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Efficient operator method for modeling mode mixing in misaligned optical cavities
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The transverse field structure and diffraction loss of the resonant modes of Fabry-Pérot optical cavities are
acutely sensitive to the alignment and shape of the mirror substrates. We develop extensions to the mode-mixing
method applicable to arbitrary mirror shapes, which both facilitate fast calculation of the modes of cavities with
transversely misaligned mirrors and enable the determination and transformation of the geometric properties of
these modes. We show how these methods extend previous capabilities by including the practically motivated
case of transverse mirror misalignment, presenting the ability to study the rich and complex structure of the

resonant modes.
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I. INTRODUCTION

The majority of Fabry-Pérot optical cavities have mirrors
with sufficiently constant curvature to be described well by
standard resonator theory [1]. However, there are applications
of cavities with nonspherical mirrors for which standard the-
ory is not suitable. As the first example, the desire to realize
stronger light matter coupling, whether to increase the rate of
single-photon sources [2] or to observe light-matter hybridiza-
tion [3], has led to the use of microcavities [4]; specialist
fabrication techniques, such as laser ablation [5] or chemical
etching [6], that can manufacture the requisite highly curved
micromirrors typically produce mirrors that are not perfectly
spherical [7-9]. Second, in cavity optomechanics, the advan-
tages conferred by low-mass mirrors encourage lightweight
designs with limited diameter [10,11]. Finally, cavities with
nonspherical mirrors offer useful optical capabilities, for ex-
ample, flexibility to tailor the optical mode [12,13], control the
number of resonances [14,15], or utilize polarization proper-
ties [16].

As such experiments mature towards applications, it is
important to calculate the required precision for transverse
mirror alignment. For the spherical mirror case, there are
simple methods for calculating the resonant modes under
transverse mirror misalignment [5,17], but these do not nec-
essarily apply well to cavity mirrors with alternative shapes.
This paper details extensions to the mode-mixing method
[18], allowing for certain mirror shapes to be encoded with-
out numerical integration and for arbitrary mirror shapes to
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be transversely misaligned without further integration. These
advances greatly reduce, and potentially eliminate, the com-
putation devoted to numerical integration, yielding a method
that allows for the impact of transverse misalignment in cavi-
ties with deformed mirrors to be investigated thoroughly.

First, we present an intuitive geometric optics approach
to predicting the modes of cavities with misaligned and non-
spherical mirrors. We then overview the existing mode-mixing
method before detailing extensions that greatly simplify the
calculations required to model particular mirror shapes and
to include transverse mirror misalignment. We then discuss
geometric transformations of cavity modes that can be used
to interpret calculation outputs. Finally, we compare these
methods to existing techniques, demonstrating good agree-
ment with published results for Gaussian-shaped mirrors in
aligned configurations while additionally permitting the easy
exploration of the impact of mirror misalignment. In another
work [19] we use the methods developed in this paper to
examine the behavior of cavities with spherical and Gaussian
mirrors under transverse misalignment.

II. GEOMETRIC ANALYSIS OF MODE DEFORMATION

Before introducing our approach to mode-mixing cal-
culations in cavities with deformed mirrors and residual
misalignment, we review the problem with a simple geo-
metric optics picture that serves to highlight the physics of
misaligned cavities in a more intuitive, albeit less complete,
manner. In this “geometric” approach to determining the cav-
ity modes, the propagation axis of the mode must intersect
both mirrors normal to their surface so that the mode is per-
fectly retroreflected. The phase curvature of the cavity mode
at the intersection with each mirror is then matched to the
local curvature of the mirror about the intersection point, as
described in [20]. This condition determines the positions
and sizes of the transverse waists of the cavity mode in both
transverse directions.

Published by the American Physical Society
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FIG. 1. Schematic of cavity mode geometry in misaligned optical cavities, shown for the example case of Gaussian-shaped mirrors.
(a) Perfect, symmetric alignment of the two mirror profiles (black solid lines). The cavity mode axis (red dotted line) is aligned to both
mirror axes. The radius of curvature of the phase fronts on the mirror matches the central curvature (purple dashed line). (b) Small transverse
misalignment Ax of the mirrors. The mode tilts at an angle ¢ to the mirror axes (horizontal black dotted lines), intersecting the mirror at point
P4, which is at displacement x,, from the center of the mirror. The curvature at the intersection point (purple dashed line) is different from the
center of the mirror. (¢) Mode instability for large mirror displacement. At sufficiently large misalignment, the cavity mode axis may tilt at
such an angle that neither mirror surface is concave at the mode intersection point and no stable mode is predicted.

We consider the features predicted when applying this ap-
proach to Fabry-Pérot cavities whose mirrors are transversely
misaligned such that they are no longer coaxial. For general
mirror shapes, the modes predicted can have general astigma-
tism, with an intensity profile that twists along the cavity axis,
requiring an involved mathematical treatment [21]. However,
for simplicity, we will illustrate the approach using spherically
symmetric Gaussian-shaped mirrors as a specific example, as
depicted in Fig. 1. Gaussian mirrors have a depth profile

2 2
felx,y) = D|:1 — exp (_x u_;y )],

e

(D

where x and y are Cartesian coordinates transverse to the
mirror axis, D is the depth of the mirror, and w, is the 1/e
waist. These parameters define the central radius of curvature
R. = w2/2D. By convention, the depth profile is zero at the
center of the depression and positive as the concave mirror
protrudes towards the center of the cavity.

Figure 1(a) shows the case of perfect alignment. The pre-
dicted mode lies along both (collinear) mirror axes, with the
wave-front curvature at each mirror matching the center radius
of curvature R.. The corresponding fundamental Gaussian
mode can be calculated using standard spherical cavity theory
[22]. Note that this yields a poor approximation of the funda-
mental mode if the mirror shape deviates significantly from
spherical over the scale of the mode.

If the cavity mirrors are transversely misaligned, as shown
Fig. 1(b), the cavity mode axis must tilt so that it can intersect
both mirrors at normal incidence. This means that the local
radius of curvature of the mirrors at the position of intersection
may differ from R, producing a mode with a different waist
compared to a cavity with aligned mirrors. Moreover, the local
radius of curvature may differ in the two transverse directions,
making the cavity mode an elliptical Gaussian beam.

To analyze these effects quantitatively, we construct a coor-
dinate system in which the centers of the two mirrors, labeled
A and B, are placed at coordinates z4 = L/2 and zz = —L/2,

respectively, along the z axis, where L = z4 — zp is the cavity
length and the z axis is the cavity axis in the aligned con-
figuration. The misalignment direction is taken to define the
x axis and thus the two mirrors are displaced by =Ax/2 in
the x direction, respectively, as shown in Fig. 1(b). The point
Py = (xp,, yp,, zp,) Where the cavity axis intersects mirror A
can be calculated from the requirement that the cavity axis
is locally orthogonal to the mirror; with x,, = xp, — Ax/2
defined as the distance of point P4 from the center of the
mirror, the solution satisfies

Ax 2,0 L 2 002
-5 = 2Dw£e o We (5 +D(— 1+e xm/w()> — X, (2)
which can be solved numerically for x,, and then used to
calculate the coordinates of Pj.

With the mode axis determined, the properties of the cavity
mode can be simply derived. The effective length of the cavity
mode between the intersections with the mirror is

Leff = 2‘ /.XI%A + ZI%A . (3)

The radius of curvature of the mirror at P4 in the x direction is

Xm

3/2
R — [l‘i‘fg(xm’ 0)] / (4a)
T im0
[t 0) = 2D /02, (4b)

e

2
2 2
4O, 0) = D— e~/ 1_<*/_x> . (4o
w; We

where f((x,y) and f/(x,y) are first and second derivatives
of the mirror profile fs(x,y) [Eq. (1)] with respect to x. The
radius of curvature in the y direction is

R, = Rcexfﬂ/w2 COS ¢ + X, Sin ¢, (5a)
. Xpy
sing = (5b)
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FIG. 2. Case study of the predicted mode in cavities with Gaussian-shaped mirrors under transverse misalignment, generated for a cavity
with L = 500 um, R, = 400 um, and w, = 50 um, with interrogation wavelength 866 nm: (a) intersection coordinate relative to the center of
the mirror, (b) tilt angle ¢, (c) local radii of curvature at the mode intersection R, for v € {x, y}, and (d) predicted central waists in the x and y

directions.

where ¢ is the angle of the cavity mode axis with respect to
the z axis. The central waists are

ALess (2R,
= 1) 6
wo, - ( Lo ) (6)

where v € {x, y} specifies the transverse coordinate.'

For large mirror misalignments, the mode axis may inter-
sect the mirror sufficiently far from the central depression that
the local profile is not concave, as shown Fig. 1(c). In this case
the cavity is not able to stably confine a mode. For Gaussian
mirrors, this occurs for misalignments Ax exceeding Ax, at
which x,, = +w./~/2.

A numerical case study applying this procedure to a cavity
with Gaussian-shaped mirrors is presented in Fig. 2. This
shows that, as the mirrors are misaligned, the mode angle and
the position of intersection on the mirror deviate increasingly
from their aligned values. The off-axis intersection means
that the local radius of curvature at the intersection points
increases in both the x and y directions. However, the change
is much larger in the x direction. At the critical misalignment
Ax, (44.0 um for the parameters of Fig. 2), the mode intersec-
tion point is sufficiently far from the center of the mirror that
the local mirror surface is not concave. This means that the
cavity is unstable, and one would expect to observe a severe
drop in finesse.

This geometric analysis of the fundamental mode limits
itself to cavity modes with quadratic wave-front curvature and

IThe principal axes of the mode will be in the x and y directions
because the transverse misalignment is x directed.

therefore does not take into account the mirror shape beyond
its local gradient and radius of curvature. Though the mirror
surface can always be approximated as parabolic close enough
to the intersection point, the geometric analysis becomes un-
suitable when the mode is sufficiently wide on the mirror that
higher-order components of the profile become significant. To
calculate cavity modes for cases where the mirror profile is
not perfectly parabolic about the mode intersection points,
we must use a framework with the flexibility to model cavity
modes with more general wave-front curvature profiles.

III. EXTENDED MODE-MIXING METHOD

A. Mode-mixing introduction

A variety of methods have been developed to calculate the
modes of cavities with nonspherical mirror profiles. Besides
mode mixing, these include iterative diffraction integral tech-
niques [23,24], discrete linear canonical transforms [25], or
discrete Hankel transforms (for the case of spherical symme-
try) [26]. This section discusses the mode-mixing method. It
should be noted all methods above apply to linear optical res-
onators. These require modification to study nonlinear optical
phenomena (see [27] for an example iterative method), which
are common applications of microcavity systems [28-30].

The mode-mixing method [18] finds the stable modes
of cavities with deformed mirrors by expressing propagat-
ing fields as linear superpositions of Gaussian modes. This
method has been applied to microcavities with nonspherical
mirrors, finding sporadic, severe drops in cavity finesse at
particular cavity lengths due to resonant mixing of the ba-
sis modes [31,32]. Alternatively, mode mixing can be used
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to understand diffraction loss [26,33], increase coupling of
cavity fields to single emitters [34-36], introduce coupling
between optical resonators [37], or tailor cavity modes for
desired applications [12,13]. Standard mode-mixing theory is
introduced in this section, before extensions to facilitate the
calculations, particularly in the context of misaligned cavities,
are presented.

In principle, a propagating electric field satisfies Maxwell’s
equations. Typically, these equations are simplified by em-
ploying the paraxial approximation, which assumes that the
propagating field is beamlike and directed at small angles to
the nominal z axis. Under these assumptions (see [38], with
which the notation presented is consistent), the electric field
can be described via a scalar function u* through

E(x,y,z,1) = eu™(x,y, 2) exp(Fikz) exp(iot),  (7)

where w is the angular frequency, k = w/c is the wave vector,
€ is the constant linear polarization of the field, which must
lie in a plane perpendicular to the z axis, and + denotes
propagation towards positive or negative z, respectively. The
function u* satisfies the paraxial wave equation

D y,0) = Foe L W, y,2).  (8)
ozt PO =T e T 2 Y 2)-

In the mode-mixing formalism, an electromagnetic field
propagating along the z axis according to Eq. (8) is expressed
as a linear superposition of modes uf (x,y,z), which them-
selves satisfy the paraxial equation, where s is an index over
all the modes in the basis. An optical element is encoded as a
matrix whose elements are scattering amplitudes from ingoing
modes in the ingoing basis to outgoing modes in the outgoing
basis. In the case of a concave mirror illuminated at normal
incidence, the input and output basis states counterpropagate
and the mirror profile imprints a differing phase across the
wave front due to the variation in propagation distance to and
from the mirror. The components of a mirror matrix A (B) at
positive (negative) z coordinate may be written

Ay = /S 4 (x. . 2a) expL2ik fa e, Y Cr. v, 2a)dS,

A 9)
B, = /S W (e, y. 28) expl2ik foCr. Yl (x. 3, 25)dS,

B (9b)

where k is the wave vector of the light, z4 (zp) is the axial
coordinate of the center of the depression of mirror A (B), f4
(fp) is the surface profile of mirror A (B) (with the convention
that a positive profile points towards the cavity center for both
mirrors), and Sy (Sp) is the surface region of mirror A (B).
The surface integrals are each performed in a single transverse
plane at the axial coordinate for which fj is zero. A schematic
diagram illustrating how a mirror transfers amplitude from
the input basis to the output basis is shown in Fig. 3. Cavity
eigenmodes are specific linear superpositions of basis states
that are preserved after one round-trip of a cavity.

In this paper, all calculations are performed in the compu-
tational basis, which expresses the cavity function ut(x, ¥, 2)

FIG. 3. Diagram of the mode mixing introduced by reflection
from a mirror. (a) An arbitrary incoming beam (blue) is expressed as
a linear superposition of incoming basis states (here the basis states
for n, and n, up to 2 are shown). The amplitudes of the coefficients
are depicted by the height of the bars adjacent to the correspond-
ing basis states. The mirror (black solid concave profile), shown as
having a Gaussian profile, imprints a phase front on the input beam
and reverses its direction. (b) The output beam (red) is expressed
as a linear superposition of basis states in the outgoing basis. The
intensity patterns of the input and output beams are plotted in the
transverse plane in which both bases have their central waist. The
beams presented are intentionally irregular to highlight the general
applicability of the mirror matrix.

as a linear superposition of the Hermite-Gaussian modes

ul(lfl\ (x’ Y Z) = a(Z)HnX ( ﬁx )Hn‘ <@>

w(z) w(z)
24 y? Xy
X exp <— D)2 ) exp (:Flk RA2) )
x exp[£i(n, +n, + 1)¥g], (10)

where

()= —— |2 @ =upf1+(2)
= w)\ 2”x+mnxlny!’ wie) = o 20/
T w2 20\
0= —2, Ru(Z)=Z[1+<—O> ,
A Z

W (z) = arctan (i), (1T)

20

where the wavelength A = 2x /k; H; are the Hermite polyno-
mials with ny, n, € N, with the x and y transverse indices; and
zo is the Rayleigh range of the beam. This basis is complete
and orthonormal for each transverse plane separately. A cavity
function expressed as a linear superposition of these basis
modes retains its mode coefficients during propagation, as the
propagation of the field is encoded in the z dependence of the
basis functions themselves.
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The round-trip matrix can be calculated from the two mir-
ror matrices, accounting for the round-trip phase accumulated
during propagation:

M = BAe ¥k, (12)

A mode |¥;) supported by the cavity is an eigenmode of the
round-trip matrix M and has corresponding eigenvalue y; from
the eigenmode equation

M|V) = yi [¥i). 13)

The complex y; has both phase and amplitude. The complex
phase is the round-trip phase (modulo 27) accrued by [\V;),
which is zero on resonance. For typical applications where
the length can be tuned freely to match a given resonance, the
amplitude is more pertinent as it leads directly to the round-
trip loss Lrr = 1 — |y;]%.

The eigenmodes of cavities with deformed mirrors can
be determined by calculating elements of mirror matrices A
and B through integration of Eq. (9). A sensible approach
to calculating the eigenmodes of cavities with transverse
misalignment would therefore appear to be to calculate the
geometrically expected mode as a function of misalignment
using the theory of Sec. Il and use this mode to define the basis
of the mode-mixing calculation. Using this approach, the basis
of the mode-mixing calculation is always chosen to suit the
geometric model and therefore it should be easier to faithfully
capture the cavity eigenmodes with a relatively limited basis
size.

However, performing calculations this way uses a different
basis for every misalignment and cavity length. Therefore, all
of the matrix elements are calculated for each cavity config-
uration separately. Furthermore, the basis states themselves
would generally have a more complicated form than those in
Eq. (10). The alternative approach detailed in this paper uses
matrix operations to misalign the mirrors without changing
the calculation basis, thus removing the need to explicitly
encode the mirror profiles for every misalignment. Once the
cavity eigenmodes have been calculated in the computational
basis, they can be simply expressed in other bases for the
purposes of analysis, as will be exemplified in Sec. IV.

Finally, it should be noted that the method of this pa-
per uses the paraxial approximation, which assumes that the
modes propagate at small angles to the optical axis. Un-
der this assumption, the mode polarization [denoted by € in
Eq. (7)] is transverse to the optical axis and constant. Cor-
rections to this approximation [39] introduce longitudinally
polarized components and modify the mode profile [40,41].
These corrections are typically small for all but the most
extreme Fabry-Pérot cavity designs [42]; however, they can
have notable effects by mixing modes that are degenerate in
the paraxial theory. For example, the local ellipticity discussed
in Sec. II results in a birefringent splitting

¢ 1 R,—R,
V= ——
2L 2wk RyR,

. (14)

where ¢ is the speed of light, which will be observable
if the splitting exceeds the cavity linewidth [8]. Additional
nonparaxial corrections include polarization-dependent pen-
etration of Bragg reflectors [43] and coupling between the

optical spin and orbital angular momenta [44] and are dis-
cussed in detail in [45,46].

B. Replacing coordinates with operators

The long-appreciated similarities between the Hermite-
Gaussian modes and simple-harmonic-oscillator wave func-
tions [47,48] inspire the writing of transverse coordinates x (y)
and transverse derivatives d/dx (3/0dy) in terms of the ladder
operators ay (ay), where ay (a,) reduces the n, (n,) index of
the Hermite-Gaussian mode by 1. Such operator methods have
already been used to determine the eigenmodes of optical cav-
ities under particular circumstances [21,27,45,49]. According
to the conventions of the present analysis, the operators for x
and 0/0x in a given transverse plane are

() = U@ Sw@)a+a)HUS (2), (15a)

d .
Pyl w—(ax —al), (15b)
0
(UG)(i)(Z)n;,n(,,nx,ny — eii\l}c(z)(nernerl)Snjwnx(gn;,ny’ (15¢)

where n, and n, (n, and n;) are the x and y indices of the
input (output) modes of the matrix, respectively. While the
d/0x operator does not depend on propagation direction and
is constant across all transverse planes, the matrix elements of
x depend upon the z coordinate and the propagation direction.
The equivalent relations hold for y and 9/dy, with q, (a;‘,)
replacing a, (a!). The derivations are detailed in Appendix A.
A mirror imprints a phase front onto and reflects the in-
going mode [as expressed in Eq. (9)]. To construct mirror
matrices in an operator-based approach, it is conceptually
simpler to consider this process sequentially (taking mirror
A as the example case). First, the phase front exp(2ik fy) is
imprinted on the input basis, where the phase is no longer
a complex function of coordinates x and y, but an operator
acting on the input basis as a result of its composition in
the coordinate operators x and y. Second, the reflected field,
thus far expressed through coefficients in the input basis, is
transferred to coefficients in the output basis through operator
()2 ()2
Ut~ = U exp (—2ikw> (16)

2Ru (ZA)

for mirror A and
)+ (602
U™ = WUS))ex (—Zik(x—> 17
(g ) exp 2R, (z8) a7

for mirror B, where R, (z4) and R, (zg) depend upon the chosen
basis. This basis is most conveniently chosen so that the wave-
front radius of curvature R, (z4) [R,(z5)] matches the radius of
curvature R4 (Rp) of the quadratic component of the profile of
mirror A (B). This choice uniquely specifies the basis and is
assumed for the remainder of the paper. The mirror matrix A
can then be expressed

A = (USDY exp(—2ikASD), (18)
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where Ay = f4 — (x? 4+ y?)/2R, is the deviation of the pro-
file of mirror A from the ideal parabolic surface.> If Ay,
(Ap) can be evaluated as a matrix without taking inte-
grals, the mirror matrix A (B) can also be obtained without
integrals, as discussed later in Sec. IIIE. We also note
that, in the case of a small deviation A4, the mixing
matrix elements can often be found through perturbation
theory [45].

C. Calculating polynomial mirror surface profiles

For the case where A can be written as a power series in x
and y, it is only necessary to calculate matrices of the various
powers of x and y and sum each polynomial term with the
appropriate coefficient. For the case of a parabolic distortion,
the mirrors remain parabolic but with an adjusted radius of
curvature, and therefore the cavity eigenmodes should match
standard results. We have used this to test and validate our
approach.

D. Calculating the Gaussian surface profile

The Gaussian surface profile can also be expressed in
the Hermite-Gaussian basis without taking integrals, but this
requires a different approach, inspired by the Appendix of
[50] and detailed in Appendix B. The matrix elements
of a unit Gaussian profile with 1/e waist w, in a one-
dimensional Hermite-Gaussian basis at axial coordinate z can
be written

2 (*)
exp <_ﬁ> (2)
e/ m',m

=U§7 @' —x

X\ (' =m)/2
X (—) m'\m!

)—[(m/+m+ 1)/2]

2
[m/2] (xz)k
x UE (), 19
Z (™51 4 k) (m — 2k)! € @, {13)
with
1 w(z)?
- i 20
X 2w (20)

where m (m') is the index of the ingoing (outgoing) mode,
(m' — m)/2 is an integer, and m’ > m. If (m" —m)/2 is not
an integer, the matrix element is zero. If m > m’, the symme-
try exp(—x2/w?),y m = exp(—x*/w?),, v should be used. The
matrix Ug accounts for the Gouy phases of the basis states,
as originally defined in Eq. (15). The two-dimensional profile
is obtained from the one-dimensional matrices by a simple
tensor product.

The deviation matrix A of a Gaussian with depth D from
the ideal parabolic surface is obtained from the matrix of the

’In the paraxial approximation, the mathematically ideal mirror
profile is parabolic. Outside this approximation, a spherical mirror
is is often a better match for the phase fronts [41].

unit profile through
(£))2 ()2
8 = o[ e (O]
we

() + (=)

2R ’ @h

with

w2

D=—-% 22

R’ (22)

where R is the radius of curvature at the center of the Gaus-
sian. The use of a single R in Egs. (21) and (22) imposes that
the wave-front radius of curvature of the basis states matches

the mirror radius of curvature in the central depression.

E. Taking the exponent of the surface profile

Once the surface profile deviation A is expressed as a
matrix, the surface profile phase matrix exp(—2ikA), which
constitutes the nontrivial component of the mirror matrix
[Eq. (18)], can be calculated. It is tempting to calculate
exp(—2ikA) through matrix exponentiation of —2ikA, but
this method cannot model losses; as A is a Hermitian matrix,
the matrix exponent is unitary and therefore every eigenvalue
of a mirror matrix obtained through matrix exponentiation has
unit modulus, meaning that the mirror is lossless. No matter
how large a basis is chosen, A never models processes repre-
senting transfer from inside to outside the basis and therefore
no mechanism exists for power to leave the cavity.

To take the exponential in a way that can model losses,
a procedure is used which is conceptually similar to the
non-Hermitian Hamiltonian approach to simulating quantum
systems that is commonly used in cavity quantum electrody-
namics [51]. The matrix A is first evaluated in a basis larger
than the intended simulation basis, before being truncated to
the size of the simulation basis according to specific rules:
Each element of A represents a transfer from an input state to
an output state. If the input state lies within the simulation
basis, but the output state is outside, that element encodes
loss. Therefore, for each input state, the sum over all the mag-
nitudes of transfers to states outside the basis is calculated,
evaluating the amplitude leakage from the input basis state to
outside the simulation basis. This summed rate is then added
as a negative imaginary number onto the diagonal element of
the input state. When the matrix exponential is then taken,
this diagonal imaginary component causes loss rather than
amplitude transfer.

Expressed mathematically, for a larger basis containing n,
and n, up to maximum values of n!! and n!l, respectively, and
the smaller simulation basis up to maximum values of nY* and

NH , respectively, components of the non-Hermitian A matrix
are written

Arﬁiizv’v,m,n\ - AnH(f) ny,ny’ n//\t’ Ny < n)I:IH’ n;’ ny g n)I:IH’
511;.n,r8n;.,ny = 07 (2321)
nft nﬁl
A'(f)ly,"uﬂ\ Ai(f\) Nyx,ny +l Z Z | f;{’,c(j;),nx,ny ’
n = +1) n=(n)H+1)
(23b)
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input

output

FIG. 4. Explanation of the method for obtaining the mirror ma-
trix of a mirror translated in the x direction by §,. (a) The input mode
(blue) hits a translated mirror (black concave surface depicted on
far left) and scatters to (b) the output mode (red). Both input and
output modes are expressed as a linear superposition of basis states
(here shown up to n, and n, of 2). (c) and (d) The same physical
process described in a coordinate system centered on the mirror such
that the mirror is nominally in the aligned configuration. Due to the
shift in origin, the input and output fields have been translated using
translation operator 7. The physical equivalence of the two scenarios
means that the action of the translated mirror can be derived from the
untranslated mirror through suitable transformation of the input and
output bases.

where AH®) is the Hermitian surface profile deviation matrix
evaluated on the larger basis. The matrix exponential of the
non-Hermitian A is then taken to find surface profile phase
matrix exp(—2ikA).

While this process is not mathematically identical to find-
ing the true matrix exp(—2ikA), in practice, this procedure
produces almost identical loss results to numerical integration
for most cavity configurations, as shown later in Sec. IV.

F. Translating the mirror

With the surface profile phase matrix calculated, it is pos-
sible to evaluate both mirror matrices and thus obtain the
eigenmodes for a cavity. To investigate the impact of trans-
verse misalignment between the mirrors, the mirror matrices
could be calculated for every misalignment separately. An
alternative, discussed in this section, is to evaluate the mir-
ror matrix in one transverse position (most conveniently the
aligned configuration where any symmetries of the mirror pro-
file can be exploited) and use translation operators to model
transverse misalignment without calculating any further mir-
ror matrix elements directly.

As depicted in Fig. 4, the action on a given input field
of a mirror translated by §, in the x direction is equivalent
to the action of the untranslated mirror on the same input

field displaced by —§,, because these two cases describe the
same physical situation for different choices of origin. This
equivalence means that the matrix of the translated mirror can
be calculated by taking the matrix of the untranslated mirror
and translating the input and output bases in the compensating
direction.

The one-dimensional operator that translates the input and
output bases is

T(8) = exp <ai>, (24)
0x

with elements

m! ,
T(O)wm = | — 0™ e LI (a?),  m > m, (25)

m'!
[m'! , /
T((S)m’,m - _'(_a,'17m )67#/2[‘;’;’7’" ((12), m > m/7
m:
(25b)

where

o=—, (26)
Wo

m (m') is the input (output) index in the one-dimensional
basis, and § is the translation effected by the operator. This
operator is identical to the displacement operator of the simple
harmonic oscillator [52], owing to the close similarity be-
tween the simple-harmonic and Hermite-Gaussian bases. As
the translation operator has the same elements in the input and
output bases, translating a mirror with matrix C by 6, can be
achieved through

C — T/ (=8,)CT(=8,), 27)

where 7, is formed from the tensor product of the one-
dimensional translation in the x direction and the identity in
the y direction. If scanning the misalignment of the mirrors,
the translation matrix need only be calculated for a single
increment and then successively applied to generate all of the
mirror matrices. In this way, the mirror profile and translation
step matrices both need only be calculated once.

G. Mode transformations

In addition to the x-translation operator 7, discussed in
the preceding section, further transformation operators can be
specified. Here we present transformation operators to change
the central waist of a mode and to change its propagation
angle. In the context of the present work, these operators are
used not to calculate the cavity eigenmodes, but to evaluate
geometric properties of these eigenmodes, as will be discussed
in Sec. IV.

For the purposes of mode transformations, it is important
to emphasize that, while the basis states [Eq. (10)] are running
waves, the cavity field itself will be a standing wave. Solving
for the cavity eigenmodes does not return the standing wave,
but rather the running wave that reflects within the resonator to
form the standing wave [the convention followed in Eq. (12)
uses forward-propagating running waves]. This means that the
transformations we described in this section act upon superpo-
sitions of running-wave basis states, not standing-wave fields.
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FIG. 5. Illustration of changing the waist of a mode through matrix methods, showing the modes in the xz plane. (a) A mode with waist
w in the x direction, depicted through its intensity (red, gradient plot) and 1/e waist (thick red dashed line), is expressed in the basis of modes
with waist wy in the x direction, indicated through its 1/e waist (thick blue solid line). (b) Amplitude of the coefficients of the expanded mode
with waist w; [red intensity plot and thick dashed line in (a)] in the basis with waist wy, where the label indicates the n, index of the mode,
the image the intensity profile in the xz plane, and the bar the amplitude of the mode in the superposition. The yellow dashed lines indicate
the surfaces on which the electric field of the basis state has the same phase as the central plane. The radius of curvature of these surfaces
corresponds to R, of Eq. (10). The Gouy phase is responsible for the subtle spreading out of these surfaces as the basis state index increases.
The rescaled fundamental mode is a linear superposition of even orders in the original basis. For simplicity, only the amplitudes of the state
coefficients are plotted; however, it should be noted that both the phase of the coefficients and the relative Gouy phases of the basis states are

crucial for determining the intensity profile of the mode.

The running-wave superpositions will nevertheless be referred
to as modes as they directly correspond to standing-wave
cavity modes.

1. Changing the mode waist

To scale the mode waist, we use the property that the
Hermite-Gaussian basis states have the same functional form
as the simple-harmonic-oscillator wave functions at the ax-
ial center of the mode (z = 0). Therefore, the operator that
changes the central waist of the mode is the same as the
operator that rescales the coordinate operators of the simple
harmonic oscillator, namely, the standard squeeze operators.
The operator that changes the waist in the x direction from wy

to wy is
s() —exp |- Lrfa2 - @ly]
* Wy 2 x x ’

wi
r = —log (—)
wo

The use of this operator to expand the waist of a funda-
mental mode is depicted in Fig. 5. The same form of operator
applies in the y direction for creation (annihilation) operator
a; (ay). A similar form for this operator was also specified in
[53], which uses a different formalism to apply operators to
Gaussian modes.

(28a)

(28b)

2. Changing the mode angle

Finding the transformation operator to rotate the direction
of propagation of the field is considerably more involved.
This is because rotating an optical field E(x,y, z,t) is not
equivalent to rotating all of the basis states {u,,,(x, y, z)} due
to two main complications. First, as the mode envelope is
rotated, the implicit axial phase exp(FFikz) must rotate with it.
This “hidden” component will turn out to be the quantitatively
dominant component of the rotation matrix. Second, while
the optical field is a vector quantity, mode mixing is a scalar
theory, with the polarization € factoring out. The rotation
operator in the mode-mixing formalism rotates only the scalar
field, whereas in a vector theory the rotation operator would
also rotate the direction of the vector field.

With those complications noted, the operator to rotate the
propagation direction can be derived. We consider an optical
field E(x, y, z, t), which is a function of coordinates x, y, and
z. Next we define a new Cartesian coordinate system in which
the axes have been rotated about the y axis to yield

¥ =xcos(¢y) +zsin(gy), Y =y,
7 = zcos(¢y) — xsin(¢y). (29)
The same optical field can be expressed in the new coordi-
nate system through the function E’(x’, y', 7/, t). The function

E’ encodes the same field as E, but, in its basis, the prop-
agation direction is rotated towards the x’ axis in the x'-7’
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(a) T ,,v‘; x'

FIG. 6. Geometry used to derive the xz rotation operator and an example of its application to rotate the propagation direction of a
fundamental mode. (a) A single field is described by two functions: E (x, y, z, t) in coordinates x, y, z, and ¢ and E'(x', y/, 7/, t) in coordinates
x',y', 7/, and t, where the primed coordinate system has been rotated by —¢, in the xz plane. The fields are depicted through their 1/e waists,
the thick blue solid lines and thick red dashed lines for E and E’, respectively, which overlap. (b) If the coordinate arguments of both functions
are the same, E’(x, y, z, t) (red dashed 1/e waist) describes the same beam as E(x, y, z,t) (blue solid 1/e waist) but with the application of
a rotation by ¢, in the xz plane. (c) A fundamental mode with propagation angle ¢, (red intensity plot) is expressed in the basis of modes
propagating along the z axis with ¢, = 0 (blue solid lines indicating the 1/e waist). (d) Amplitude of the coefficients of the rotated mode in
the ¢, = 0 basis for n, € [0, 8], where the image depicts the intensity profile of the basis states in the xz plane and the bar the amplitude of the
basis state in the superposition. The yellow dashed lines indicate the surfaces on which the electric field of the basis state has the same phase as
the central plane. As for Fig. 5, the phase of the basis state coefficients and the Gouy phases of the basis states contribute to the mode intensity

in (c).

plane. Therefore, the transformation that takes the function
E to E’ is the operator for the propagation direction rotation,
provided the coordinate arguments to both functions are the
same. The coordinate systems used to derive the propagation
direction-rotation operator, as well as the application of this
operator to rotate the propagation direction of a mode, are
depicted in Fig. 6.

The equivalence of E and E’ in real space means that
E'(X,y,Z,t) =E(x,y,z,1). (30)

Now we assume that the rotation angle is small and thus
denoted by 8¢,. As, in the conventions of this paper, the mode

coefficients are not functions of the axial coordinate, any axial
coordinate 7' could be chosen, but for algebraic convenience
we choose the z/ = 0 plane. A first-order approximation yields

/

/ /
xX=x, y=y, z=x08¢,
3D

E'X,y, 7 =00)=Ex=x,y=y,2=x8¢.1).
Recalling that the electric field E is described by mode func-
tion u® through Eq. (7) (and equivalently for E" and u'®),

WDy, 7 =0)=uPx=x,y=y,2=x5¢,)

x explFik(z = x'8¢,)]. (32)
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Using the first-order expansions in §¢,, we obtain

9
WP (x,y,0) = [1 + x8¢, <q:ik + 8-)}#)@, y,0), (33)
Z

where x’ = x and y' = y have been used to unify the function
arguments. This therefore expresses the transformation of the
basis functions associated with infinitesimal rotation of the
electric field.

J

PE($,) = exp {:wa%w‘)[(ax + ai)(l +

where the exponential is evaluated using the methods intro-
duced in Sec. IITE. Extending this form to more general
changes to the propagation direction requires care, but, for
the purposes of the analysis in this paper, the direction of
transverse misalignment defines the x axis and therefore the
propagation direction must lie in the xz plane.

H. Calculating mode angles

Finally, before effecting the mode rotations of Sec. Il G 2,
it is often useful to determine the propagation angle of the
mode, which can be determined by calculating the expectation
value of the angle operator

o = Gk
ox

= (Fi/(kwp))(a, — al),

which is valid in the paraxial approximation. The eigenstates
of this operator are plane waves propagating at angle ¢, to the
z axis in the xz plane. This capability is useful to understand
properties of resonant modes for misaligned cavity configura-
tions.

(35a)

(35b)

IV. DEMONSTRATING THE METHOD

A. Selecting the mode of interest

The mode-mixing method produces a set of cavity
eigenmodes {|\V;)} and corresponding eigenvalues {y;}. The
important data within these sets are the mode profile and
round-trip loss of the particular eigenmode that will be used
in the application at hand, and therefore a mode of interest
should be identified. For the majority of applications using
spherical cavities, the fundamental mode is more useful than
the higher-order transverse modes. When the cavity mirrors
are transversely misaligned or nonspherical, we expect the
propagation angle and central waist of the fundamental mode
to change (see Sec. II). Therefore, for this investigation, the
eigenmode chosen is the |V;) that maximizes the overlap
|(\Il,'||\11(f0)|2 with the geometrically expected mode denoted
by |WE).-

The geometric expectation |\Ilgo) has thus far been
parametrized through the propagation direction and the cen-
tral waists in two principal directions, whereas the cavity
eigenmodes {|W;)} are expressed as coefficients in a basis
propagating along the z axis. To find the overlap of the cavity

For finite rotations, the infinitesimal operator can be ap-
plied successively, and existing results can make the final
form more useful. First, the x operator in the z = 0 plane is
X|;=0 = (kwo/2)(a, + a;) [see Eq. (15)]. Second, the basis
functions satisfy the paraxial equation (8), and substituting the
transverse derivative operators from Eq. (15) leads to the xz
propagation direction operator

1
W[(ax —a)? + (ay — aj)z]ﬂ } (34)

(

eigenmodes with the expected mode, the cavity eigenmodes
were expressed in the same basis as the expected mode by
first expanding or contracting in the two transverse directions
independently to set the waists and then rotating the mode in
the xz plane to set the propagation direction, according to the
methods of Sec. III G.

B. Comparing to standard methods

Results obtained using the procedure for constructing mir-
ror matrices using operators (presented in Sec. III) were
compared with those found in the literature for the case of
a Gaussian-shaped mirror [Figs. 7(a)-7(d)]. The round-trip
loss was calculated as a function of cavity length for three
different Gaussian waist values using both methods. Due to
the different calculation bases employed by the methods, the
results are not expected to be identical, but should agree up
to convergence effects. As shown in Figs. 7(e) and 7(f) for
the vast majority of cases, the methods predict round-trip
losses with a fractional difference between one-hundredth
and unity, discrepancies that are practically indiscernible
amidst order of magnitude variations described in the data.
The exceptions to this are highly concentric configurations,
where there is a substantial difference between the losses
predicted.

The methods presented for translating the mirror matrices
(Sec. III F) enable the data generated for aligned configu-
rations to be simply extended to misaligned configurations
[Figs. 7(g)-7(@1)]. This capability allows for the round-trip
loss of cavities with transverse misalignment to be properly
simulated, unveiling a rich structure of lossy bands in the
length-misalignment parameter space that split into multi-
plets as the misalighment increases. Many of these bands
can be traced back to loss peaks in the length scan of the
aligned configuration, but some [such as the high loss bands
in Fig. 7(h) appearing to originate from small misalignment at
L/R = 1.5 pym for D = 5 um] cannot. This implies that resid-
ual misalignment introduces mechanisms of loss that do not
feature for perfectly aligned cavities. A detailed discussion of
the mode-mixing physics evident in Fig. 7 has been presented
elsewhere [19].

V. CONCLUSION

We have developed methods to calculate the modes of cav-
ities with nonspherical and transversely misaligned mirrors.
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Podoliak et al. [35]
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FIG. 7. Comparison of round-trip loss data for cavities with Gaussian mirrors generated with (a) and (b) standard methods and (c)—(f)
methods described in this paper. All mirrors have a central radius of curvature of R. = 500 um and the interrogation wavelength is 866 nm.
(a) Round-trip loss data generated using standard techniques for cavities with Gaussian mirrors of three depths as a function of cavity length
over the whole stability region and (b) in a small region of lengths to the concentric side of the confocal length. Data were taken from [34].
The basis used was a Laguerre-Gaussian basis up to n = 30. (c) and (d) Equivalent round-trip loss data generated using the methods detailed in
this paper, using a basis of the first 30 even states in both Cartesian directions. (e) and (f) Difference of the round-trip loss predicted by the two
methods, expressed as a fraction of the loss predicted by the standard literature method of (a) and (b). Data are not shown where the literature
round-trip loss is below 107'2. (g)-(i) Round-trip loss as a function of length and misalignment for the three mirrors using the translation
methods described in Sec. III F. Configurations where the region inside one waist of the expected mode (as predicted by the theory of Sec. II)
would not be fully enclosed within the concave region of the Gaussian mirror are left white. Below round-trip losses of 1072, numerical noise
becomes significant, and thus these results are left black.
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We used a classical ray model to predict the mode axis and
central waist of the resonant mode of a misaligned cavity, us-
ing these results to understand the output of a more complete
mode-mixing method. This method is inspired by existing
techniques that exploit well-known operator forms and trans-
formation matrices to model mode mixing in cavities with
different mirror profiles and to simply extend these models
to include mirror misalignment.

The theory introduced in this paper is applicable to a va-
riety of mode-mixing scenarios. First, for particular mirror
shapes where the deviation from the ideal parabolic profile
can be expressed as a sum of polynomials in the transverse co-
ordinates, or as a Gaussian function, the mode-mixing matrix
is calculated using analytical results and a matrix exponen-
tial, removing the need for any overlap integrals of the basis
functions with the mirror profile to be taken. Second, once the
mirror matrix has been obtained, the mirror can be translated
using operators (which also do not require integrals to be
calculated). This allows for the cavity mode structure under
transverse misalignment to be determined in a simple manner
and, in our experience, more quickly than with conventional
techniques.

We anticipate the methods developed in this work will find
application in the simulation of optical resonators with non-
spherical mirrors, particularly for cases where the transverse
misalignment of the mirrors is not negligible. An analysis of
cavities with Gaussian-shaped mirrors utilizing the methods
of this work is presented in [19].

Data underlying the results presented in this paper
are available in Ref. [54]. The code that generated the
data may be obtained from the authors upon reasonable
request.
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APPENDIX A: DERIVATION OF OPERATORS
IN THE HERMITE GAUSS BASIS

To derive the operator forms of x and 7=, we start by
comparing the mode amplitude of the basis states introduced
in Eq. (10),

W (x,y,2) = a()H,, v H,, v
g w() w@)

X exp —M exp :}:ikxz—i_y2
w(z)? 2R, (z)

x exp[%i(n, + ny, + 1)¥s], (AD)

with the mode of the quantum harmonic oscillator of mass m
and resonant frequency €2,

PO (x,y) = "2 N, (72
h ; h

Q 2 2
X exp <_W> (A2)

The quantum harmonic oscillator has operators

h 1
O =\ oo [d + ()], (A3a)

a\" m2r ho HO\ T

_ = , A3b
() =ale-@ oo
HO

shown in terms of the harmonic annihilation operator a,
[56]. In the case that the parameters of the harmonic oscﬂ-
lator and Gaussian mode are related by m/2h = 1/w?, the
respective wave functions are related by

2R
DWg].

X2+
UE (e y) = Y O, exp (:sz Y )

x exp[xi(n, +ny, + (A4)

Therefore, the x operator in the cavity mode basis set can be
found in terms of the x operator in the harmonic-oscillator
basis

x:,izl e ——/ Uy n, (x, y)xun (6 y)dxdy, (AS5a)
oy Ty s y
£ = exp[£iW¥ +n,—n. —n
1,y p[ l G(nx ny n, ny)]
/W*HO(X y)xwm n, (x,y)dxdy, (A5Db)
x(i) B ex . o
1, nen I NN pl+iVe(n, +ny —n, — nj)l.
x0Ty 1A TRy J
(A5c¢)

The analogy between the wave functions then leads to
X = W jw(a, +a)Us”, (A62)

(Ug )(i)

1 I e, Ry

= Ou 0, O, ., €XplEIVG(ny + 1y + 1)],
(A6b)

where a, is the annihilation operator in the x direction for

the mode functions ufﬁ,‘ (x,y, z), which acts equivalently to

the a!© operator on the harmonic- oscﬂlator wave functions.

A s1m11ar approach can be used for the . operator
PRES)
< = / 't (x, y)—uni o (x, y)dx dy, (A7a)
3Xn;,n_;,m,ny s Y ox et
PES)
— = exp[i¥s(n, +ny —n, — n;)]

;o
aXnX,ny,nA,ny

)
x /S (w,ff,‘,?(x,y)—%) e y))

+ [ o (Fik ) v, e |dxay.
(A7b)
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a = a9 "0 ik
5 =, “”)T(a S [N D)

resulting in the expression

0 1 wk
0= (Ué?)*(;(ax —a)TF iop (@t @))Ugi), (A8)

which can be converted algebraically to the more convenient

form
d (—1 (@ — a;b). (A9)
wo

APPENDIX B: FINDING THE GAUSSIAN
PROFILE MATRIX

The formula for the Gaussian profile surface matrix in
the Hermite-Gaussian basis [Eq. (19)] is calculated following
the method of Appendix A of [50]. To evaluate a unit-depth
one-dimensional Gaussian as a matrix, we start by expanding
using the transverse coordinate operator of Eq. (15),

ex _ﬁ _(U(i))TeX l(aT)2+l(aT)2
PA7w2) = We ) &P X3 2

e

1
+§(aaT + aTa)j| }Uéi) (Bla)

= (UG explx (K + K+ 2K)IUS”,
(B1b)

X=—57% (Blc)

2
2w

where K, K_, and K are %(aT)z, %(a*)z, and %(aaT +a'a),
respectively, and the annihilation operator a represents a, (a,)
for the x- (y-)directed Gaussian function. Now use that K,
K_, and K have the same commutation relations as —o, o_,
and %03, where

(0 -1 (0 0
+=1o o) ==l o)

1 0
%03:%(0 _1>. (B2)

Next we equate the coefficients of the exponent and
normal-ordered exponents of the two-dimensional matrices,
where the normal form has coefficients ¢, ¢’, and 7,

exp[¢ (—o)] exp[—n(03)] exp[¢'(0-)]
= explx(—=oy) + x(0-) +2x(03)]. (B3)

Expanding the two sides of this equation gives

c=¢=1T =2mdo0. B

The two-dimensional matrices are substituted back for cre-
ation and annihilation operators to obtain

explx (K;: + K_ + 2Kp)]

_ x 1. :0
-eof2 o)

1
X exp (—21n(1 — X)Z(aaT + aTa))

X exp (T—(a) ) (BS)

The normal operator form can be evaluated simply in

the Hermite-Gaussian basis to obtain the result quoted in
Sec. III D:

2 ()
exXp | — -
we m',m

— Wy =yt (K
2
« [ﬁ] (XT) U(:t) (B6a)
("5 4 k)l (m — 2k)0 ¢
lw(z)2
_ 1 B6b
X 2w (Béb)
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