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Ab initio calculations of the high-order harmonic enhancement in small noble-gas clusters
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We report calculations of the high-order harmonic spectra of few-atomic clusters of two noble gases, helium
and krypton, subjected to laser pulses of intensities above 1013 W/cm2. We employ a fully ab intio framework,
namely, the real-time time-dependent configuration interaction singles coupled to a discrete Gaussian basis set.
Our model reproduces the observed higher-than-quadratic dependence between the high-order harmonic yield
and the number of atoms, and the obtained value of the enhancement rate is in quantitative agreement with
experimental results. We suggest a mechanism responsible for the high-order harmonic enhancement, according
to which, after the tunneling ionization, the residual ion polarizes the electron densities of surrounding atoms in
the cluster, which leads to increased electron-electron repulsion during the recollision. The proposed mechanism
is not only fully consistent with both our calculations and the experimental data, but can also explain the
limitations of previous theoretical studies on high-order harmonic generation in clusters.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a strongly non-
linear optical process in which a gaseous, liquid, or solid
medium exposed to an intense laser field produces ultrashort
pulses of high-frequency radiation in the extreme ultravio-
let (XUV) to soft x-ray range. Thanks to their exceptional
spatiotemporal coherence and unprecedented timescales from
femto- to attoseconds, these pulses are an invaluable tool in
attophysics, as they can be used for investigating the electronic
dynamics in atomic or molecular systems [1,2]. A variety
of possible applications of high-order harmonic radiation in-
cludes, but is not limited to molecular orbital tomography [3],
determining molecular structures [4], obtaining vibrational
signatures [5], and studying quantum coherence phenomena
[6,7].

Historically, atomic noble gases were the first medium
commonly used for HHG due to their high ionization po-
tentials and thus favorable harmonic conversion efficiency
[8–11]. The mechanism of HHG in single atoms is now well
understood, as it has been explained by the well-known three-
step model (3SM) of Corkum [12–14] and Lewenstein [15].
According to the 3SM, a single HHG event initiates with
laser-induced tunneling ionization of the atomic target. The
resulting free electron is driven away by the laser field and
then reaccelerated towards the residual ion when the field
switches its sign. In the final step the electron and the ion
recombine, which is accompanied by the emission of radiation
of frequency equal to some multiple of the driving frequency.
From this model the characteristic shape of the HHG spectrum
can also be deduced, consisting of three distinctive regions:
(i) the perturbative region characterized by the rapid decrease
of intensity of the first few harmonics, (ii) the plateau with

*ap.wozniak@uw.edu.pl

nearly constant harmonic intensity, and (iii) the cutoff region
with an abrupt drop of the harmonic intensity at the cutoff
energy Ecut = Ip + 3.17Up, where Ip is the ionization potential
of the target and Up is the ponderomotive energy of the driving
field. The predictions of the 3SM were later generalized to
polyatomic systems [16,17] and confirmed experimentally in
simple molecules [18]. However, the common factor of all
gaseous media is a relatively low intensity of harmonic ra-
diation caused by their low density [19].

Another promising candidate for efficient harmonic gener-
ation is van der Waals clusters of noble gases characterized
by high local atomic density comparable to that of solids and
liquids that result in very efficient absorption of laser radia-
tion [20]. Noble gas clusters can be obtained under certain
pressure and temperature conditions and may exist in a wide
variety of sizes, ranging from a few to a few million atoms.
Experimental observation of HHG from clusters was reported
first in argon [21], and later also in krypton [22] and xenon
[23] jets. Most of the authors observe a significantly increased
harmonic yield of clusters when compared to atoms [21,23–
28], while some of them also report a stronger dependence
of the cluster harmonic intensity on the driving field strength
[21,26], suggesting a mechanism of HHG slightly different
from the atomic 3SM. In order to explain this enhancement,
several alternative recollision scenarios were proposed that
would serve as extensions to the 3SM. In the “atom-to-itself”
scenario, each atom within the cluster acts as an independent
emitter and the ionized electron always returns to its parent
ion. In the electron-hole picture, the electron hole, created
when an electron is ejected from one of the atoms, remains lo-
calized on the residual ion throughout the electron’s presence
in the continuum. In the “atom-to-neighbor” pathway, the
electron can also recombine with ions neighboring the parent
ion. These adjacent ions can be generated when the electron
hole moves from the residual ion to one of the neighboring
atoms while the electron is in the continuum, or as a result of

2469-9926/2024/109(1)/013523(13) 013523-1 ©2024 American Physical Society

https://orcid.org/0000-0002-1172-6718
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.013523&domain=pdf&date_stamp=2024-01-31
https://doi.org/10.1103/PhysRevA.109.013523
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these atoms undergoing ionization themselves [29]. Finally,
in the “cluster-to-itself” scenario, the ground state electronic
wave function of the cluster is partially or wholly delocalized
over its constituent atoms. Therefore, when the electron is
ionized, the resulting electron hole also is spread over the
entire cluster volume and the recombination occurs not at
particular atomic centers but within the cluster as a whole
[22].

Aside from increased conversion efficiency, some of the
earlier works also report an extension of the cutoff energy
in cluster HHG [24,26] that can only be explained with the
two latter mechanisms. According to the three-step model,
the cutoff position can be inferred from the lengths of the
semiclassical trajectories traversed by the ionized electron. In
an idealized scenario of the atom-to-itself recombination, a
single HHG event is confined to only one atom within the
entire cluster, where both tunnel ionization and recombination
occur, and the presence of the neighboring atoms has no
influence on the process. Therefore, the electron’s trajectories
and the cutoff position are the same as in the case of an
isolated atom. On the other hand, in the neighbor-to-itself
pathway the electrons trajectory may be extended or shortened
by the distance between the atom from which the ioniza-
tion occurs and the atom at which the recombination takes
place. Similarly, in the cluster-to-itself scenario the electron
may be detached from and recombine with different parts
of the cluster, which also alters its trajectory. Therefore, in
both of these recombination pathways additional harmonics
should be observed beyond the 3SM cutoff of a single atom.
However, more recent studies do not confirm such a cutoff
extension [27,28], suggesting that regardless of the cluster size
the predominant recombination scenario is atom-to-itself [30],
while the enhancement of the harmonic intensity may rather
be attributed to clusters’ increased polarizability and lowered
ionization potential [27,28]. Park et al. [27] observed that the
harmonic yield increase is most pronounced in the smallest
clusters containing up to a few hundred atoms for which the
enhancement rate grows rapidly with size, but clusters beyond
some optimal size quickly lose this feature. This was also
confirmed by Tao et al. [28], who suggested that while in small
clusters the optical response can be generated in the whole
cluster volume, in large clusters only atoms on the surface
contribute to HHG due to field screening and reabsorption
of the radiation by the cluster core. Despite these findings,
some of the questions still remain open, such as how exactly
the interatomic interactions lead to the enhancement of total
optical response and how the transition between atomic HHG
and cluster HHG occurs. Addressing the latter issue requires
further studies on the smallest clusters (of sizes below 100
atoms) that are, alas, difficult to obtain with currently used
experimental techniques.

The topic of HHG enhancement in noble gas clusters
has also been investigated using various theoretical methods,
usually relying on the single-active-electron (SAE) approx-
imation or reduced dimensionality models [27,29,31–36].
However, the results of these simulations are sometimes am-
biguous and may heavily depend on the assumptions made
during the construction of a particular model, such as the
effective potential of the cluster atoms and the shape of the
initial electronic state. For example, de Aldana et al. [33]

demonstrated that an extension of the cutoff energy up to Ip +
8Up can be achieved if the initial electronic wave function is
distributed over all atoms within a cluster, but harmonics in
this energy range were never observed experimentally. A sim-
ilar cutoff position was predicted by Hu et al. [31], and later
by Véniard et al. [29] and Zaretsky et al. [34], who explained it
by the atom-to-neighbor recombination. However, as pointed
out by Véniard et al. [29], this mechanism should be most
effective when the distances between adjacent atoms are close
to the quiver amplitude of the ionized electron, which is a
value far larger than typical interatomic distances in noble gas
clusters. On the other hand, Park et al. [27], who assumed only
partial delocalization of the active electron, obtained results
consistent with the 3SM cutoff prediction that agreed with
their experimental observations.

In this paper we report calculations of the high-order
harmonic spectra for the smallest noble gas clusters con-
taining less than ten atoms. Aware of the limitations of
approximate numerical models, we decided to use a fully
ab initio framework known based in quantum chemistry,
namely, the real-time time-dependent configuration inter-
action singles (RT-TDCIS) with the linear combination of
atomic orbitals (LCAO-MO) representation of the electronic
wave function in a discrete Gaussian basis set. RT-TDCIS
has already been successfully applied to predict HHG spec-
tra of various atomic [37–44] and molecular [45–52] species
and becomes an attractive alternative to models based on
SAE, especially for systems with high complexity and large
numbers of nuclei. It is worth mentioning that this approach
was shown to semiquantitatively reproduce the ratio between
HHG intensities of different compounds [48], which renders
it potentially suitable for investigating a similar problem of
HHG enhancement in noble gas clusters. For the main model
noble gas we choose helium and consider clusters consisting
of four, six, and eight He atoms. Although, due to helium’s
low condensation parameter [53] and very high pressures re-
quired for its clusterization, HHG from He clusters has not yet
been experimentally observed, the existence of the clusters
themselves is well documented in literature [54]. From the
theoretical point of view helium is particularly advantageous
as it has only two electrons, which allows for a fully explicit
treatment of even the largest of the considered clusters at a
reasonable computational cost. However, in order to further
validate that our findings for helium translate well to heavier
noble gases, we also perform calculations for the smallest
tetratomic cluster of krypton.

The paper is constructed as follows: In Sec. II we provide
an outline of the theory. In Sec. III we present and discuss the
numerical results. Finally, in Sec. IV we summarize our work.

II. METHODS

RT-TDCIS provides an approximate solution to the time-
dependent Schrödinger equation (the atomic units are used
throughout the paper),

i
∂

∂t
�(t ) = Ĥ (t )�(t ), (1)

by expanding the time-dependent n-electronic wave func-
tion �(t ) in the basis of the time-independent configuration
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interaction single (CIS) states �k ,

�(t ) =
∑

k

Ck (t )�k . (2)

The CIS ground state �0 = �HF, the Hartree-Fock ground
(reference) determinant. Since we describe the time evolution
of closed-shell systems without any spin-dependent perturba-
tion, we only need to consider singlet excited states �k>0,
which are linear combinations of all singly excited singlet-
state configurations �a

i ,

�k>0 =
nocc∑

i

nvir∑
a

ca
i,k�

a
i . (3)

where the summation is over nocc occupied and nvir vir-
tual orbitals. The excited states are obtained by solving the
eigenequation of the ground state CIS Hamiltonian, Ĥ0ck =
Ekck , where Ek is the energy of the kth electronic state. Ac-
cording to the Brillouin’s theorem, there is no mixing between
the Hartree-Fock determinant and the excited configurations,
therefore E0 = EHF.

In this work, the time-dependent Hamiltonian Ĥ (t ) is rep-
resented in the length gauge, as a sum of the ground state
Hamiltonian and the electric field operator in the dipole ap-
proximation,

Ĥ (t ) = Ĥ0 − �̂μ �E (t ), (4)

where �̂μ is the total dipole moment operator of the considered
system and �E (t ) is the time-dependent electric field vector
representing the external, linearly polarized laser field. In the
calculations an electric field pulse with a sine-squared enve-
lope is used,

�E (t ) =
{ �E0 sin(ω0t ) sin2(ω0t/2nc) if 0 � t � 2πnc/ω0,

0 otherwise,
(5)

where �E0 is the field amplitude vector, ω0 is the carrier fre-
quency, and nc is the number of optical cycles.

We propagate the electronic wave function using the
second-order split operator. The Ĥ0 matrix in the basis of
the CIS eigenstates is a diagonal matrix of eigenenergies,
H0kl = δklEk , while the dipole moment operator has three spa-
tial components, �̂μ = [μ̂x, μ̂y, μ̂z]. Therefore, the final matrix
propagation equation in the CIS basis reads

C(t + �t ) = eiH0�t/2

⎡
⎣ ∏

j=x,y,z

U†
j e

iE j (t )d j�t U j

⎤
⎦

× eiH0�t/2C(t ), (6)

where the unitary matrix U j transforms the jth dipole compo-
nent matrix μ j from the CIS basis to the basis in which it is
diagonal, μ j = U†

j d jU j .
The molecular orbitals (MOs) used for the construction

of the reference determinant and the singly excited config-
urations are obtained by solving the restricted Hartree-Fock
(RHF) equations in a predefined, atom-centered Gaussian ba-
sis set. In the calculations of the helium clusters we use the
aug-cc-pVQZ Dunning basis set for He, which we further

supplement with the active range-optimized (ARO) functions
introduced by us [43] to describe highly excited and con-
tinuum states of atoms and molecules. To the basis set of
each atom we add a set of three ARO functions per every
angular momentum already present in the aug-cc-pVQZ basis
set (l = 0, 1, 2, 3). The ARO functions are obtained according
to the procedure described in Ref. [43], by fitting the Gaussian
exponents to the set of Slater orbitals with n from 1 to 100 and
ζ = 1. The values of the exponents are provided in Appendix.

In order to compensate for the incompleteness of the ba-
sis set we employ the heuristic lifetime model of Klinkusch
et al. [55]. To every CIS state beyond the ionization threshold
we add an imaginary ionization rate, Ek → Ek − i
k/2. It is
calculated as a sum of the semiclassical ionization rates of
virtual orbitals, weighted by the contributions of the excited
configurations containing these orbitals to a given state,


k =
occ∑

i

vir∑
a

∣∣ca
i,k

∣∣2
θ (εa)

√
2εa/d. (7)

Here, εa is the energy of the ath virtual orbital, θ (x) is the
Heaviside function (ensuring that only orbitals with εa > 0
are ionizable), and d is a characteristic escape length, after
traveling which the electron is considered “free.” After in-
serting these modified complex energies into Eq. (6), the CIS
states above Ip are assigned finite lifetimes and the norm of the
time-dependent wave function decreases over time, simulating
ionization losses. The ionization potential in the model is
approximated from the Koopmans theorem as −εHOMO.

After performing the time propagation we calculate the
HHG spectrum in the velocity form, as the squared modu-
lus of the Fourier transformed time-resolved dipole velocity
v(t ) = d

dt 〈μ〉(t ), normalized by the total propagation time T ,

IHHG(ω) =
∣∣∣∣ 1

T

∫ T

0
W (t )v(t )eiωt dt

∣∣∣∣
2

. (8)

The components of the time-resolved dipole velocity are cal-
culated from

v j (t ) = −i
∑
k,l

c†
l (t )ck (t )〈�l |∂̂ j |�k〉, j ∈ {x, y, z}, (9)

and W (t ) is the Hann window function applied to account for
the finite simulation time.

To investigate the harmonic enhancement in the cluster
HHG we have to perform calculations for both the clusters
and the single noble gas atom. However, it is well known
that in the LCAO-MO approach the quality of the electron
dynamics description is extremely sensitive to the choice of
the basis set. Doing the computations for the atom in a single-
centered basis set may be thus suboptimal, because the lack
of mixing between functions at different centers (possible in
a cluster basis set) will lead to a much worse representation
of the time-dependent wave function, making the atomic and
cluster spectra incomparable. To avoid this we employ a dif-
ferent strategy, similar to the counterpoise correction used
in the single-point calculations of intermolecular properties
[56]. For every considered cluster geometry we obtain the
corresponding optical response of the single atom by per-
forming the propagation of the atomic wave function in the
basis set of this cluster, i.e., we remove all atoms except
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one and leave the basis functions of the removed atoms in
a form of ghost atoms. In the case of an N-atomic cluster,
we repeat the propagations for all N possible positions of the
“physical” atom, and then average the resulting time-resolved
observables to get the atomic dipole velocity. This approach,
dubbed “ghost-averaging” for short, apart from reducing basis
set inconsistencies, has an additional advantage of making
the CIS space approximately size extensive with respect to
the number of atoms. The dimension of the CIS Hamiltonian
matrix is nocc × nvir + 1, so for nvir � nocc—which is usually
desired for the reasonable approximation of the electronic
continuum—the CIS space of an N-atomic cluster tends to N
times the CIS space of the single atom in the basis set of the
cluster.

Furthermore, to account for different possible orientations
of the clusters with respect to the laser field, we perform
the calculations at 26 different electric field polarizations
along the unit vectors �ei = N [ex, ey, ez], where e j=x,y,z ∈
{−1, 0, 1} (excluding the trivial case of [0,0,0]), and N =
(e2

x + e2
y + e2

z )−1/2 is the normalization constant. The time-
resolved dipole velocity vectors (ghost-averaged in the case of
atomic simulations) �vi(t ) from all propagations are then pro-
jected onto respective unit polarization vectors and averaged,

v̄(t ) = 1

26

26∑
i

�vi(t ) · �ei, (10)

and the resulting mean dipole velocity v̄ is inserted into Eq. (8)
to obtain the rotationally averaged HHG spectrum.

In the calculations, we use the DALTON2020.0 software
[57] to generate the necessary one- and two-electron integrals
between the basis functions. All the remaining parts of the
computations—solving the RHF problem, full diagonaliza-
tion of the CIS matrix, and the real-time propagation—are
performed using a homemade suite of programs. When per-
forming calculations, we found that the large numbers of
diffuse functions in the applied basis sets, unnatural for sys-
tems comprised of noble gas atoms, proved challenging for
the convergence of the standard self-consistent field (SCF)
algorithm. For that reason we employed a specifically tailored
RHF procedure, in which we first solve the RHF equations in
the pure Dunning basis set, and then use the obtained density
matrix as a starting guess for the solution of the RHF problem
in the full (Dunning + ARO) basis set.

III. RESULTS AND DISCUSSION

A. Helium clusters

In this subsection we present the results of the calculations
for three helium clusters consisting of four, six, and eight
atoms, arranged in a tetrahedral, octahedral, and cubic man-
ner, respectively (Fig. 1). The distance between the closest
He atoms is set to 3.60 Å, which is the experimental value
of the average He-He interatomic distance in liquid helium
nanodroplets [58].

The electric field pulse consists of 20 optical cycles, with
carrier frequency of 1.55 eV (corresponding to a wavelength
of 800 nm), so that the its total duration is approximately
2206 a.u. (53.4 fs). The cycle-averaged laser intensity I0,
related to the field amplitude via I0 = E2

0 /2, is set to 2 × 1014

FIG. 1. Geometries of the studied helium clusters: (a) He4,
(b) He6, and (c) He8; the dashed lines mark the distances between
closest He atoms, set to 3.6 Å.

W/cm2. We propagate the wave function with the time step �t
= 0.01 a.u. (≈ 0.24 as). The finite lifetime model parameter d
is set to 50 bohr (≈ 26.5 Å), a value that exceeds the electron
quiver amplitude under considered laser conditions. For every
considered cluster geometry we also perform a corresponding
calculation for a single He atom, using the ghost-averaging
scheme described in the previous section. After the necessary
removal of linear dependencies in the basis sets at the SCF
step, we arrive at RT-TDCIS propagation equations of orders
1489, 3271, and 5313 for He4, He6, and He8, respectively, and
376, 551, and 672 for the single He atom in the basis of He4,
He6, and He8, respectively.

The calculated HHG spectra are shown in Fig. 2. At this
point we present them in an unmodified form, i.e., without
dividing the HHG signal from clusters by any power of the
number of constituent atoms. Such a representation best mim-
ics the data acquired in experiments, where the HHG signal
is collected at different atomic densities, but the volume of
interaction between the laser beam and the target remains con-
stant, resulting in different amounts of atoms in the sample.
As a preliminary remark, it can be noticed that the atomic
spectra obtained using different cluster basis sets vary slightly
from one another, which is an unavoidable drawback of the
ghost-averaging approach. To check whether all three basis
sets provide a comparable quality in describing the electronic
dynamics, in Fig. 3 we compare the atomic spectra from
Fig. 2, along with a spectrum of the He atom calculated using
a single-centered aug-cc-pVQZ + ARO basis set. One can im-
mediately notice a substantial difference in the description of
the atomic HHG when transitioning from the single-centered
to the four-centered basis set, with the former being unable
to reproduce the majority of the harmonic peaks. On the other
hand, the spectra obtained using three multicentered basis sets
are extremely similar to each other, especially in the plateau
region. The differences in the peak intensities in the spectra
obtained using different cluster basis sets are, in fact, negli-
gible compared to the differences in peak intensities between
every atomic spectrum and its corresponding cluster spectrum
in Fig. 2. This indicates that expanding the basis set from
the single-centered one to the four-centered one is sufficient
to achieve resolution convergence, and further addition of
ghost atoms has minimal effect on the description of HHG.
However, we would like to emphasize that while ensuring
the proper accuracy of the basis sets is an important factor in
validating the correctness of our model, from the perspective
of this work, it is far more crucial for each cluster spectrum
and its corresponding atomic spectrum to be computed using
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FIG. 2. Computed HHG spectra of atomic helium and helium clusters. The black vertical lines denote the 3SM cutoff position.

bases of identical resolution, which, in our case, is ensured by
the use of ghost atoms.

The first important observation regarding the spectra in
Fig. 2 is that the cutoff positions of both atomic and clus-
ter spectra are in good agreement with the prediction of the
three-step model. In the atomic HHG the cutoff is well local-
ized, as the intensities of the peaks beyond the 41st harmonic
(3SM cutoff position) quickly drop to the level of numerical
noise. In the clusters the decrease of the harmonic intensity
is marginally slower, which results in the cutoff region being
more spread over a few consecutive harmonic orders. This
is best seen in the spectra of He6 and He8, where additional
peaks can be seen up to 50th harmonic order, although their
intensities are a few orders of magnitude lower compared
to the ones in the plateau region. Overall, the range of this
cutoff extension is nowhere near the value of Ip + 8Up re-
ported by earlier theoretical works, and remains consistent
with the experimental data for heavier noble gases, indicating
that HHG in small clusters is still dominated by the three-step
mechanism with atom-to-itself recombination.
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FIG. 3. HHG spectra of atomic helium computed in the single-
centered aug-cc-pVQZ + ARO basis and in basis sets of three
considered clusters (denoted as [system]/[basis set]).

In order to determine and quantify the presence of the HHG
enhancement in the obtained cluster spectra, we first have
to recall that the HHG signal depends quadratically on the
optical response of the system, which in our case is chosen
to be the dipole velocity [Eq. (8)]. Therefore, if there is no
enhancement, the HHG signal of a system of N noninteracting
atoms, such as an ensemble of noble gas atoms in a gas phase,
should scale as N2 times the HHG signal of a single atom, a
property that is sometimes referred to as the “quadratic law”
[27,29]. This relies on highly idealized assumptions that the
optical responses of all atoms add up perfectly coherently,
and that there is no reabsorption of the emitted radiation.
While both of these conditions are met in our model, they
are obviously not satisfied in real physical conditions, so
the experimentally measured dependence is often lower that
N2 [26,27]. The steeper increase of the harmonic yield with
atomic density in clusters compared to atoms is usually ob-
served in experiments as an abrupt change in the slope of the
log-linear relationship between the backing pressure and the
HHG signal, which accompanies the cluster formation. This
behavior is commonly interpreted as a transition from the
quadratic law to a higher-than-quadratic dependence between
the number of atoms and the HHG intensity, Nk with k > 2
[23,27,28]. In order to allow a comparison with experimental
findings, we apply the same model to the obtained results.
To verify the presence of the harmonic enhancement, we
calculate the ratios between the average peak intensities in the
plateau region (harmonics 9–41) of the cluster HHG spectra
and of the corresponding atomic HHG spectra. We then fit a
power function Nk to the generated set of points, and obtain
the value of k = 2.13 (Fig. 4). This confirms a relatively
small, yet significant—given that all the points lay above
the quadratic line curve—HHG enhancement in the helium
clusters. However, in the experimental works the dependence
between the HHG signal and N is not usually measured for all
plateau harmonics, but only for one or a few of them that are
characterized by highest overall yield or exhibit the strongest
level of enhancement [21,23,25–28,30]. Therefore, from each
spectrum we also pick the harmonic peak with the highest
cluster-to-atom intensity ratio, and perform a second power
fit, this time obtaining a larger value of k = 2.76.
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the number of atoms, calculated from the average plateau peak inten-
sity (blue squares) and from the intensity of the plateau harmonic that
exhibits strongest HHG enhancement (red circles). The solid lines are
the power functions Nk fitted to each data set, with their respective
equations shown above them.

At this point it is necessary to discuss the limitations of the
applied model, with a particular focus on the lack of higher
excitations within the RT-TDCIS approach. From the perspec-
tive of the laser-driven electron dynamics, excitations higher
than single are required for the description of two distinct
classes of phenomena: the dynamic correlation between the
electrons in the residual ion and the ejected electron, and
the processes which involve the detachment of more than
one electron from the system, such as nonsequential double
ionization. The former subject has been extensively studied
theoretically by us and by other authors [44,50,52,59–65],
with an overall conclusion that although the inclusion of
dynamical correlation has some subtle effects on the HHG
process, the majority of the features of HHG can be recov-
ered using a noncorrelated approach. The issue of multiple
ionization, on the other hand, feels more relevant to this study,
as RT-TDCIS is unable to describe a scenario in which two
or more atoms within the cluster become ionized at the same
time. However, our results clearly suggest that HHG in noble
gas clusters can be described using a model with only one
electron per whole cluster undergoing tunneling ionization.

This indicates that at some point during the formation of small
clusters there is a transition from the mechanism in which all
atoms act as independent harmonic emitters to the molecular-
like mechanism in which the cluster becomes only singly
ionized. Otherwise, an N-tuply excited wave function would
be required to reproduce not only the HHG enhancement, but
also the quadratic law in an N-atomic cluster.

In order to get more insight into the possible mechanism of
the HHG enhancement, we analyzed the clusters’ ionization
potentials (estimated by −εHOMO), as well as static dipole
polarizabilities and dynamic dipole polarizabilities at 800 nm,
as these properties are most frequently cited as associated
with the harmonic yield increase [27,28]. All the properties
were calculated at the RHF level of theory, using the same
basis sets as in the real-time propagations (Table I). It can
be seen that both the static and dynamic polarizability of
every investigated He cluster is practically equal to the sum
of polarizabilities of isolated He atoms. Moreover, the exam-
ination of the ground state wave functions has shown that the
molecular orbitals of He clusters are to a great extent linear
combinations of molecular orbitals of isolated He atoms. This
is further evidenced by extremely small differences between
the energies of highest and lowest occupied MOs in all con-
sidered clusters, also given in Table I. The observed lack of
mixing between the MOs of constituent atoms should not
be surprising, considering that we perform calculations for
van der Waals bonded systems using a method that neglects
dynamical correlation, and hence cannot describe dispersion
interactions. However, the fact that even when using an uncor-
related approach that may underestimate orbital overlapping
between different atoms, we can successfully reproduce the
HHG enhancement, suggests that this phenomenon should not
be attributed to the ground state correlation or its delocaliza-
tion. These observations indicate the absence of any excess
atomic polarizability within the clusters that could be respon-
sible for the increase of the harmonic yield, as well as provide
additional evidence against the cluster-to-itself recombination
scenario, favoring the atom-to-itself one. More precisely, the
obtained results allow us to postulate a specific variant of the
atom-to-itself recombination, in which the ejected electronic
wave packet is a coherent superposition of states, each of
which describes the detachment of an electron from a different
atom within the cluster. It should be noted that in the consid-
ered clusters each atom contributes equally to every cluster
MO due to high symmetry. If symmetry is lowered, it may

TABLE I. Ground state properties of helium atom and clusters calculated at the RHF level of theory using the aug-cc-pVQZ + ARO basis
sets: ionization potential (estimated from the Koopmans theorem), difference between highest and lowest occupied MO energy, static dipole
polarizability per atom, and dynamic dipole polarizability per atom calculated at 800 nm (ω = 0.05695 a.u.).

Ip (eV) �HOMO−LOMO (eV) α(0.0)/N (a.u.3)b α(0.05695)/N (a.u.3)b

Hea 24.978 – 1.321 1.326
He4 24.965 0.052 1.321 1.326
He6 24.952 0.078 1.321 1.325
He8 24.939 0.078 1.321 1.325

aThe presented values for single He atom are calculated in the basis set of the He8 cluster since it is the largest one used, however additional
calculations in the basis sets of He4 and He6 gave the same results up to the precision used.
bα(0.0) and α(0.05695) are one of the diagonal elements of the respective static and dynamic polarizability tensor (for each considered system
αxx = αyy = αzz for symmetry reasons).
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happen that the tunneling ionization will occur more likely
in some atoms than others, and will have a more “localized”
character.

In Table I, one can also notice a minor reduction of the first
ionization energy of helium as the cluster size increases. This
trend, although systematic, is nonetheless extremely small,
with the difference between Ip of a single He atom and the
He8 cluster of less then 0.04 eV. Such an outcome is consistent
with the obtained HHG spectra, because if both the atomic
and cluster HHG occurs via the three-step mechanism with
single ionization, any significant change in Ip would translate
to a shift in the cutoff position according to the Ip + 3.17Up

formula. When analyzing the time-resolved observables, we
observe that the amplitudes of the average atomic contribution
to the dipole moment and dipole velocity tend to slightly
decrease with increasing N as well [Figs. 5(a) and 5(b)].
This effect could be partially attributed to the lack of mul-
tiple excitations in the CIS excited states. However, since
it becomes most prominent after the external field reaches
its maximum value, it is more likely to be caused by the
decrease in the norm of the time-dependent wave function
[Fig. 5(c)], which follows a similar tendency. Although the
increase in the total ionization probability with the cluster size
may intuitively appear to be connected to the lowering of the
ionization potential, we argue that it is rather a consequence of
the discrete and finite nature of the CIS energy eigenspectrum
and a somewhat crude description of the ionization process
by the finite lifetime model. The size of the CIS space, and
hence also the amount of available excited states, scales more
or less linearly with the number of atoms. Thus, larger clusters
are characterized by a greater number of states with nonzero
ionization rates. The larger total polarizabilities of clusters
compared to individual atoms allow more of these states to
become populated in the laser field, which leads to higher
ionization losses. This becomes evident when comparing the
differences in ionization potentials and total ionization prob-
abilities. The difference in Ip between He and He4 is exactly
the same as between He4 and He6, so if the ionization potential
was responsible for the increased total ionization probability
of clusters, we would expect to observe a similar pattern in
the wave-function norm profiles. Meanwhile, the difference
in the total ionization probability between He and He4 is
approximately two times larger than between He4 and He6,
suggesting that this quantity grows linearly with N . On the
inset in Fig. 5(c) we can notice that the ionization probabilities
per atom are equal for He and He4, and actually slightly
lowered for He6 and He8, probably reflecting the fact that the
CIS space size is not exactly proportional to N , and that the
distribution of the excited states may vary between systems.
However, we would like to note that the time-resolved norm
of the RT-TDCIS wave function is not an additive property
and it is the total, rather than atomic, ionization probability
that should be considered for its potential effect on the HHG
enhancement. Also, the finite lifetime model, just like all
other absorbing methods, is meant to simulate these ionization
regimes in which the electronic wave packets are irreversibly
removed from the systems and thus do not contribute to HHG,
i.e., above threshold ionization and barrier suppression ioniza-
tion. Consequently, higher total ionization probability should
suppress the HHG intensity, just as it decreases the amplitudes
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norm per atom.

013523-7
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of the atomic optical response. The fact that we observe the
HHG enhancement in our results indicates that this effect is
probably relatively weak (in all systems the total ionization
loss is less than 10%) or affects mostly the perturbative region
of the spectra.

In the course of the above analysis, we have established
that both the ionization potential of the clusters and their po-
larizability are unlikely to have a significant influence on the
increase in HHG intensity beyond the quadratic law. There-
fore, it is reasonable to consider investigating an alternative
mechanism that could be responsible for the boost in the
harmonic yield. It should be also kept in mind that in light
of our results, a single cluster should be viewed as a unitary
HHG emitter undergoing single tunneling ionization, and not
as an ensemble of atoms responding to the external field. Here,
we present a putative mechanism of the HHG enhancement. It
is conceptually similar to the one proposed by Gordon et al.
in Ref. [66] to explain why heavier noble gases emit stronger
harmonic radiation then lighter ones even when subjected to
laser conditions that ensure similar ionization rates. Using
both analytical and numerical arguments, they demonstrated
that in a many-electron system all electrons, both ionized and
bound, contribute to the emission of harmonic radiation via
so-called “polarizational recombination.” When an electron
ejected from an atom with atomic number Z returns to the
residual ion, it decelerates due to the repulsive force exerted
by Z − 1 bound electrons. However, the exact same force is
exerted by the recolliding electron on the bound electrons,
causing them to accelerate as well. Since every accelerating
charge is a source of electromagnetic radiation, all Z electrons
become HHG emitters in this picture, even though only one
of them actually undergoes tunneling ionization. Naturally,
this effect can only be described at the level of a theory that
allows for the motion of all electrons, thus it is possible in
RT-TDCIS as well as in any other many-body theory but not
in SAE-based models. Since the movement of Z electrons in
a field of a screened nuclear charge of 1 is equivalent to the
movement of one electron in field of an unscreened nuclear
charge of Z , it becomes evident how the atomic number (or
the total number of electrons) is another factor, alongside the
polarizability and the ionization potential, that influences the
HHG intensity. Our mechanism relies on a similar premise.
The additivity of the atomic polarizabilities within the cluster
allows for a larger portion of the wave function to become
ionized, making its contribution to the total dipole moment
and velocity proportional to N . In our model, it also results
in an approximately linear increase of the total ionization
probability with the number of atoms. However, the increased
polarizability also affects the part of the electronic density
that remains in the cluster cation after the ionization, mak-
ing it more susceptible to deformation by the electric field.
Therefore, in a semiclassical picture, an atom within a clus-
ter that became ionized may polarize the neighboring atoms
and “borrow” some of their electron density, increasing the
shielding of its own nucleus and dissipating the electron hole
over a larger volume. As a result, the returning electron during
the recollision repels not just Z − 1 electrons as in the case
of the isolated atom, but slightly more, between Z − 1 and
Z . Thus, in compliance with the polarizational recombination
model, slightly more than Z electrons are involved in the HHG

process, which leads to the emission of additional radiation.
The polarization of the neighboring atoms by the residual ion
is expected to be most efficient within the first few atomic
shells surrounding the ionized atom, but quickly vanish at
larger distances. Therefore, in the smallest few-atomic clus-
ters the shielding of the residual ion should be proportional to
N , as all atoms may contribute to the charge dissipation, but
when the cluster size increases, this relationship should grad-
ually weaken, at some point reaching a constant value. Such a
dependence is perfectly consistent with the observed vanish-
ing of the HHG enhancement in large clusters. Of course in
this work we only propose the mechanism responsible for the
increase of the harmonic signal, while in actual large clusters
there are some additional effects, such as the screening of the
external field by the cluster, that further affect the observed
HHG intensity.

Our mechanism also explains why in the numerical models
of clusters based on SAE the HHG enhancement can be re-
produced only by introducing the delocalization of the initial
electronic state, even though multiple heuristic arguments,
referring, e.g., to the weakness of London dispersion forces
between noble gas atoms, find such delocalization improb-
able. In these models atoms other than the one undergoing
ionization are usually replaced with some fixed potentials,
such as the soft-Coulomb potential [27,31–33,35,36]. There-
fore, the shielding of the residual ion is impossible to describe
if the initial state is confined to only one atom. However,
if the initial state is distributed across multiple atoms, the
polarizability of the whole system is artificially increased, so
shielding and HHG enhancement may occur, but due to an
unphysical shape of the electronic wave function, this comes
at the cost of generating spurious harmonics beyond the 3SM
cutoff. An excellent example is the work of Park et al. [27],
who achieved a balance between the correct cutoff description
and the HHG enhancement by delocalizing the initial wave
function only over the nearest neighbors of the ionized atom.
Our results show that no initial delocalization is needed (as
actually it is not predicted by the ab initio solution), if the
mobility of electrons in all atoms is explicitly considered.

B. Krypton clusters

Although our results for the He clusters seem to provide a
consistent picture of the HHG enhancement, we also want to
check whether the mechanism we propose also remains valid
for heavier noble gases. Since the condensation parameter of
noble gases increases with their atomic number [53], we chose
to perform calculations for krypton, in which the cluster HHG
enhancement is among the easiest to observe experimentally.
Due to krypton’s much larger number of electrons, we had to
limit our calculations only to the smallest four-atomic clus-
ter. Even for such a small system the dimension of the CIS
space including excitations from all occupied orbitals is pro-
hibitively large, so we further reduce the size of the problem
by replacing the ten inner core electrons of krypton with a
small core relativistic ECP10MDF pseudopotential [67]. To
describe the outer core and valence electrons we use the aug-
cc-pVTZ-PP basis set compatible with this pseudopotential
[67], which is also supplemented with the same three ARO
functions per angular momentum as in the calculations for He
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clusters. The orders of the resulting CIS matrix equations are
18 721 for Kr4 and 5188 for a single Kr atom in the basis
of Kr4. They are still quite sizable compared to these of the
largest considered He clusters, but computationally feasible.

The four krypton atoms are arranged in a tetrahedral man-
ner, like in the He4 cluster. The distance between atoms is
set to 4.04 Å, which is the experimental value of the average
Kr-Kr distance in krypton clusters [68]. The ionization po-
tential of krypton is much lower than that of helium, so we
lower the laser intensity to 4 × 1013 W/cm2 and increase the
wavelength to 1200 nm to avoid ionization saturation. In order
to maintain the same pulse duration, we reduce the number
of optical cycles to 15. The d parameter in the finite lifetime
model is kept at 50 a.u.

Since the pseudopotentials used in quantum chemistry
have not yet been applied for the purpose of HHG mod-
eling, we first run preliminary calculations for a single Kr
atom in the aug-cc-pVTZ-PP basis set with the ECP10MDF
pseudopotential, and in the all-electron aug-cc-pVTZ basis
set (both augmented with the ARO functions), at the above
laser conditions. In this way we check whether the inclusion
of the pseudopotential has any effects on the obtained HHG
spectra. However, as seen in Fig. 6(a), the spectra obtained
in both calculations are nearly identical, showing that the
excitations from first lowest orbitals, as well as the relativistic
effects included implicitly in the pseudopotential, have neg-
ligible impact on HHG in krypton. The reason we choose
krypton and not xenon, even though the latter has an even
higher propensity for cluster formation, is that the high atomic
number of xenon makes its description unreliable at the non-
relativistic level of theory. Thus, such a comparison would not
be possible without introducing relativistic corrections to the
all-electron Hamiltonian, which is beyond the scope of this
study. Figure 6(a) also shows the effect of adding the ghost
atoms on the atomic spectrum of Kr. While the single-centered
basis set performs somewhat better for krypton than it did for
helium (Fig. 3), successfully reproducing all the peaks in the
plateau, it still significantly underestimates the HHG intensity,
especially in the perturbative region and near the cutoff.

The comparison between the spectra of the Kr atom and
Kr4 cluster, both calculated in the basis set of Kr4, is presented
in Fig. 6(b). Once again it can be noticed that the cutoff
position is practically the same in both spectra, and it is in
good agreement with the 3SM prediction. This confirms that
the atom-to-itself recombination mechanism is predominant
also in clusters of heavier noble gases. The overall HHG
yield of Kr4 is, as expected, much stronger than that of the
Kr atom, although the differences in intensities of individual
peaks are less uniform than in the case of helium clusters.
For two harmonic orders within the plateau region, 11th and
15th, the intensity of the atomic HHG is nearly the same as
the intensity of the cluster HHG. Like in the case of helium
clusters, we believe it to be a consequence of the overestima-
tion of ionization by the finite lifetime model within the CIS
approximation. Due to their discrete character, Gaussian basis
sets cannot accurately represent a true electronic continuum,
but rather approximate it with a series of resonance states.
Consequently, it is possible that certain ionization channels
are described with higher accuracy than others and have a
more pronounced effect on the ionization loss. This effect is
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FIG. 6. (a) HHG spectra of atomic krypton computed in the
aug-cc-pVTZ + ARO all-electron basis set of a single Kr atom, the
aug-cc-pVTZ-PP+ARO basis set of a single Kr atom coupled to the
ECP10MDF pseudopotential, and the aug-cc-pVTZ-PP + ARO basis
set of the Kr4 cluster coupled to the ECP10MDF pseudopotential.
(b) Computed HHG spectra of Kr4 and of the Kr atom in the basis of
Kr4. The black vertical lines denote the 3SM cutoff position.

probably more noticeable in krypton than it was in helium due
to its lower Ip. Nevertheless, the analysis of the dependence
between the HHG intensity and the number of atoms confirms
the presence of the HHG enhancement, with the growth rates
of N2.73 for the average harmonic intensity and N3.55 for the
most strongly enhanced peak (Fig. 7). Although these values
should be regarded as fairly rough estimates, given that we
base our predictions on only one cluster size, they are in good
agreement with the experimental data. For comparison, Park
et al. [27] measured a dependence N3.8±−0.4 for small argon
clusters (below 700 atoms) and predicted a similar rate also
for neon, krypton, and xenon. Tao et al. [28] reported an
approximately 100-fold enhancement of the optical response
per atom in argon clusters of N ≈ 250 atoms, with respect to
the response of an atom in the gas phase. When translated
to the HHG intensity, this corresponds to an enhancement
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FIG. 7. Dependence of the HHG intensity of the krypton cluster
on the number of atoms, calculated from the average plateau peak
intensity and from the intensity of the plateau harmonic that exhibits
the strongest HHG enhancement.

rate of about N3.7 for this cluster size. Earlier, Tisch et al.
[23] showed that xenon clusters exhibit a cubic scaling of the
harmonic yield with backing pressure, instead of a quadratic
one observed for the monoatomic gas. Our enhancement rates
may be somewhat understated due to the above-mentioned
overestimation of ionization. However, we believe that this
error is partially compensated for by not including another
factors that decrease the experimentally observed HHG in-
tensity, such as the lack of perfect phase matching, partial
incoherence of the optical response, or the reabsorption of the
emitted radiation.

What is also important is that our calculations predict that
the HHG yield increase is much stronger in krypton than
in helium. This further supports the proposed polarization
mechanism of HHG enhancement, since krypton’s higher po-
larizability and greater number of electrons can be expected to
facilitate the shielding of the residual ion and the dissipation
of positive charge over surrounding atoms. All the observa-
tions made for the ground states of the He clusters also remain
valid in the case of Kr4. They include the lack of initial state
delocalization (judged by negligible mixing between basis
functions centered at different atoms), the additivity of dipole
polarizabilities of individual atoms within the clusters, and
small differences in the MO energies between a single atom
and a cluster.

IV. CONCLUSION

To conclude, we reported ab initio calculations of the HHG
spectra of atoms and small few-atomic clusters of helium and
krypton, with the particular focus on the phenomenon of HHG
enhancement. The employed RT-TDCIS method, coupled to
Gaussian basis sets designed to describe highly excited and
continuum states, and combined with the ghost-averaging ap-
proach for obtaining the atomic spectra, proved to be able to
qualitatively and quantitatively reproduce the ratio between
HHG intensities of noble gas atoms and clusters. It is worth
emphasising that we are able to simulate HHG in both kinds

of species using a method that accounts only for single exci-
tations and single ionization. We refrain from claiming that
multiple excitations play no role in cluster HHG, but our
results strongly suggest that it can be approximately described
by a mechanism similar to the molecular counterpart of the
three-step model, with only one electron per cluster undergo-
ing tunneling ionization. The calculated growth rates of the
harmonic intensity with the number of atoms are between
N2.13 and N2.76 for He clusters, and between N2.73 and N3.55

for the Kr clusters, with the latter being in good agreement
with experimental data for clusters of heavy noble gases.
In the calculations of krypton we also showed that quan-
tum chemical pseudopotentials can be successfully applied to
model HHG.

Based on the obtained results, we propose a mechanism
explaining the anomalous increase of the emitted harmonic
radiation with the number of atoms in small noble gas clusters.
It can be summarized as follows:

(i) The initial state of the cluster exhibits little to no delo-
calization and is approximately the product of ground states
of isolated atoms, as shown by the analysis of the obtained
ground state wave functions.

(ii) The tunneling ionization and recombination in the clus-
ter occurs according to the atom-to-itself scenario, as can be
evidenced by negligible differences between the cutoff posi-
tions of atomic and cluster HHG spectra.

(iii) Despite the above two points, the cluster acts as a
unitary HHG emitter, with only one atom in the cluster being
ionized at a time. This explains why it is possible to quanti-
tatively reproduce cluster HHG using the CIS Ansatz. In our
calculations, due to the high symmetry of examined clusters,
the detached electron is in a coherent superposition of states
describing ionization from individual atoms.

(iv) The additivity of the atomic polarizabilities within
the cluster allows for a proportionally larger electronic wave
packet to undergo tunneling ionization, which is responsible
for the quadratic part of the relationship between IHHG and N .

(v) After the tunneling ionization, the residual ion’s charge
polarizes the surrounding atoms, increasing the electron den-
sity around its own nucleus. The recolliding electron interacts
with more bound electrons than in the case of an isolated
atom, which leads to emission of additional radiation and a
higher-than-quadratic HHG yield increase rate.

The above mechanism is highly consistent with the experi-
mental observations and allows for some reinterpretation of
the existing data on cluster HHG. For instance, it suggests
that the increase of polarizability with the atomic number
of noble gases is another factor responsible for the fact that
HHG enhancement is easiest to notice in heavier gases, apart
from their stronger tendency to form clusters. It is also able
to explain the failings of the SAE-based models in simulating
cluster HHG.

A natural continuation of this work would be to examine
the transition in the HHG mechanism that occurs when mov-
ing from the ensemble of individual atoms to a few-atomic
cluster. One of the ways to accomplish this is by simulating
the HHG spectra at different interatomic distances. However,
this is a formidable task for at least two reasons. First, one
must employ a wave-function Ansatz that accounts for multi-
ple excitations in order to describe the system in the limit of
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TABLE II. Exponents of the ARO Gaussian functions used in the calculations.

l = 0 l = 1 l = 2 l = 3

4.135673 × 10−2 3.199153 × 10−2 2.578541 × 10−2 2.229274 × 10−2

2.506248 × 10−3 2.717029 × 10−3 2.826471 × 10−3 2.937952 × 10−3

1.959941 × 10−4 2.992229 × 10−4 3.946262 × 10−4 4.854415 × 10−4

noninteracting atoms. Second, a basis set representation is re-
quired that can provide the same accuracy in the description of
excited and ionized states regardless of the atomic positions.
Results obtained using localized Gaussian basis sets, on the
other hand, are extremely sensitive to displacing or removing
orbital centers. The most desirable approach would therefore
be a real-time time-dependent coupled cluster or full con-
figuration interaction with a discrete variable representation
(DVR) or grid-based representation of electronic states. The
work in this direction is currently in progress in our group.
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APPENDIX: EXPONENTS OF THE ARO
GAUSSIAN FUNCTIONS

In this Appendix the exponents of the ARO primitive
Gaussian basis functions used in this work to supplement
the Dunning basis sets are collected in Table II. These expo-
nents were optimized according to the procedure described in
Ref. [43], by fitting a sampling set of 100 000 even-tempered
Gaussian functions with exponents ranging from 10 to 10−6

to the set of Slater orbitals with principal quantum numbers n
from 1 to 100 and exponent ζ = 1. The optimization was per-
formed separately for every angular momentum l . The overlap
cutoff was set to 0.15 and the cosine cutoff was adjusted to
ensure that each final set contains three ARO functions.
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