulses are subdivided into f and f +1 groups for rr and ri
cases, respectively. Each group is started with a photon-related pulse
and followed by afterpulses. The last group in the ri case consists of
s pulses. The last pulse in this group exceeds the MTW on the time
τ1 < τd.

To include realistic values of detection efficiencies and the
presence of dark counts, one should replace the photon-
number operator n̂ in expressions F̂k[ηrr (n)] and F̂k[ηrr (n − 1)]
under the sign of normal ordering, cf. Eq. (3), by ηn̂ + ν,
where η is the detection efficiency, ν = λdcτm, and λdc is the
dark-count rate, see, e.g., Refs. [38–41]. Equations (14)–(16)
can also be straightforwardly reestablished from the photo-
counting statistics of classical fields, see Refs. [24–29]. For
our further considerations, however, separate relations for
�̂(rr)

n and �̂(ri)
n given by Eqs. (7), (12), and (13) are of im-

portance.

B. Effect of afterpulses

To consider the effect of afterpulses, we use the following
model: We assume that afterpulses may appear after each
photon-related pulse, dark-count pulse, and another afterpulse
with the probability p. Similar to the above scenario, we sub-
divide the measurement events on regular and irregular cases
depicted as rr and ri, respectively; see Fig. 3. All pulses can be
subdivided into groups started with pulses related to photons
or dark counts and followed by afterpulses. For simplicity, we
first consider the unit detection efficiency and the absence of
dark counts.

Let us consider f groups of pulses in the rr case. For the
n registered pulses, the number of afterpulses is n − f . The
probability of such an event is Ff [α; ηrr (n)]pn− f (1 − p) f that
includes the probability of registering f photon-related pulses,
the probability of registering n − f afterpulses, and the prob-
ability of absence of f afterpulses at the end of each group.
Let r be the maximal size of the groups. We also consider that
fi groups consist of i pulses, i.e.,

∑r
i=1 fi = f . The number

of such events is given by the multinomial coefficient, i.e.,
by the number of all possible permutations of the groups of
pulses. Thus, the probability to register n pulses is obtained
via summation of all probabilities over all possible partitions
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of the number n:

�(rr)
n (α) =

∑
r∑

i=1
i fi=n

(
f

f1 · · · fr

)
Ff [α; ηrr (n)]pn− f (1 − p) f ,

(17)

where n = 0, . . . , N . Applying the combinatorial equality∑
r∑

i=1
i fi=n

(
f

f1 · · · fr

)
A( f ) =

n∑
f =1

(
n − 1

f − 1

)
A( f ), (18)

n 	= 0, see methods of Ref. [42] for its derivation,1 one gets
the expression

�(rr)
n (α) =

n∑
f =1

Ff [α; ηrr (n)]

(
n − 1

f − 1

)
pn− f (1 − p) f , (19)

which are the Q symbols of the POVM for the rr case. The
case of n = 0 should be considered separately. It coincides
with Eq. (14).

For the analysis of the ri case, we assume that the last group
consists of s pulses. The last pulse of this group exceeds the
MTW on the time τ1. The rest of pulses are combined in f
groups, cf. Fig. 3. The infinitesimal probability is obtained via
consideration of the following factors:

(1) the probability of registering the first pulse in the last
group during the infinitesimal time dτ1, cf. Eq. (9);

(2) the probability of registering f photon-related pulses,
Ff [α; ηri(τ1; n)];

(3) the probability of registering n − ( f +1) = n − f − 1
afterpulses, pn− f −1;

(4) the probability of absence of afterpulses at the end of
f groups, (1 − p) f ;

(5) the summation for f groups of n − s pulses with the
multinomial coefficient corresponding to all possible permu-
tations;

(6) the summation over all possible numbers of pulses in
the last group, s = 1, . . . , n.

This yields the expression,

d�(ri)
n (α; τ1)

=
n∑

s=1

∑
r∑

i=1
i fi=n−s

(
f

f1 · · · fr

) |α|2
τm

Fn−1[α; ηri(τ1; n)]

× pn− f −1(1 − p) f dτ1. (20)

After proper integration with respect to τ1 ∈ [0, τd] and appli-
cation of Eq. (18), we get

�(ri)
n (α) =

n−1∑
f =0

f∑
k=0

{Fk[α; ηrr (n)] − Fk[α; ηrr (n − 1)]}

×
(

n − 1

f

)
pn− f −1(1 − p) f . (21)

This expression is valid for n = 1, . . . , N .

1The authors thank E. Shchukin for enlightening discussions of this
equality.

The special case, n = N + 1, is obtained via integration of
Eq. (20) with respect to τ1 ∈ [0, (N+1)τd − τm],

�
(ri)
N+1(α) = 1 −

N∑
f =0

f∑
k=0

Fk[α; ηrr (N )]

(
N

f

)
pN− f (1 − p) f .

(22)

It vanishes for τm = Nτd. The rr part of the POVM in this case
is zero.

Combining Eqs. (5), (19), (21), and (22) we arrive at the
POVM for the scenario of independent MTWs in the presence
of afterpulses. The no-click element �̂

(r)
0 has the same form as

Eq. (14). For the rests of elements we have

�̂(r)
n =

n∑
f =1

F̂f [ηrr (n)]

(
n − 1

f − 1

)
pn− f (1 − p) f

+
n−1∑
f =0

f∑
k=0

{
F̂k[ηrr (n)] − F̂k[ηrr (n − 1)]

}

×
(

n − 1

f

)
pn− f −1(1 − p) f (23)

for n = 1, . . . , N , and

�̂
(r)
N+1 = 1 −

N∑
f =0

f∑
k=0

F̂k[ηrr (N )]

(
N

f

)
pN− f (1 − p) f . (24)

Realistic values of detection efficiencies and the presence
of dark counts are included by replacing the photon-number
operator n̂ under the sign of normal ordering by ηn̂ + ν. If
the probability of registering afterpulses, p, depends on the
field intensity, the corresponding dependence p(|α|2) should
be explicitly included in the Q symbols of the POVM. Equa-
tions (23) and (24) can be obtained as a straightforward
generalizations of results in Ref. [22]. Our further consider-
ations, however, require a proper separation on �̂(rr)

n and �̂(ri)
n

given by Eqs. (19), (21), and (22).

III. CONTINUOUS-WAVE DETECTION

In standard implementations of cw detection, no time in-
terruptions between the neighboring MTWs are assumed. If
the dead-time interval from the last pulse exceeds the MTW,
it changes the pulse statistics in the next MTW. As a result,
the photocounting equation depends on the direct product
of density operators from several MTWs. The corresponding
expression is derived in this section.

A. Events dependent on previous measurements

1. Absence of afterpulses

First we consider the detectors with no afterpulses. Similar
to the previous consideration, we consider irregular-regular
and irregular-irregular cases depicted as ir and ii, respectively,
see Fig. 4. The both of these cases are left-side irregular in
the sense that the last dead-time interval from the previous
MTW occupies a time-interval τ2 at the beginning of the
actual MTW. The parts of the POVM, which we obtain here,
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FIG. 4. Placements of n photocurrent pulses inside the MTW
for the scenario of cw detection and the left-side irregular cases is
shown. The most important difference of ir and ii cases from the
cases shown in Fig. 2 consists in the effect of the last pulse from
the previous MTW. The corresponding dead-time interval occupies
the time interval τ2 < τd at the beginning of the actual MTW.

are conditioned by τ2. Integration with respect to this time will
be considered in Secs. III B and III C.

We remain that the Q symbols of the POVM correspond to
the probability of registering n pulses given the coherent state
|α〉. This probability for the ir case reads

�(ir)
n (α; τ2) = Fn[α; ηir (τ2; n)], (25)

where the adjusting efficiency is given by

ηir (τ2; n) = τm − nτd − τ2

τm
. (26)

This equation is valid for n = 1, . . . , N − 1 and for n = N if
τ2 < τm − Nτd. For all other cases �(ir)

n (α; τ2) = 0.
The infinitesimal probability of registering n pulses condi-

tioned by τ2 in the ii case includes factors corresponding to
the infinitesimal probability of registering the last pulse (9)
and the probability of registering the rest n − 1 pulses,

d�(ii)
n (α; τ1, τ2) = |α|2

τm
Fn−1[α; ηii(τ1, τ2; n)]dτ1. (27)

Here the adjusting efficiency reads

ηii(τ1, τ2; n) = τm − nτd + τ1 − τ2

τm
. (28)

This equation is valid in the domain τ1, τ2 ∈ [0, τd] for n =
1, . . . , N − 1. For two special cases, however, there are ad-
ditional conditions, see also Fig. 5: (i) τ2 − τ1 � τm − Nτd

for n = N ; (ii) τ2 − τ1 � τm − (N+1)τd for n = N+1. For all
other cases this part of the POVM vanishes. Integration with
respect to the time τ1 leads to the conditioned Q symbol of the
POVM for the ii case,

�(ii)
n (α; τ2) =

n−1∑
k=0

Fk[α; ηir (τ2; n)] −
n−1∑
k=0

Fk[α; ηir (τ2; n − 1)]

(29)

FIG. 5. The shaded areas show the integration domains with
respect to the times τ1 and τ2 in the ii case for n = N and n = N + 1.

for n = 1, . . . , N − 1, τ2∈[0, τd] and n = N , τ2∈[0, τm −
Nτd];

�
(ii)
N (α; τ2) = 1 −

N−1∑
k=0

Fk[α; ηir (τ2; N − 1)] (30)

for τ2∈[τm − Nτd, τd]; and

�
(ii)
N+1(α; τ2) = 1 −

N∑
k=0

Fk[α; ηir (τ2; N )] (31)

for τ2∈[0, τm − Nτd]. In all other cases this part of the POVM
vanishes.

The overall POVM conditioned by the time τ2 is a sum of
ir and ii parts,

�̂(i)
n (τ2) = �̂(ir)

n (τ2) + �̂(ii)
n (τ2). (32)

Substituting here Eqs. (25) and (29)–(31) we get

�̂
(i)
0 (τ2) = F̂0[η(ir)(τ2; 0)], (33)

�̂(i)
n (τ2) =

n∑
k=0

F̂k[ηir (τ2; n)] −
n−1∑
k=0

F̂k[ηir (τ2; n − 1)] (34)
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for n = 1, . . . , N − 1, τ2∈[0, τd] and n = N , τ2∈[0, τm −
Nτd];

�̂
(i)
N (τ2) = 1 −

N−1∑
k=0

F̂k[ηir (τ2; N − 1)] (35)

for τ2∈[τm − Nτd, τd]; and

�̂
(i)
N+1(τ2) = 1 −

N∑
k=0

F̂k[ηir (τ2; N )] (36)

for τ2∈[0, τm − Nτd]. The realistic values of the detection effi-
ciency and the dark-count intensity are included via replacing
n̂ with ηn̂ + ν under the sign of normal ordering.

A special interest is attended to averaging the POVM con-
ditioned by the time τ2 with the uniform distribution, i.e.,

�̂(i)
n = �̂(ir)

n + �̂(ii)
n , (37)

where the corresponding Q symbols are given by

�(ir)
n (α) = 1

τd

∫ τd

0
dτ2�

(ir)
n (α; τ2), (38)

�(ii)
n (α) = 1

τd

∫ τd

0
dτ2�

(ii)
n (α; τ2). (39)

The proper integration yields for �(ir)
n (α)

�(ir)
n (α) = τm

τd|α|2
n∑

m=0

{Fm[α; ηrr (n + 1)] − Fm[α; ηrr (n)]}

(40)

for n = 0, . . . , N − 1, and

�
(ir)
N (α) = τm

τd|α|2
{

1 −
N∑

m=0

Fm[α; ηrr (N )]

}
, (41)

for n = N . Similarly, �(ii)
n (α) reads

�(ii)
n (α) = τm

τd|α|2
n−1∑
k=0

k∑
m=0

{Fm[α; ηrr (n + 1)]

− 2Fm[α; ηrr (n)] + Fm[α; ηrr (n − 1)]} (42)

for n = 1, . . . , N − 1;

�
(ii)
N (α) = τm

|α|2τd

{
N − 2

N−1∑
k=0

k∑
m=0

Fm[α; ηrr (N )]

+
N−1∑
k=0

k∑
m=0

Fm[α; ηrr (N − 1)]

}
+ (N + 1)τd − τm

τd

(43)

for n = N ; and

�
(ii)
N+1(α) = τm − Nτd

τd
− τm(N + 1)

|α|2τd

+ τm

|α|2τd

N∑
k=0

k∑
m=0

Fm[α; ηrr (N )] (44)

for n = N + 1.

FIG. 6. Placements of n photocurrent pulses inside the MTW
for the scenario of cw detection and the left-side irregular cases in
the presence of afterpulses is shown. The last (after-) pulse from
the previous MTW exceeding it on the time τ2 is followed by u
afterpulses. In the ii case the last (after-) pulse in the last group of
s pulses exceeds the MTW on τ1. The rest of n − u and n − u − s in
the ir and ii cases, respectively, form f groups.

2. Presence of afterpulses

In the presence of afterpulses, the situation is changed. In
the ir and ii cases a group of u afterpulses can be associated
with the last (after-) pulse from the previous MTW, see Fig. 6.
In the ii case the last group consists s pulses. Therefore, the
rest of n − u and n − u − s pulses for the ir and ii cases,
respectively, form f groups.

The Q symbols of the ir part of the POVM are obtained via
considering the following factors:

(1) the probability of registering f photon-related pulses,
Ff [α; τ1];

(2) the probability of registering n − f afterpulses, pn− f ;
(3) the probability of the absence of afterpulses at the end

of f +1 groups, (1 − p) f +1;
(4) summation for f groups of n − u pulses with the multi-

nomial coefficient corresponding to all possible permutations;
(5) summation over all possible numbers of pulses in the

first group, u = 0, . . . , n.
This yields the ir part of the conditional POVM,

�(ir)
n (α; τ2) =

n∑
f =0

Ff [α; ηir (τ2; n)]

(
n

f

)
pn− f (1 − p) f +1.

(45)

This expression holds for n = 0, . . . , N − 1, τ2 ∈ [0, τd] and
for n = N , τ2 ∈ [0, τm − Nτd].

The infinitesimal conditional probability of registering n
pulses given the time τ1 in the ii case can be obtained via
considering the following factors:

(1) the probability of registering the first pulse in the last
group during the infinitesimal time dτ1, cf. Eq. (9);

(2) the probability of registering f photon-related pulses,
Ff [α; ηii(τ1, τ2; n)];

(3) the probability of registering n − f − 1 afterpulses,
pn− f −1;

(4) the probability of the absence of afterpulses at the end
of f +1 groups, (1 − p) f +1;
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(5) the summation for f groups of n − s − u pulses with
the multinomial coefficient corresponding to all possible
permutations;

(6) the summation over all possible numbers of pulses in
the first group, u = 0, . . . , n − s;

(7) the summation over all possible numbers of pulses in
the last group, s = 1, . . . , n.

This leads to the infinitesimal Q symbols of the POVM in
the ii case,

d�(ii)
n (α; τ1, τ2) = |α|2

τm
dτ1

n−1∑
f =0

Ff [α; ηii(τ1, τ2; n)]

×
(

n

f + 1

)
pn− f −1(1 − p) f +1. (46)

The Q symbols of the ii part of the POVM given the time τ2

are obtained via integration of this expression with respect to
τ1 in the same domains as it considered for the case without
afterpulses. This yields

�(ii)
n (α; τ2)

=
n−1∑
f =0

f∑
k=0

{Fk[α; ηir (τ2; n)] − Fk[α; ηir (τ2; n − 1)]}

×
(

n

f + 1

)
pn− f −1(1 − p) f +1 (47)

for n = 1, . . . , N − 1, τ2∈[0, τd] and n = N , τ2∈[0, τm −
Nτd];

�
(ii)
N (α; τ2) = 1 −

N−1∑
f =0

f∑
k=0

Fk[α; ηir (τ2; N − 1)]

×
(

N

f + 1

)
pN− f −1(1 − p) f +1 (48)

for τ2∈[τm − Nτd, τd]; and

�
(ii)
N+1(α; τ2) = 1 −

N∑
f =0

f∑
k=0

Fk[α; ηir (τ2; N )]

×
(

N + 1

f + 1

)
pN− f (1 − p) f +1 (49)

for τ2∈[0, τm − Nτd]. In all other cases this part of the POVM
vanishes.

The overall POVM conditioned by the time τ2 is obtained
from Eq. (32). This yields

�̂
(i)
0 (τ2) = F̂0[ηir (τ2; 0)](1 − p), (50)

�̂(i)
n (τ2) =

n∑
f =1

F̂f [ηir (τ2; n)]

(
n

f

)
pn− f (1 − p) f +1

+
n−1∑
f =0

f∑
k=0

{
F̂k[ηir (τ2; n)] − F̂k[ηir (τ2; n − 1)]

}

×
(

n

f + 1

)
pn− f −1(1 − p) f +1 (51)

for n = 0 . . . N − 1, τ2 ∈ [0, τm] and n = N τ2∈[0, τm −
Nτd];

�̂
(i)
N (τ2) = 1 −

N−1∑
f =0

f∑
k=0

F̂k[ηir (τ2; N − 1)] (52)

×
(

N

f + 1

)
pN− f −1(1 − p) f +1 (53)

for τ2∈[τm − Nτd, τd]; and

�̂
(i)
N+1(α; τ2) = 1 −

N∑
f =0

f∑
k=0

F̂k[ηir (τ2; N )] (54)

×
(

N + 1

f + 1

)
pN− f (1 − p) f +1 (55)

for τ2∈[0, τm − Nτd]. Similarly to the previously considered
cases, the efficiency η and dark-count intensity ν can be
included by replacing n̂ by ηn̂ + ν. Also the dependence of
probability of afterpulses on the intensity |α|2 should be in-
cluded in the corresponding Q symbols of operators.

Let us consider averaging of this part of the POVM by the
uniform distribution such as it is presented by Eqs. (38) and
(39). The part �ir

n (α) in the presence of afterpulses is given by

�ir
n (α) = τm

τd|α|2
n∑

f =0

(
n

f

)
pn− f (1 − p) f +1

×
f∑

m=0

{Fm[α; ηrr (n + 1)] − Fm[α; ηrr (n)]} (56)

for n = 0, . . . , N − 1;

�ir
N (α) = τm

τd|α|2
N∑

f =0

(
N

f

)
pN− f (1 − p) f +1

×
⎧⎨
⎩1 −

f∑
m=0

Fm[α; ηrr (N )]

⎫⎬
⎭ (57)

for n = N . Similarly, the part �ii
n (α) in the presence of after-

pulses reads

�(ii)
n (α) = τm

τd|α|2
n−1∑
f =0

(
n

f + 1

)
pn− f −1(1 − p) f +1

×
f∑

m=0

( f − m + 1){Fm[α; ηrr (n + 1)]

− 2Fm[α; ηrr (n)] + Fm[α; ηrr (n − 1)]} (58)

for n = 1, . . . , N − 1;

�
(ii)
N (α) = (N + 1)τd − τm

τd
+ Nτm

|α|2τd
(1 − p)

+ τm

|α|2τd

N−1∑
f =0

(
N

f + 1

)
pN− f −1(1 − p) f +1
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×
f∑

m=0

( f − m + 1){Fm[α; ηrr (N − 1)]

− 2Fm[α; ηrr (N )]} (59)

for n = N ; and

�
(ii)
N+1(α) = τm − Nτd

τd
− τm

|α|2τd
(1 − p)(N + 1)

+ τm

|α|2τd

N∑
f =0

(
N + 1

f + 1

)
pN− f (1 − p) f +1

×
f∑

m=0

( f − m + 1)Fm[α; ηrr (N )] (60)

for n = N + 1.
The time-conditioned POVM �̂(i)

n (τ2) and the uniformly
averaged POVM �̂(i)

n can also be obtained as a straightforward
generalization of classical photocounting statistics presented
in Ref. [22]. However, as it is discussed in the next section, the
proper photocounting formula requires also separate relations
for �̂(ii)

n (τ2) and �̂(ir)
n (τ2) given by Eqs. (45) and (47)–(49).

Similarly, an approximation to this POVM considered in
Sec. III C requires separate relations for �̂(ii)

n and �̂(ir)
n given

by Eqs. (56)–(60).

B. General theoretical model

One of the main results of this paper is a special form of
the photocounting formula for the cw detection. It differs from
its standard form (1) and (2) not only by another POVM but
also by a different dependence on the density operator. We
numerate the MTWs, starting from the first one. Evidently,
the Q symbols of the multiwindow POVM, 
n(αl ), which are
also interpreted as the probabilities of registering n pulses,
are functions of the field amplitudes in the actual and in all
previous MTWs, where αl = (α1 . . . αl ).2 Consequently, the
photocounting formula in this case is given by

Pn =
∫
Cl

d2lαP(αl )P(αl−1) · · · P(α1)
n(αl ). (61)

The same equation rewritten in the operator form reads

Pn = Tr(ρ̂⊗l
̂n). (62)

This photocounting equation includes a nonlinear dependence
on the density operator ρ̂ that is caused by the memory effect
from the previous MTWs.

The nonlinear dependence on the density operator can be
seen as a significant modification of Born’s rule. At first
glance, it appears to contradict the fundamental Gleason theo-
rem [43] in its generalized form [44,45]. However, this is not
actually the case, as Eq. (62) can still be considered a linear
Born’s rule with respect to the density operator ρ̂⊗l in the
Hilbert space, which represents the tensor product of l Hilbert
spaces.

2We indicate dimension of the string (α1, . . . , αl ) by the upper
index of the corresponding bold symbol αl .

Let Ql (αl−1) and �l (τ2; αl−1) be the probability of the
event with τ2 = 0 and the probability distribution of τ2 at the
lth MTW, respectively. These quantities are normalized as

Ql (α
l−1) +

∫ τd

0
dτ2�l (τ2; αl−1) = 1. (63)

Evidently, they also depend on the field amplitudes αl−1 of
previous l − 1 MTWs. The Q symbols of the multiwindow
POVM are given by


n(αl ) = Ql (α
l−1)�(r)

n (αl )

+
∫ τd

0
dτ2�l (τ2; αl−1)�(i)

n (αl ; τ2). (64)

This relation is obtained via averaging the r and i parts of the
POVM at the lth MTW with the time τ2.

The probability Ql (αl−1) and the probability distribution
�l (τ2; αl−1) obey the recurrence relations, which can be de-
rived from rules of the probability theory,

Ql+1(αl ) = Ql (α
l−1)A(αl ) +

∫ τd

0
dτ�l (τ ; αl−1)B(αl ; τ ),

(65)

�l+1(τ ; αl ) = Ql (α
l−1)G(αl ; τ )

+
∫ τd

0
dτ2�l (τ

′; αl−1)H (αl ; τ
′, τ ). (66)

Here

A(αl ) =
N∑

n=0

�(rr)
n (αl ) (67)

is the probability of occurring the rr case in the lth MTW,

B(αl ; τ ) =
N∑

n=0

�(ir)
n (αl ; τ ) (68)

is the probability of occurring the ir case in the lth MTW given
the last-pulse exceedance time τ in the (l − 1)th MTW,

G(αl ; τ ) =
N+1∑
n=1

�(ri)
n (αl ; τ ) (69)

is the probability density of the last-pulse exceedance time τ

for the ri case in the lth MTW, and

H (αl ; τ
′, τ ) =

N+1∑
n=1

�(ii)
n (αl ; τ, τ

′) (70)

is the probability density of the last-pulse exceedance time
τ for the ii case in the lth MTW given the last-pulse ex-
ceedance time τ ′ in the (l − 1)th MTW. Hence, Ql (αl−1) and
�(τ2; αl−1) for any MTW can be obtained via applying the
recurrence procedure given by Eqs. (65) and (66) with the
initial conditions

Q1 = 1, �1(τ2) = 0. (71)

Technically, the obtained quantities and, as a consequence,
the POVM 
̂n depend on all previous MTWs. The POVM
has also a specific form for each number l of the MTW.
However, as we demonstrate below, this dependence quickly
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disappears such that only few previous MTWs play the role.
As a result, the POVMs for different numbers l coincide with
good accuracy. Therefore, the pulse statistics of the MTW
with the number l � 1 can be obtained in a standard way via
sampling of events in all MTW.

C. Approximation by the uniform distribution

Resolving the recurrence equations (65) and (66) requires
involved resources. The task can be drastically simplified for
the case of τd 
 τm and light fields with intensities |α|2 

τm/τd. In this case �(τ2; αl−1) can be approximately consid-
ered as the uniform distribution, i.e.,

�l (τ2; αl−1) = 1 − Ql (αl−1)

τd
, (72)

which satisfies the normalization requirements (63).
This approximation enables to obtain the multiwindow

POVM in a simple form. Substituting Eq. (72) into Eq. (64)
we arrive at the corresponding expression,


n(αl ) = Ql (α
l−1)�(r)

n (αl ) + [1 − Ql (α
l−1)]�(i)

n (αl ), (73)

where �(r)
n (αl ) and �(i)

n (αl ) are given by Eqs. (5) and (37),
respectively. The corresponding components are given by
Eq. (19) for �(rr)

n (αl ), Eqs. (21) and (22) for �(ri)
n (αl ),

Eqs. (56) and (57) for �(ir)
n (αl ), and Eqs. (58)–(60) for

�(ii)
n (αl ) in the presence of afterpulses. In the absence of

afterpulses these quantities are reduced to Eq. (7) for �(rr)
n (αl ),

Eqs. (12) and (13) for �(ri)
n (αl ), Eqs. (40) and (41) for

�(ir)
n (αl ), and Eqs. (42)–(44) for �(ii)

n (αl ).
As the next step, we obtain the recurrence relation for the

probability Ql (αl−1). For this purpose, we substitute Eq. (72)
into Eq. (65). This yields

Ql+1(αl ) = Ql (α
l−1)C(αl ) + B(αl ), (74)

where

B(αl ) = 1

τd

∫ τd

0
dτB(αl ; τ ) =

N∑
n=0

�(ir)
n (αl ), (75)

C(αl ) = A(αl ) − B(αl ), (76)

and A(αl ) given by Eq. (67). The recurrence relation (74) is
resolved as

Ql (α
l−1) = B(αl−1) + B(αl−2)C(αl−1)

+ B(αl−3)C(αl−2)C(αl−1) + · · · . (77)

The structure of this equation has a clear interpretation. The
first term describes influence of events from the last MTW.
The second and subsequent terms describe influence of events
from the penultimate and earlier MTWs, respectively. In fact,
the contribution of such terms vanishes with increasing the
number of the involved MTWs. For many practical cases, it
is enough to consider only two first terms. This means that
the considered process is ergodic to a good approximation.
This implies that statistics of each MTW can be obtained by
averaging statistics from all MTWs except the first ones.

IV. PULSE STATISTICS VS PHOTON STATISTICS

A special interest is attended to the Fock-state represen-
tation of the POVM �̂(r)

n . For an arbitrary photocounting
procedure this results in the expansion

�̂(r)
n =

+∞∑
k=0

P(r)
n|k|k〉〈k|, (78)

where P(r)
n|k = 〈k|�̂(r)

n |k〉 is the probability of registering n
clicks (pulses) given k photons, |k〉 is the Fock number state;
see, e.g., discussions in Refs. [20,34,35]. In the absence of
extra events such as dark counts or afterpulses, this probability
satisfies the clear condition Pn|k = 0 for n > k. This means
that summation in Eq. (78) starts in this case from n.

To separate the effects solely related to the imperfect reso-
lution of photon numbers caused by dead time of detection
and afterpulses, we consider the expansion by the POVM
F̂n[η] given by Eqs. (3) and (4). This yields the expansion

�̂(r)
n =

+∞∑
k=0

P(r)
n|kF̂k[η], (79)

where P(r)
n|k is now interpreted as the probability to register n

pulses under the condition that the detector with the efficiency
η has absorbed k photons. Similarly, one can include in this
consideration dark counts. By averaging Eq. (79) with the
density operator ρ̂ we obtain the relation

Pn =
+∞∑
k=0

P(r)
n|kPk[η], (80)

between the probability to get n pulses, Pn, and the probability
to absorb k photons by the detector with the efficiency η,
Pk[η].

In the case of cw detection, wherein the events from previ-
ous time windows affect on the events from the current one,
Eq. (79) is replaced by its nonlinear form,

�̂n =
+∞∑

k1,...,kl =0


n|kl ,...,k1 F̂kl [η] ⊗ · · · ⊗ F̂k1 [η]. (81)

Here 
n|kl ,...,k1 = 〈kl , . . . , k1|
̂n|kl , . . . , k1〉 is the probabil-
ity of registering n pulses given kl , kl−1 . . . , k2, k1 absorbed
photons in the MTWs with the numbers l, l − 1, . . . , 2, 1,
respectively. By averaging this relation with ρ̂⊗l , we arrive
at the expression

Pn =
+∞∑

k1,...,kl =0


n|kl ,...,k1 Pkl [η] · · · Pk1 [η]. (82)

This expression states the nonlinear relation between the prob-
ability of registering n pulses, Pn, and the probability to
absorb k photons by the detector with the efficiency η, Pk[η].

A. Independent measurement time windows

First, we consider the case of independent MTWs de-
scribed by Eq. (80). To find the probabilities P(r)

n|k one can
expand the Q symbols of the POVM, �(r)

n (α), by the Q sym-
bols of the projectors |k〉〈k| given by Fn[α; η = 1]. Applying
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Eq. (5) we obtain the decomposition

P(r)
n|k = P(rr)

n|k + P(ri)
n|k , (83)

where P(rr)
n|k = 〈k|�̂(rr)

n |k〉 and P(ri)
n|k = 〈k|�̂(ri)

n |k〉.
In the absence of afterpulses we get for the rr part

P(rr)
n|k =

(
k

n

)
[ηrr (n)]n[1 − ηrr (n)]k−n, (84)

for n = 0, . . . , N . The ri part reads

P(ri)
n|k =

k∑
m=k−n+1

(
k

m

)
{[ηrr (n)]k−m[1 − ηrr (n)]m

− [ηrr (n − 1)]k−m[1 − ηrr (n − 1)]m} (85)

for n = 0, . . . , N , and

P(ri)
N+1|k = 1 −

k∑
m=k−N

(
k

m

)
[ηrr (N )]k−m[1 − ηrr (N )]m (86)

for n = N + 1. As mentioned, P(rr)
n|k = 0 for n > k. A particu-

lar form of these equations in the case of n = k has also been
considered in Ref. [34].

In the presence of afterpulses the rr part is given by

P(rr)
n|k =

min (k,n)∑
f =1

(
k

f

)
[ηrr (n)] f [1 − ηrr (n)]k− f

×
(

n − 1

f − 1

)
pn− f (1 − p) f . (87)

The ri part in this case reads

P(ri)
n|k =

min (k−1,n−1)∑
f =0

(
n − 1

f

)
pn− f −1(1 − p) f

×
k∑

m=k− f

(
k

m

)
{[ηrr (n)]k−m[1 − ηrr (n)]m

− [ηrr (n − 1)]k−m[1 − ηrr (n − 1)]m} (88)

for n = 0, . . . , N , and

P(ri)
N+1|k = 1 −

N∑
f =k

(
N

f

)
pN− f (1 − p) f

−
min (N,k−1)∑

f =0

(
N

f

)
pN− f (1 − p) f

×
k∑

m=k− f

(
k

m

)
[ηrr (N )]k−m[1 − ηrr (N )]m (89)

for n = N + 1. The second term of the last equation takes zero
value for k > N . In this scenario, the conditional probabilities
Pn|k 	= 0 even for n > k that is caused by contribution of
afterpulses.

B. Nonlinear relation for continuous-wave detection

The conditional probability 
n|kl ,...,k1 included in Eqs. (81)
and (82) can be obtained as the Fock-state representation of

Eq. (73). We suppose that the uniform-distribution approxi-
mation is applicable. This yields the decomposition


n|kl ,...,k1 = [
P(r)

n|kl
− P(i)

n|kl

]
Qkl−1...k1 + P(i)

n|kl
. (90)

Here P(r)
n|k is given by Eq. (83), similarly

P(i)
n|k = P(ir)

n|k + P(ii)
n|k , (91)

where P(ir)
n|k = 〈k|�̂(ir)

n |k〉 and P(ii)
n|k = 〈k|�̂(ii)

n |k〉 are Fock-state
representations of the averaged parts of the POVM given by
Eqs. (38) and (39), respectively. Employing Eq. (77) we obtain

Qkl−1...k1 = Bkl−1 + Bkl−2Ckl−1 + Bkl−3Ckl−2Ckl−1 + · · · , (92)

where

Ck = Ak − Bk, (93)

Ak =
N∑

n=0

P(rr)
n|k , Bk =

N∑
n=0

P(ir)
n|k . (94)

Therefore, all constituents of Eq. (90) are expressed in terms
of P(rr)

n|k , P(ri)
n|k [see Eqs. (84)–(86) and Eqs. (87)–(89) for the

cases of absence and presence of afterpulses, respectively] as
well as P(ir)

n|k , P(ii)
n|k , which are obtained via expansion of the

averaged parts of the POVM, �̂(ir)
n and �̂(ii)

n [see Eqs. (38)
and (39), respectively], by the Fock-state projectors |k〉〈k|.

In the absence of afterpulses, the conditional probabilities
P(ir)

n|k are given by

P(ir)
n|k = τm

τd

(
k

n

)
Bn τd

τm
,(n+1) τd

τm
(k − n + 1, n + 1) (95)

for n = 0 . . . N − 1, and

P(ir)
N |k = τm

τd

(
k

N

)
BN τd

τm
,1(k − N + 1, N + 1) (96)

for n = N . The conditional probability P(ii)
n|k reads

P(ii)
n|k = τm

τd

k∑
l=k−n+1

(
k

l

)[
Bn τd

τm
,(n+1) τd

τm
(l + 1, k − l + 1)

−B(n−1) τd
τm

,n τd
τm

(l + 1, k − l + 1)
]

(97)

for n = 0 . . . N − 1,

P(ii)
N |k = N + 1 − τm

τd
+ τm

τd

k∑
l=k−N+1

(
k

l

)

×
[
BN τd

τm
,1(l + 1, k − l + 1)

−B(N−1) τd
τm

,N τd
τm

(l + 1, k − l + 1)
]

(98)

for n = N , and

P(ii)
N+1|k = τm

τd
− N − τm

τd

k∑
l=k−N

(
k

l

)
BN τd

τm
,1(l + 1, k − l + 1).

(99)
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Here Bz1,z2 (a, b) = ∫ z2

z1
dtta−1(1 − t )b−1 is the incomplete

generalized beta function. Moreover, as it has been discussed
above, P(ii)

n|k = 0 for n > k.
In the presence of afterpulses, the conditional probabilities

P(ir)
n|k read

P(ir)
n|k = τm

τd

min (k,n)∑
f =0

(
k

f

)(
n

f

)
pn− f (1 − p) f +1

× Bn τd
τm

,(n+1) τd
τm

(k − f + 1, f + 1) (100)

for n = 0 . . . N − 1, and

P(ir)
N |k = τm

τd

min (k,N )∑
f =0

(
k

f

)(
N

f

)
pN− f (1 − p) f +1

× BN τd
τm

,1(k − f + 1, f + 1) (101)

for n = N . The conditional probabilities P(ii)
n|k are given by

P(ii)
n|k = τm

τd
×

min (k−1,n−1)∑
f =0

f∑
l=0

(
k

l

)(
n

f + 1

)
pn− f −1(1 − p) f +1

×
[
Bn τd

τm
,(n+1) τd

τm
(k − l + 1, l + 1)

−B(n−1) τd
τm

,n τd
τm

(k − l + 1, l + 1)
]

(102)

for n = 0 . . . N − 1,

P(ii)
N |0 = (N + 1)τd − τm

τd
pN (103)

for n = N and k = 0,

P(ii)
N |k = (N + 1)τd − τm

τd

×
⎡
⎣1 −

N−1∑
f =k

(
N

f + 1

)
pN− f −1(1 − p) f +1

⎤
⎦

+ τm

τd

k−1∑
f =0

f∑
l=0

(
k

l

)(
N

f + 1

)
pN− f −1(1 − p) f +1

×
[
BN τd

τm
,1(k − l + 1, l + 1)

−B(N−1) τd
τm

,N τd
τm

(k − l + 1, l + 1)
]

(104)

for n = N and k = 1, . . . , N − 1,

P(ii)
N |k = (N + 1)τd − τm

τd

+ τm

τd

N−1∑
f =0

f∑
l=0

(
k

l

)(
N

f + 1

)
pN− f −1(1 − p) f +1

×
[
BN τd

τm
,1(k − l + 1, l + 1)

−B(N−1) τd
τm

,N τd
τm

(k − l + 1, l + 1)
]

(105)

for n = N and k � N ,

P(ii)
N+1|0 = τm − Nτd

τd
pN+1 (106)

for n = N + 1 and k = 0,

P(ii)
N+1|k = τm − Nτd

τd

×
⎡
⎣1 −

N∑
f =k

(
N + 1

f + 1

)
pN− f (1 − p) f +1

⎤
⎦

− τm

τd

k−1∑
f =0

f∑
l=0

(
k

l

)(
N + 1

f + 1

)
pN− f (1 − p) f +1

× BN τd
τm

,1(k − l + 1, l + 1) (107)

for n = N + 1 and k = 1, . . . , N , and

P(ii)
N+1|k = τm − Nτd

τd

− τm

τd

N∑
f =0

f∑
l=0

(
k

l

)(
N + 1

f + 1

)
pN− f (1 − p) f +1

× BN τd
τm

,1(k − l + 1, l + 1) (108)

for n = N + 1 and k � N + 1.

V. EXAMPLES

In this section, we apply the derived photocounting equa-
tions to examples of quantum states of the radiation field in
order to demonstrate that the finite dead time, afterpulses, and
the memory effect from the previous MTWs may significantly
change photocounting statistics. Let us start with considera-
tion of coherent states |α0〉 given by the Glauber-Sudarshan P
function

P(α) = δ(α − α0). (109)

The photon-number distribution in this case is given by the
Poissonian distribution,

Pn = Fn[α0, 1], (110)

where Fn[α; η] is given by Eq. (4). Pulse-number distribution
in the case of independent MTWs reads

Pn = �(r)
n (α0), (111)

cf. Eq. (5), where Q symbols of the POVM are obtained from
Eqs. (14)–(16) in the absence of afterpulses and by Eqs. (14),
(23), and (24) in the presence of afterpulses. These statics are
compared in Fig. 7. It is clearly seen that the dead time and
the presence of afterpulses significantly modify this statistics.

The present analysis also demonstrates that the Mandel QM

parameter [46] cannot be directly applied for testing nonclas-
sicality with the considered measurements, cf. also Ref. [21].
Indeed, a naive approach assumes that the number of pulses
corresponds to the number of detected photons. However, this
leads to QM = −0.44 and QM = −0.41 in the absence and
presence of afterpulses, respectively, for the cases considered
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FIG. 7. The photon-number and pulse-number distributions for
coherent states |α0〉, α0 = 2, are shown. White bars correspond to
the photon-number distribution Pn. The gray and black bars corre-
spond to the pulse-number distributions Pn for the detection with
independent MTWs without and with afterpulses, respectively. Here
τd = 0.09τm, p = 0.05.

in Fig. 7. Therefore, direct applications of the Mandel QM

parameter falsely indicates nonclassicality for classical light.
Consider the modifications of pulse statistics by the mem-

ory effect from the previous MTW. Substituting Eq. (109)
into Eq. (61) and applying the approximate expression for the
POVM symbols (73), we arrive at the probability distribution

Pn = 
n
(
αl

0

)
, (112)

where all components of αl
0 are equal to α0. In Fig. 8 we

compare the corresponding statistics between two measure-
ment scenarios: the detection with independent MTWs and the
cw detection. The difference between these cases can also be
clearly seen via comparison of expected values and variances:
〈n〉 ≈ 4.48, 〈�n2〉 ≈ 1.71, and 〈n〉 ≈ 4.40, 〈�n2〉 ≈ 1.69 for
the independent MTWs and the cw detection, respectively.

FIG. 8. The pulse-number distributions Pn for the detection with
independent MTWs and for the cw detection of the coherent state
|α0〉, α0 = 2.7, are presented by white and gray bars, respectively.
Here τd = 0.09τm, p = 0.

FIG. 9. The photon-number and pulse-number distributions for
the attenuated squeezed coherent states given by Eq. (113), r = 1,
η = 0.6, α′

0 = 2, are shown. White bars correspond to the photon-
number distribution Pn. The gray and black bars correspond to the
pulse-number distributions Pn for the detection with independent
MTWs without and with afterpulses, respectively. Here τd = 0.09τm,
p = 0.1.

Another example is a phase-squeezed coherent state given
by the Wigner function

W (α) = 2

π
exp[−2(α′ − α′

0)2e2r − 2α′′2e−2r], (113)

where α′ = Re α, α′′ = Im α, α′
0 is the coherent displace-

ment amplitude, and r is the squeezing parameter. The
photon-number distribution Pn in this case is obtained as the
coefficients in the power series

P(t ) =
+∞∑
n=0

Pntn, (114)

where

P(t )

= 1√
1 + [η(2 − η) − 2tη(1 − η) − t2η2] sinh2 r

× exp

[
α′2η(1− t )[η(1− t )(1− e−2r )− 2]

2
{
1 + [η(2− η)− 2tη(1− η) − t2η2] sinh2 r

}
]
,

(115)

and η is the detection efficiency. To obtain the corresponding
probability distribution for the number of pulses, the proba-
bilities Pn can be substituted in Eq. (80). The photon-number
and pulse-number statistics for these states are compared in
Fig. 9. In this case the effects of dead time and afterpulses
are clearly pronounced. The corresponding statistics is derived
under assumption that the probability of afterpulses p(|α|2)
has approximately the same value p for all values of α, where
the Wigner function W (α) significantly exceeds zero.

The memory effect from the previous MTWs in the case
of cw detection can be considered via employing Eq. (82)
together with the approximate expression (90). The cases
of independent MTWs and the cw detection for a phase-
squeezed coherent state are compared in Fig. 10. In particular,
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FIG. 10. The pulse-number distributions, Pn, for the detection
with independent MTWs and for the cw detection in the case of
attenuated squeezed coherent states given by Eq. (113), wherein
r = 0.69, η = 0.8, α0 = 4, are presented by white and gray bars,
respectively. Here τd = 0.09τm, p = 0.1.

the differences between these distributions are confirmed
by the values 〈n〉 ≈ 6.53, 〈�n2〉 ≈ 1.22, and 〈n〉 ≈ 6.39,
〈�n2〉 ≈ 1.24 for the detection with independent MTWs and
the cw detection, respectively.

Consider typical examples of phaseless quantum states,
which are diagonal in Fock basis,

ρ̂ =
+∞∑
n=0

Pn|n〉〈n|. (116)

In particular, we are interested in thermal states,

Pn = 1

1 + nth

(
nth

1 + nth

)n

, (117)

where nth = 〈n̂〉, and Fock number-states |l〉 attenuated with
the efficiency η,

Pn =
(

l

n

)
ηn(1 − η)l−n. (118)

As it is clearly seen from Figs. 11 and 12, the dead time
and afterpulses may result in pronounced modifications of the
corresponding statistics.

VI. EXPECTED VALUES OF OBSERVABLES

In many practical applications, it is important to recon-
struct the mean values of observables based on the given
experimental data. In this context, a special case is presented
by observables Â = A(n̂) commuting with photon-number
operator n̂. In the case of ideal PNR detectors, wherein pho-
tocounting statistics coincide with photon statistics Pn, such
values are evaluated as

〈Â〉 =
+∞∑
n=0

A(n)Pn. (119)

However, this trick does not work anymore for realistic
detectors.

FIG. 11. The photon-number and pulse-number distributions for
the thermal state given by Eqs. (116) and (117), nth = 9, are shown.
White bars correspond to the photon-number distribution, Pn. The
gray and black bars correspond to the pulse-number distributions
Pn for the detection with independent MTWs without and with
afterpulses, respectively. Here τd = 0.09τm, p = 0.07.

A way of reconstructing 〈Â〉 in the case of imperfect
photon-number resolution has been proposed in Ref. [35]. The
idea is based on using the POVM as a basis for the space of
operators Â. However, for detection techniques limited to a
finite number of outcomes, the measurement operators only
span a subspace of the former space of operators, leading to
systematic errors in the reconstruction.

In this section we adapt this technique for the pulse statis-
tics in the scenario of the detection with independent MTWs.
In this case, the expected value of the observable Â is given by

〈Â〉 =
Nmax−1∑

n=0

AnPn + R. (120)

FIG. 12. The photon-number and pulse-number distributions for
the attenuated Fock states given by Eqs. (116) and (118), n = 5, η =
0.8, are shown. White bars correspond to the photon-number distri-
bution Pn. The gray and black bars correspond to the pulse-number
distributions Pn for the detection with independent MTWs without
and with afterpulses, respectively. Here τd = 0.09τm, p = 0.07.
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Here,

Nmax =
⌈

τm

τd

⌉
=
{

N if τm/τd ∈ N
N + 1 if τm/τd /∈ N

(121)

is the maximal number of the detection events in the
MTW, R is a residual term determining the systematic error
caused by finiteness of possible number of pulses, Pn is the
pulse-number distribution, and An are so-called contravariant
coordinates of the observable Â. The latter can be obtained as

An =
Nmax−1∑

m=0

gnmTr
(
Â�̂(r)

m

)
, (122)

where gnm is the so-called contravariant metric tensor, which
is inverse to the covariant metric tensor given by

gnm = Tr
(
�̂(r)

n �̂(r)
m

)
. (123)

For the wide class of the Hilbert-Schmidt (HS) operators, the
upper bound of the residual term R can be estimated as the
HS mismatch,

R2 � TrÂ2 −
Nmax−1∑
n,m=0

gnmTr
(
Â�̂(r)

n

)
Tr
(
Â�̂(r)

m

)
. (124)

This mismatch quantifies to which extent we lose information
about the corresponding observable in the considered mea-
surement. As however for operators that do not have an HS
norm of one, i.e., Tr(Â2) 	= 1, this mismatch scales with the
norm, it will make sense to consider the relative HS mismatch,
which we get by dividing the right-hand side of Eq. (124) by
Tr(Â2).

A. Metric tensor for the detection with independent
measurement time windows

For the sake of simplicity, we consider the situation with
no afterpulses, no dark counts, and with τm/τd = N = Nmax.
Also the detection efficiency will be included in the consid-
ered quantum states. In this case, the POVM �̂(r)

n is given by
Eqs. (14) and (15). This yields the covariant metric tensor in
the form

gnm =
n∑

k=0

m∑
l=0

Gk,n;l,m −
n∑

k=0

m−1∑
l=0

Gk,n;l,m−1

−
n−1∑
k=0

m∑
l=0

Gk,n−1;l,m +
n−1∑
k=0

m−1∑
l=0

Gk,n−1;l,m−1, (125)

where

Gk,n;l,m = Tr(F̂k[ηrr (n)]F̂l [ηrr (m)]). (126)

Substituting here the explicit form of F̂k[ηn], cf. Eq. (3), one
gets

Gk,n;l,m =
k+l∑

i=max{k,l}

(
i

2i − k − l

)(
2i − k − l

i − k

)

× [ηrr (n)]k[ηrr (m)]l [1 − ηrr (n)]i−k[1 − ηrr (m)]i−l

[ηrr (n) + ηrr (m) − ηrr (n)ηrr (m)]i+1 .

(127)

FIG. 13. The scheme of unbalanced homodyne detection. The
signal mode (S) is interfered at the beam splitter (BS) with the
transmission coefficient T close to unity with the field of a local
oscillator (LO) in the coherent state |α/R〉, where R is the reflection
coefficient of the beam splitter. The resulting state displaced in the
phase with the coherent amplitude α is analyzed at the detector D.

In these equations the adjusting efficiency ηrr (n) is given by
Eq. (6).

As it has been discussed in Ref. [35], the covariant
metric tensor of the finite-dimensional measurements nec-
essarily should have at least one singular element. In the
considered case this is gNN = ∞. This property implies that
the corresponding contravariant metric tensor satisfies the
conditions

gNm = gnN = gNN = 0. (128)

Also the relation

N−1∑
k=0

gmkgkn = δm
n (129)

holds true that justifies the upper bound of the sums in
Eqs. (120), (122), and (124). Another important feature of the
metric tensor is the fact that g00 = g00 = 1 and g0n = g0n = 0
for all n 	= 0.

B. Application to unbalanced homodyne detection

As an example, demonstrating the developed techniques,
we consider their application to the quantum-state reconstruc-
tion scheme based on unbalanced homodyne detection, see
Refs. [36,37]. The idea consists in the fact that the value of
the Cahill-Glauber s-parametrized quasiprobability distribu-
tion P(α; s) [6,7] at the phase-space point α can be interpreted
as the expectation value of the operator

P̂(α; s) = 2

π (1 − s)
: exp

[
− 2

1 − s
n̂(α)

]
:, (130)

where n̂(α) = (â† − α∗)(â − α) is the displaced photon-
number operator. The whole measurement procedure includes
displacement of quantum states in phase space and the detec-
tor, analyzing the resulting light mode, see Fig. 13.
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FIG. 14. Reconstruction of the phase-space distribution P(α, s)
with s = −0.8 on the real axis of a squeezed vacuum state with
squeezing parameter r = 0.8 for detection with a maximal number of
counting events per interval of N = 8. The reconstructed distribution
(dashed line) is compared with the theoretical distribution of the state
(solid line).

The covariant components of the operator (130) can be
directly calculated as

Tr
[
P̂(0; s)�̂(r)

n

] = 2

π (1 − s)

[
n∑

k=0

[−ηrr (n)]k (s + 1)k (1 − s)

[2 − (1 + s)ηrr (n)]k+1

−
n−1∑
k=0

[−ηrr (n − 1)]k (s + 1)k (1 − s)

[2 − (1 + s)ηrr (n − 1)]k+1

]
.

(131)

This relation is invariant with respect to simultaneous dis-
placements of the coherent amplitude α in the operators
P̂(0; s) and �̂(r)

n . Let Pn(α) be the pulse-number distribution
for the considered state displaced to the phase-space point α.
Then, Eq. (120) yields the estimation of the Cahill-Glauber
s-parametrized distribution

P(α; s) ≈
N−1∑

n,m=0

gnmTr
[
P̂(0; s)�̂(r)

m

]
Pn(α). (132)

The systematic error of this procedure can be estimated as the
HS mismatch according to Eq. (124).

Let us illustrate the applicability of the method by sim-
ulating the reconstruction of the phase-space distribution of
an attenuated squeezed vacuum state, given by the Wigner
function (113) with α′

0 = 0. We simulate M random values of
pulse numbers ni related to the probability distributions Pn(α)
for some values of α. After that we estimate the approximated
probability distribution as

Pn(α) ≈ 1

M

M∑
i=1

δnni . (133)

This probability distribution is used in Eq. (132) for recon-
struction of the s-parametrized phase-space distribution.

An example of such a reconstruction compared with
the original theoretical phase-space distribution is shown in
Fig. 14. It is clearly seen that the procedure gives a satisfactory

FIG. 15. The relative HS mismatch for the operator P̂(α, s) is
plotted for the values of s ranging from −1 to 0 and a maximal
number of counting events per MTW for N = 8.

result near the phase-space origin and a larger error for other
values of α. The relative HS mismatch for such a procedure
is increasing with increasing the parameter s, as shown in
Fig. 15.

VII. STATISTICS OF THE TIME BETWEEN PULSES

In this section we consider statistics of the time between
two subsequent pulses of photocurrent, tb. The probability
distribution of this random variable can be straightforwardly
reconstructed in the experiment. This distribution explicitly
depends on characteristics of the detection process, such as the
dead time τd and the probability of afterpulses, p. Hence, we
obtain a possibility to estimate the values of these quantities
and get other characteristics of the radiation field and the
detection process.

Let us consider the electromagnetic radiation, correspond-
ing to the coherent state |α0〉 in the MTW of duration τm.
For the sake of simplicity, we consider that detection losses
are included in the signal attenuation such that the coherent
amplitude α0 is rescaled with the detection efficiency. In this
case, the photon flux λ = |α0|2/τm is the mean number of pho-
tons per unit time. The inverse quantity τphot = λ−1 defines the
mean time passing between registrations of two photons with
the ideal PNR detector.

If the first pulse in a couple of two neighboring pulses has
been registered, then the probability to register the second one
is zero inside the dead-time interval. Outside this interval, the
infinitesimal probability to register the second pulse during
the time interval dt is obtained similar to Eq. (9) and given by

dt

τphot
exp

(
− dt

τphot

)
→ dt

τphot
. (134)

Multiplying this quantity by the probability of no-photon reg-
istration in the time interval [τd, tb] given by exp[−τ−1

phot (tb −
τd )], we arrive at the probability density of the time between
subsequent pulses,

Pphot (tb) = 1

τphot
exp

[
− tb − τd

τphot

]
, (135)

defined outside the dead-time interval [0, τd].
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Equation (135), however, does not consider the possibility
of a registration of an afterpulse at the time moment τd. The
corresponding probability density in this case is given by the
Dirac δ distribution,

Pafter (tb) = δ(tb − τd ). (136)

Considering the probabilities of registering and nonregistering
an afterpulse to be equal p and (1 − p), respectively, we arrive
at the probability distribution of the time between consecutive
pulses, which includes also the presence of afterpulses,

P(tb) = θ (tb − τd )[(1 − p)Pphot (tb) + pPafter (tb)]. (137)

Here θ (tb − τd ) is the Heaviside step-function corresponding
to the zero probability of registering photons during the dead-
time interval.

For comparing experimental data with the theoretical
model, it is convenient to use the cumulative probability dis-
tribution, F (tb) = ∫ tb

0 dt ′P(t ′), which reads

F (tb) = (1 − p)Fphot (tb) + pFafter (tb). (138)

In the considered scenario

Fphot (tb) = θ (tb − τd )

{
1 − exp

[
− tb − τd

τphot

]}
, (139)

Fafter (tb) = θ (tb − τd ). (140)

Since the distribution function explicitly depends on the
parameters p and τd, they can be estimated from the experi-
mental data.

Let us consider the mean time between pulses,

〈tb〉 =
∫ +∞

0
dtbtbP(tb) = (1 − p)(τphot + τd ). (141)

This relation can be used for an estimation of the photon flux
given p and τd as

λ = τ−1
phot = 1 − p

〈tb〉 − τd(1 − p)
. (142)

It is worth noting that in the absence of afterpulses τphot =
〈tb〉 − τd.

Fitting experimental data related to the time between pulses
may require small modifications of the considered model. For
example, after ending the dead-time interval, the ability of
detectors to register the next photon is not recovered imme-
diately. Similar to superconducting nanowire single-photon
detectors (SNSPDs), this recovery can be described by the
time-dependent detection efficiency [33],

ηr (t ) = 1 − exp

(
− t

τr

)
. (143)

Unlike the case of the SNSPDs, the recovery time τr for the
avalanche photodiodes is significantly less than the dead time
τd. This recovery process does not effect the photocounting
statistics. However, it may still be taken into account for fitting
the statistics of time between pulses.

Similarly to the consideration in Ref. [33], the probability
distribution Pphot (tb) is modified as

Pphot (tb) = ηr (tb − τd )

τphot
exp

[
−�(tb)

τphot

]
, (144)

where

�(tb) =
∫ tb

τd

dtηr (t − τd ). (145)

The corresponding cumulative probability distribution reads

Fphot (tb) = θ (tb − τd )

{
1 − exp

[
−�(tb)

τphot

]}
. (146)

For the model of time-dependent efficiency given by
Eq. (143), one gets

�(tb) = tb − τd − τr

[
1 − exp

(
− tb − τd

τr

)]
. (147)

If the recovery time vanishes, τr = 0, Eqs. (144) and (146)
becomes Eqs. (135) and (139), respectively.

Another modification to the model given by Eqs. (137) and
(138) is related to the fact that an afterpulse may not appear
immediately after ending the dead-time interval. This means
that Eq. (136) should be modified from the form with the
delta distribution to the form similar to Eq. (135) by replacing
the time τphot related to the photon flux by another time τafter

related to the afterpulses. Moreover, the ability of the detector
to register the afterpulse is also recovered smoothly with the
recovery time τr similarly to the same property for the photon-
related pulses. This implies that the probability distribution
Pafter (tb) is now given by

Pafter (tb) = ηr (tb − τd )

τafter
exp

[
−�(tb)

τafter

]
. (148)

The corresponding cumulative probability distribution reads

Fafter (tb) = θ (tb − τd )

{
1 − exp

[
−�(tb)

τafter

]}
. (149)

For τafter = τr = 0 these equations take the form of Eqs. (136)
and (140), respectively.

VIII. EXPERIMENTAL VERIFICATION

In this section we report about an experimental verification
of the theory presented in previous sections. In this context,
we perform four stages of the experimental-data processing.
First, we reconstruct the empirical probability distribution for
the time between pulses,

F (tb) = 1

K

K∑
k=1

θ
(
tb − t (k)

b

)
, (150)

where t (k)
b are K measured time intervals between pulses.

We estimate values of the photon flux λ = τ−1
phot, the dead

time τd, the probability p of afterpulses, the afterpulse time
constant τafter, and the recovery time τr via fitting the function
(150) with Eqs. (138), (146), and (149). Second, we study
the dependence of τd, p, τafter, and τr on the photon flux λ,
i.e., on the mean photon-number |α|2 in order to conclude ei-
ther this dependence should be included in the photocounting
formula. Third, we directly check the assumption of uniform
distribution (72) for �l (τ2; αl−1). Fourth, we reconstruct the
photocounting statistics and compare it with the derived pho-
tocounting formulas. For this purpose, we use the values of
|α|2, τd, and p estimated at the first stage.

For detecting photons we used a silicon avalanche photodi-
ode module (τ -SPAD by PicoQuant). Coherent states of light
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FIG. 16. Experimentally estimated empirical probability distri-
bution [cf. Eq. (150)], fitted theoretical model [cf. Eqs. (138), (146),
and (149)], and the explicit theoretical contribution from afterpulses,
pFafter (tb). In this case the values of parameters are estimated as
τphot = 48.77 ns, τd = 60.54 ns, p = 0.0972, τafter = 2.20 ns, and
τr = 0.12 ns.

were generated with continuous coherent illumination from
an Nd:YAG laser (Mephisto S by Innolight) at a wavelength
of 1064 nm. The output signal was continuously sampled with
an analog-to-digital converter at a sampling rate of 200 MSs−1

and recorded for later processing.
An example of the fit results for the cumulative probability

distribution of the time between pulses with the model given
by Eqs. (138), (146), and (149) is shown in Fig. 16. The model
demonstrates a good agreement with the experimental data.
The related values of the parameters are given in the caption
to this figure.

We find a dependence of the parameters on the incident
number of photons which we varied from roughly 1 to 20
photons per μs corresponding to roughly 0.05 to 1.2 photons
per dead time interval. The fitted parameters are shown in
Fig. 17. The dead time τd and the afterpulse time constant τafter

exhibit largely negligible variations. However, the probability
for afterpulses p depends significantly (apparently linearly) on
the photon flux,

p(|α|2) = p0 + r

τm
|α|2, (151)

×

FIG. 17. Detector parameters from fitting the model of
Eqs. (138), (146), and (149) to experimental data. The photon flux
is also derived from the fit results such that the detection efficiency
is included in the signal attenuation.

where p0 and r are constants characterizing the detection
process. For the considered case they are estimated as p0 =
0.0093 and r = 4.4 × 10−9 s. We hypothesize that this cor-
relation is linked to the detector thermal heating, which
increases linearly with the incident photon flux. This de-
pendence may be omitted if p0τm/r + 〈n̂〉 � (|〈: �n̂2 :〉|)1/2.
Otherwise, it should be explicitly included in the derived
photocounting formulas.

As it is discussed in Sec. III B, an important concept in
theoretical model of the continuous-wave detection comprises
the influence of the detected photons in the previous MTWs on
the pulse-number distribution in the actual one. The dead-time
interval of a pulse at the very end of the (l − 1)st MTW can
leak into the lth MTW. This casts the detector in its dead
state at the beginning of the lth MTW during the time τ2. The
probability distribution of this time �l (τ2; αl−1) is an integral
part of the multiwindow POVM (64). Since the process is
ergodic, we can omit the dependence on l and consider this
probability distribution as �(τ2; α), where α includes coherent
amplitudes from all previous MTWs.

The approximation �(τ2; α) by the uniform distribution
(72) enables one to find an analytical form of the multiwindow
POVM, cf. Eq. (73). As it follows from the normalization
condition (63), the cumulative probability distribution in this
case reads

F (τ2; α) = Q(α) + 1 − Q(α)

τd
τ2, (152)

where Q(α) is the probability that no dead-time interval
exceeds the MTW. This number explicitly depends on the
parameters τd and p, cf. Eq. (77) and the definitions of its
constituents (67), (68), and (76). These parameters can be
taken from the estimation procedure described above.

We compare experimentally the empiric probability distri-
bution,

F (τ2) = 1

L

L∑
l=1

θ
(
τ2 − τ

(l )
2

)
, (153)

where τ
(l )
2 are measured times τ2 from L MTWs, with the

theoretical approximation (152). The result for different val-
ues of the photon flux is given in Fig. 18. One can see that

FIG. 18. Cumulative probability distribution for the initial dead-
time interval, F (τ2; α), is given for theoretical uniform distribution
(152) (solid lines), and the estimated from experimental data empiric
probability distribution (153) (error bars).
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FIG. 19. Pulse number statistics for coherent states is shown.
Bars are related to the theory with independently estimated parame-
ters. Markers and error bars are obtained from the experimental data.
White and gray bars corresponds to the scenarios with independent
MTWs and the cw detection, respectively. The parameter values are
τd = 59.12 ns, p = 0.025 and τd = 60.54 ns, p = 0.097 for the upper
and lower histograms, respectively.

the approximation by the uniform distribution demonstrates a
good agreement with the experimental data.

Finally, we compare the pulse-number statistics we ob-
tained experimentally with coherent illumination of varying
strength against the theoretical model of Secs. II and III. At
this point we want to stress, that the comparison has a quasi ab
initio character. We do not fit the experimental click statistics
to the theoretical model. We rather put in the fitted parameters
τd, p, and |α|2 = τm/τphot from the previously described study
of the statistics of the time between subsequent pulses into the
theoretical model. Two examples from the low end and the
high end of the range of photon fluxes are shown in Fig. 19.

We conclude, that we observed no statistically significant
deviation between theory and experiment, and that the theo-
retical model is a bona fide description of our experimental

observation. We use the standard 95% confidence interval for
the error bars. A small discrepancy between the experimental
data and theory in Fig. 19 (the case with 12.30 photons per τm)
can be caused by imperfections not included in our model, see
Refs. [22,23], by small deviations (near 2%) of the coherent
amplitude over the data collection time, or by imperfect esti-
mation of the model parameters through the fitting presented
in Fig. 16. At this stage we conclude, that the theoretical
model describes experimentally obtained click statistics with
continuous illumination appropriately.

IX. CONCLUSIONS

To conclude, we have derived the photocounting formula
for the detection technique consisting in counting the number
of photocurrent pulses inside a MTW and verified its validity
in experiments. In particular, this formula includes effects of
the detector dead time, afterpulses, and the memory effect
from the previous MTWs. The latter implies that the direct
product of density operators from previous MTWs is included
in the formula. This results in a nonlinear dependence of the
photocurrent-pulse statistics from the quantum state of an
electromagnetic-field mode. In the most general case, con-
stituents of the derived photocounting formula can be found
as a solution to a system of linear recursive equations. We
have also found an approximation for this solution in the case
of small number of photons per dead-time interval. It has
been shown that only a few previous MTWs affect on the
photocounting statistics. Hence, the photocounting process
is ergodic. This fact theoretically justifies the widely used
experimental practice, wherein the photocounting statistics is
assumed to be equal for all MTWs.

Fock-state representation of the photocounting formula de-
termines the relation between photocurrent pulse and photon
statistics. This expression is nonlinear in the case of cw de-
tection that describes the memory effect from the previous
MTWs. However, it has an ordinary linear character for the
measurements with independent MTWs, assuming that each
MTW is followed by a time interval with darkening detector
input.

The scheme with independent MTWs is described by the
photocounting formula, having the standard linear depen-
dence on the density operator. This gives a possibility to use
it in a variety of procedures involving data from detectors
with imperfect resolution of photon numbers. Particularly,
we have demonstrated with numerical simulations that the
obtained data can be used for quantum-state reconstruction
with unbalanced homodyne detection.

Our theory as well as the used approximation of the uni-
form distribution for the initial dead-time interval have been
directly checked experimentally. We have performed an in-
dependent estimation of parameters, describing the detection
process from analysis of statistics of time between pulses. The
values of these parameters have been substituted in our theo-
retical formulas. The latter has shown to be in good agreement
with the directly sampled experimental data. We believe that
the derived photocounting formula can be implemented in dif-
ferent applications, involving the considered type of detection.
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Multiple-photon resolving fiber-loop detector, Phys. Rev. A 67,
061801(R) (2003).

[20] J. Sperling, W. Vogel, and G. S. Agarwal, True photocounting
statistics of multiple on-off detectors, Phys. Rev. A 85, 023820
(2012).

[21] J. Sperling, W. Vogel, and G. S. Agarwal, Sub-binomial light,
Phys. Rev. Lett. 109, 093601 (2012).

[22] I. Straka, J. Grygar, J. Hloušek, and M. Ježek, Counting statis-
tics of actively quenched SPADs under continuous illumination,
J. Lightwave Technol. 38, 4765 (2020).

[23] J. Hloušek, I. Straka, and M. Ježek, Experimental observation
of anomalous supralinear response of single-photon detectors,
Appl. Phys. Rev. 10, 011412 (2023).

[24] L. M. Ricciardi and F. Esposito, On some distribution func-
tions for non-linear switching elements with finite dead time,
Kybernetik 3, 148 (1966).

[25] J. W. Müller, Dead-time problems, Nucl. Instrum. Methods 112,
47 (1973).

[26] J. W. Müller, Some formulae for a dead-time-distorted Poisson
process: To André Allisy on the completion of his first half
century, Nucl. Instrum. Methods 117, 401 (1974).

[27] B. I. Cantor and M. C. Teich, Dead-time-corrected photocount-
ing distributions for laser radiation, J. Opt. Soc. Am. 65, 786
(1975).

[28] M. C. Teich, L. Matin, and B. I. Cantor, Refractoriness in the
maintained discharge of the cat’s retinal ganglion cell, J. Opt.
Soc. Am. 68, 386 (1978).

[29] G. Vannucci and M. C. Teich, Effects of rate variation on the
counting statistics of dead-time-modified Poisson processes,
Opt. Commun. 25, 267 (1978).

[30] B. Saleh, Photoelectron Statistics (Springer, Berlin, Heidelberg,
1978).

[31] J. Rapp, Y. Ma, R. M. A. Dawson, and V. K. Goyal, Dead
time compensation for high-flux ranging, IEEE Trans. Signal
Process. 67, 3471 (2019).

[32] D. Snyder and M. Miller, Random Point Processes in Time and
Space (Springer-Verlag, New York, 1991).

[33] V. A. Uzunova and A. A. Semenov, Photocounting statistics of
superconducting nanowire single-photon detectors, Phys. Rev.
A 105, 063716 (2022).

[34] V. Y. Len, M. M. Byelova, V. A. Uzunova, and A. A. Semenov,
Realistic photon-number resolution in generalized Hong-Ou-
Mandel experiment, Phys. Scr. 97, 105102 (2022).

[35] O. P. Kovalenko, J. Sperling, W. Vogel, and A. A. Semenov, Ge-
ometrical picture of photocounting measurements, Phys. Rev. A
97, 023845 (2018).

[36] S. Wallentowitz and W. Vogel, Unbalanced homodyning for
quantum state measurements, Phys. Rev. A 53, 4528 (1996).

[37] S. Mancini, P. Tombesi, and V. I. Man’ko, Density matrix from
photon number tomography, Europhys. Lett. 37, 79 (1997).

013701-20

https://doi.org/10.1007/BF01397477
https://doi.org/10.1126/science.1190545
https://doi.org/10.1088/1367-2630/18/5/053013
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRev.177.1882
https://doi.org/10.1103/PhysRev.177.1857
https://doi.org/10.1088/0370-1328/84/3/313
https://doi.org/10.1103/PhysRev.136.A316
https://doi.org/10.1103/PhysRevLett.76.2464
https://doi.org/10.1080/09500340600779579
https://doi.org/10.1109/JSTQE.2007.902846
https://doi.org/10.1103/PhysRevLett.101.233604
https://doi.org/10.1364/OL.28.002387
https://doi.org/10.1103/PhysRevA.68.043814
https://doi.org/10.1103/PhysRevA.67.061801
https://doi.org/10.1103/PhysRevA.85.023820
https://doi.org/10.1103/PhysRevLett.109.093601
https://doi.org/10.1109/JLT.2020.2994654
https://doi.org/10.1063/5.0106987
https://doi.org/10.1007/BF00288925
https://doi.org/10.1016/0029-554X(73)90773-8
https://doi.org/10.1016/0029-554X(74)90283-3
https://doi.org/10.1364/JOSA.65.000786
https://doi.org/10.1364/JOSA.68.000386
https://doi.org/10.1016/0030-4018(78)90322-X
https://doi.org/10.1109/TSP.2019.2914891
https://doi.org/10.1103/PhysRevA.105.063716
https://doi.org/10.1088/1402-4896/ac9095
https://doi.org/10.1103/PhysRevA.97.023845
https://doi.org/10.1103/PhysRevA.53.4528
https://doi.org/10.1209/epl/i1997-00115-8


PHOTOCOUNTING MEASUREMENTS WITH DEAD TIME AND … PHYSICAL REVIEW A 109, 013701 (2024)

[38] W. K. Pratt, Laser Communication Systems (Wiley, New York,
1969).

[39] S. Karp, E. L. O’Neill, and R. M. Gagliardi, Communication
theory for the free-space optical channel, Proc. IEEE 58, 1611
(1970).

[40] H. Lee, U. Yurtsever, P. Kok, G. M. Hockney, C. Adami, S. L.
Braunstein, and J. P. Dowling, Towards photostatistics from
photon-number discriminating detectors, J. Mod. Opt. 51, 1517
(2004).

[41] A. A. Semenov, A. V. Turchin, and H. V. Gomonay, Detection
of quantum light in the presence of noise, Phys. Rev. A 78,
055803 (2008).

[42] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration
(Dover Publications, Inc., Mineola, New York, 2004).

[43] A. Gleason, Measures on the closed subspaces of a Hilbert
space, Indiana Univ. Math. J. 6, 885 (1957).

[44] P. Busch, Quantum states and generalized observables: A sim-
ple proof of Gleason’s theorem, Phys. Rev. Lett. 91, 120403
(2003).

[45] C. M. Caves, C. A. Fuchs, K. K. Manne, and J. M. Renes,
Gleason-type derivations of the quantum probability rule for
generalized measurements, Found. Phys. 34, 193 (2004).

[46] L. Mandel, Sub-Poissonian photon statistics in resonance fluo-
rescence, Opt. Lett. 4, 205 (1979).

013701-21

https://doi.org/10.1109/PROC.1970.7985
https://doi.org/10.1080/09500340408235289
https://doi.org/10.1103/PhysRevA.78.055803
https://doi.org/10.1512/iumj.1957.6.56050
https://doi.org/10.1103/PhysRevLett.91.120403
https://doi.org/10.1023/B:FOOP.0000019581.00318.a5
https://doi.org/10.1364/OL.4.000205

