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Canonical nonlinear optics treats self-focusing as a deterministic beam evolution scenario, unfolding above
the self-focusing threshold due to the intensity-dependent change in the refractive index. While this deterministic
view is adequate for a vast class of nonlinear processes, its insight into stochastic nonlinear phenomena, including
laser-induced damage and self-focusing-enhanced spectral transformations, is limited. Here, we present a
stochastic treatment of self-focusing. We derive a closed-form analytical solution for the count rate of extreme
self-focusing events in nonlinear beam dynamics below the self-focusing threshold. We show that the rare-event
statistics of subthreshold self-focusing is highly sensitive to the signal-to-noise ratio and the bandwidth of
the laser field waveform. For low-signal-to-noise beams, the rare-event distribution of deeply subthreshold
self-focusing is shown to exhibit a manifestly nonexponential tail, thus indicating the enhancement of extreme
self-focusing events. We show that subthreshold self-focusing is further enhanced by a broader bandwidth of
the noise component of the laser field. It is such broadband, low-signal-to-noise laser fields that are especially
prone to deeply subthreshold, rogue-wave self-focusing, lowering, via a laser-induced breakdown, the lifetime
of downstream optics.
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I. INTRODUCTION: DETERMINISTIC VIEW
OF SELF-FOCUSING

Self-focusing is one of the central effects in nonlinear
optics [1–3]. Its discovery [4,5] is among the most significant
milestones of nonlinear-optical physics. Self-focusing plays
a central role in ultrafast laser technologies as it provides
a mechanism whereby the lasing modes can be locked to
enable stable ultrashort light pulse generation [6,7]. In a vast
variety of light-matter interaction scenarios, however, self-
focusing is an inevitable and uncontrollable companion of
nonlinear spectral and temporal transformations of optical
field waveforms, enhancing nonlinear processes and making
interpretation of experiments difficult [1–3]. In some of more
interesting settings, self-focusing acts in concert with other
nonlinear processes, giving rise to laser filamentation [8–10],
remarkably efficient supercontinuum generation [11,12], and
cross-range wavelength conversion [13]. Typical of high-
power lasers is the manifestation of self-focusing as a primary
cause of damage to optical components, which sets a limit on
the peak power of the laser output. It is this act of self-focusing
that the celebrated technology of chirped-pulse amplification
[14] is targeted at and helps to avoid as a route toward higher-
energy and higher-intensity laser pulses [15].

Paralleling its centrality to the experimental scenery of
optical physics and laser technologies, the theory of self-
focusing [1–3] has a very special place in conceptual
foundations of nonlinear wave dynamics. Not only does this
theory help understand self-focusing and its manifestations
in laser-matter interactions, but it also reveals the Hamil-
tonian structure of the underlying beam dynamics and sets
a framework for the analysis of a vast class of nonlin-
ear wave phenomena in electrodynamics, plasma physics,

oceanography, and quantum science. Inherent in this frame-
work is the view of beam self-focusing as a part of
deterministic field-waveform dynamics. As a hallmark result
of this theory, a laser beam with a peak power P above the
critical power of self-focusing, Ps, undergoes self-focusing
as a whole due to the transverse profile of the intensity-
dependent refractive index [1,2]. In its most general form,
the critical power of self-focusing can be written as [16] Ps =
α(4πn0n2)−1λ2, where n0 is the field-free refractive index, n2

is the nonlinear refractive index, λ is the laser wavelength, and
α is a constant that is independent of the material properties,
but depends on the beam profile and boundary conditions.
Specifically, the canonical textbook by Boyd [17] suggests
α ≈ (0.61π )2/2 ≈ 1.83 for a generic Gaussian-beam self-
focusing geometry.

In addition to beam self-focusing as a whole, high-intensity
laser fields are prone to small-scale self-focusing, induced by
spatial modulation instabilities (MIs) [18], which tend to build
up across a laser beam within a propagation path on the order
of the nonlinear length, lnl ∼ λ/(2πn2I ), where I = I (r, t ) is
the laser field intensity, r is the position vector, and t is the
time. Thus, given a nonlinear medium of length L, the thresh-
old of MI-induced small-scale self-focusing can be defined,
in agreement with the available analytical solutions [19–22],
numerical simulations [23], and experimental results [24], as

I0 ∼ λ/(2πn2L). (1)

For laser pulses with I > I0, spatial MIs give rise to field-
intensity hot spots across the laser beam [25,26], leading to
beam breakup into filaments with a typical radius rf , such
that the peak power within a filament is, roughly, the critical
power of self-focusing, πr2

f I ∼ Ps. In solid-state materials,
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FIG. 1. An Argand diagram of the stochastic field waveform η(t)
as defined by Eqs. (2) and (3) (blue arrow) along with its determin-
istic component s(t) (green arrow) and random part ξ (t) (red line).
Also shown are the phase θ (t ) of the field waveform η(t ) (blue), the
phase ϕs(t ) of the deterministic field s(t) (green), and the noise ξ (t)
(red), as well as the ρ1(t ) and ρ2(t ) components of η(t ) and the ρ+(t )
and ρ−(t ) components of the noise.

enhanced photoionization in field hot spots inherent in such
beam dynamics leads to optical damage [27,28].

While this view of self-focusing is fully adequate for a
vast class of nonlinear wave phenomena [1–3,17], its insight
into the stochastic aspects of nonlinear beam dynamics is
limited. As most prominent examples, laser-induced dam-
age, as well as self-focusing-enhanced stimulated-scattering
and frequency-conversion effects are notoriously difficult to
understand and quantify in terms of the deterministic ap-
proach as the detectable signatures of such processes are
manifestly probabilistic in their nature, evading categoriza-
tion in deterministic terms. Here, we focus on probabilistic
aspects of self-focusing, paying special attention to extreme
self-focusing events in nonlinear beam dynamics of a noisy
laser field well below the self-focusing threshold. We will
derive a closed-form analytical solution for the count rate of
extreme self-focusing events in nonlinear beam dynamics of
noisy laser fields deeply below the self-focusing threshold.
Analysis of this solution shows that the rare-event statistics
of such deeply subthreshold self-focusing is highly sensitive
to the signal-to-noise ratio and the bandwidth of the laser field
waveform.

II. STOCHASTIC MODEL OF A DRIVER

Central to our stochastic analysis of self-focusing is the
treatment of the field waveform, η(t), as a random process
and a search for the probability distribution of the number
of excursions of this random process across the level set by
the self-focusing threshold. To proceed with this program, we
consider a generic stochastic field waveform η(t) [Figs. 1 and
2(a)–2(d)], represented as a superposition

η(t ) = s(t ) + ξ (t ) (2)

of a deterministic waveform s(t ) = ρs(t )cos[ω0t + ϕs(t )]
[Figs. 1 and 2(a)] and a narrowband noise ξ (t ) =
ρξ (t )cos[ω0t + ϕξ (t )] [Figs. 1 and 2(b)].

Central to the canonical framework of nonlinear optics
is the description of light-matter interactions in terms of

FIG. 2. A random process representing the driver waveform η(t)
[Eq. (1)]: (a) the regular, deterministic component s(t); (b)–(d) the
waveform η(t)= s(t) + ξ (t) with the signal-to-noise ratio a = 0, (b)–
(d). With a = 0, η(t) = ξ (t). Also shown are the threshold C (red
dashed line) and the detection time T (vertical dotted line).

nonlinear evolution equations for the field envelopes with
a nonlinear source term expressed via a suitable nonlinear
polarization [1,17,29]. The nonlinear polarization, in its turn,
is expressed in this framework as a product of pertinent field
envelopes. Such a framework has been proven adequate for a
remarkably broad variety of nonlinear-optical processes, in-
cluding, but not limited to self-focusing, self- and cross-phase
modulation, parametric amplification, wave mixing, and low-
order harmonic generation [1,17,29]. Specifically, providing
a kernel for the Kerr nonlinearity, leading to self-focusing
and self-phase modulation, is the nonlinear change in the re-
fractive index, �n(r, t ) = n2I (r, t ), where the intensity I(r,t)
is defined as a quadratic form of the field envelope [1,17].
Nonlinear processes sensitive to the field carrier, such as
photoionization-induced absorption and refraction, can be in-
cluded into this framework [8,9,30], e.g., via suitably defined
photoionization currents [9,31]. Such processes fall beyond
the scope of this study.

To extend this standard treatment of nonlinear optics to
stochastic field waveforms, we seek to isolate the envelope of
the field waveform (1). To this end, we rewrite η(t) as [32,33]

η(t ) = ρ(t )cos[ω0t + θ (t )], (3)

where ρ(t ) = {[ρ1(t )]2 + [ρ2(t )]2}1/2
, θ (t ) = atan[ρ2(t )/ρ1

(t )], ρ1(t ) = ρs(t )cos[ϕs(t )] + ρ+(t ), ρ2(t ) = ρs(t )sin[ϕs(t )]
+ ρ−(t ), ρ+(t ) = ρξ (t )cos[ϕξ (t )], and ρ−(t ) = ρξ (t )sin
[ϕξ (t )]. An Argand diagram of the stochastic field waveform
η(t) as defined by Eqs. (2) and (3) is presented in Fig. 1, which
shows the envelopes ρs(t ), ρξ (t ), and ρ(t ) and the respective
phases ϕs(t ), ϕξ (t ), and θ (t ), as well as the ρ1(t ) and ρ2(t )
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components of η(t ) and the ρ+(t ) and ρ−(t ) components of
the noise.

We set ξ (t) to be a normally distributed stationary random
process with a variance σ 2 and symmetric spectral density
S(ω), such that  for any , and correlation function

R(τ ) = π−1
∫ ∞

−∞
S(ω0 − ) cos τd. (4)

The joint distribution of ρ1(t ) and ρ2(t ) is then given by

w2(ρ1, ρ2) = (2π )−1σ−2 exp[−(ρ2
+ + ρ2

−)/(2σ 2)].

The joint distribution of the envelope ρ and phase θ can
now be found as

w2(ρ, θ ) = |∂ (ρ1, ρ2)/∂ (ρ, θ )|w2(ρ+ = ρ cos θ − ρscosϕs,

ρ− = ρ sin θ − ρssinϕs),

leading to [33]

w2(ρ, θ ) = ρ/(2πσ 2) exp
{ − [(

ρ2 − 2ρsρ cos(θ − ϕs)

+ ρ2
s

)
/(2σ 2)

]}
, (5)

Integrating this distribution in θ , we find the envelope
distribution:

Wρ (ρ) = (ρ/σ 2) exp
[−(

ρ2 + ρ2
s

)
/(2σ 2)

]
I0(ρρs/σ

2), (6)

where I0(x) is the modified Bessel function of the first kind.
The probability density of the normalized envelope

v = ρ/σ is

Wv (v) = Q(v, a) = v exp[−(a2 + v2)/2]I0(av), (7)

where a = ρs/σ is recognized as the signal-to-noise ratio, and
Q(v, a) is often referred to as the Rice distribution [34,35].

The envelope ρs(t ) of the regular signal s(t) in our model of
the stochastic driver [Eq. (3)] is a slowly varying function of
time. The timescale of its variations, τρ = ρs0|dρs(t )/dt |−1,
is much larger than the timescale fluctuations of ξ (t). On a
timescale shorter than τρ , a(t)= ρs(t )/σ is thus a meaningful
measure of the signal-to-noise ratio. Specifically, with t cho-
sen close to t0 such that ρs(t0) = ρs0 = maxt {ρs(t )}, the ratio
a = ρs(t )/σ = ρs0/σ characterizes the signal-to-noise ratio
near the peak of the driver pulse. With this picture in mind,
we will follow the tradition [33] and omit the time argument
of a(t) hereinafter, operating on the understanding that this
parameter generally varies from the peak of the pulse to its
edges.

Integrating the joint distribution w2(ρ, θ ) in Eq. (5) in ρ,
we find for the distribution of the phase θ

Wθ (θ ) = (2π )−1 exp(−a2/2){1 + (π )1/2χ

× exp(χ2)[1 + �(χ )]}, (8)

where χ = (2)−1/2a cos (θ − ϕs) and �(χ ) = 2(π )−1/2

∫χ

0 exp(−u2)du.
When a = 0, i.e., the deterministic part of the field is zero,

ρs = 0, Eq. (7) reduces to the Rayleigh distribution R(v),

Wρ (v) = Q(v, 0) = R(v) = v exp(−v2/2). (9)

The phase θ is then uniformly distributed within 2π ,
Wθ (θ ) = (2π )−1.

In the opposite limit of a � 1, both Wρ (ρ) and Wθ (θ )
become Gaussian:

Wρ (ρ) = (2π )−1/2σ−1 exp[−(ρ − ρs)2/(2σ 2)], (10)

Wθ (θ ) = (2π )−1/2a exp[−a2(θ − ϕs)2/2]. (11)

As a → ∞, the stochastic character of the envelope and
phase is totally suppressed, as their distributions tend to
delta functions centered, respectively, at ρs and ϕs, Wρ (ρ) →
δ(ρ − ρs) and Wθ (θ ) → δ(θ − ϕs).

III. THRESHOLD-CROSSING STATISTICS

As η(t) fluctuates as a function of time, its envelope
ρ(t ) may cross a preset level C = Cρ (red dashed line in
Fig. 2), making excursions into the area above Cρ , in the
course of these fluctuations. For each realization of η(t),
the number n(Cρ, T ) of such crossings within a time in-
terval from t0 to t0 + T is a random function of Cρ and
T, n(Cρ, T ) = n+(Cρ, T ) + n–(Cρ, T ), where n+(Cρ, T ) and
n–(Cρ, T ) are the numbers of upward and downward cross-
ings, i.e., crossings with positive and negative slopes of ρ(t)
[Figs. 2(b)–2(d)].

The mean number N+
ρ (Cρ, T ) = 〈n+(Cρ, T )〉 of upward

crossings is given by [36–38]

N+
ρ (Cρ, T) =

∫ t0+T

t0

dt
∫ ∞

0
ρ̇wρ2(Cρ, ρ̇ )d ρ̇, (12)

where wρ2(ρ, ρ̇ ) is the joint probability density of ρ and its
time derivative ρ̇.

Provided that η(t) is stationary, the outer integral in
Eq. (12) is reduced to a multiplication by T, leading to the fol-
lowing result for the rate of positive-slope crossings between
ρ(t) and Cρ :

νρ (Cρ ) = T −1N+
ρ (Cρ, T ) =

∫ ∞

0
ρ̇wρ2(Cρ, ρ̇ )d ρ̇. (13)

To find the joint probability density of the envelope and its
derivative for η(t) as defined by Eqs. (2) and (3), we consider
six random variables: x1 = ρ+, x2 = ρ̇+, x3 = ρ̈+, x4 = ρ−,
x5 = ρ̇−, and x6 = ρ̈−. The envelope ρ is not normally dis-
tributed [Eqs. (6) and (7)], but x1, x2, x3, x4, x5, x6 are. The
joint probability distribution for n normal random variables ξi

with variances σi, i = 1,2, …,n, is generally found as

wn(ξ1, ξ2, . . . , ξn)

= (2π )−n/2D−1/2σ−1
1 σ−1

2 . . . σ−1
n

× exp

⎡
⎣−(2D)−1

n∑
i, j=1

Di jσ
−1
i σ−1

j (ξi − 〈ξi〉)(ξ j − 〈ξ j〉)

⎤
⎦

(14)

where D is the determinant:

D =

∣∣∣∣∣∣∣∣
1 r12

r21 1
. . . r1n

. . . r2n

. . . . . .

rn1 rn2

. . . . . .

. . . 1

∣∣∣∣∣∣∣∣
,
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ri j = σ−1
i σ−1

j 〈(ξi−〈ξi〉)(ξ j−〈ξ j〉)〉, and Di j is the cofactor of
ri j .

The variances of xi, i = 1, …,6, are σ 2
1 = σ 2

4 = σ 2,
σ 2

2 = σ 2
5 = −σ 2R′′

0, and σ 2
3 = σ 2

6 = σ 2R(4)
0 , where R′′

0 =
[d2R(τ )/dτ 2]τ=0 and R(4)

0 = [d4R(τ )/dτ 4]τ=0. The determi-

nant D in Eq. (14) is D = {[R(4)
0 − (R′′

0 )2]/R(4)
0 }2

.
Applying Eq. (14) to find w6(x1, x2, x3, x4, x5, x6), trans-

forming the result to W6(ρ, ρ̇, ρ̈, θ, θ̇ , θ̈ ) and integrating it in
θ , θ̇ , θ̈ , ρ̈, we find

wv2(v, v̇) = v/(2πε) exp[−(a2 + v2 − v̇2/R′′
0 )/2]I0(av)

(15)

where ε = [|R′′
0|/(2π )]1/2.

Plugging Eq. (15) into Eq. (13) and performing a straight-
forward integration in ρ̇, we find

νρ (Cρ ) = ε(Cρ/σ ) exp
[−(

a2 + C2
ρ/σ 2

)
/2

]
I0(aCρ/σ ). (16)

When a = 0, i.e., the deterministic part of the field is zero,
Eq. (16) reduces to

νρ0(Cρ ) = εR(Cρ ) = ε(Cρ/σ ) exp
[−C2

ρ/(2σ 2)
]
. (17)

As one of its significant properties, the solution (16) for
νρ (Cρ ) is seen to factorize as

νρ (Cρ ) = εWρ (Cρ/σ ) = εQ(Cρ/σ, a), (18)

where Wρ (x) is as defined by Eq. (6).
Solution (16) is known from the earlier studies of the level-

crossing properties of random processes [38–40] and proven
useful for the analysis of multipath radio-signal propagation
[41]. In this study, we bring this solution into a context of
nonlinear optics, resorting to Eq. (16) as the first step in a
stochastic treatment of self-focusing.

IV. THE COUNT RATE OF SELF-FOCUSING EVENTS

While it offers much-needed resources for our analy-
sis, Eq. (16) is not yet the solution needed to describe the
rare-event statistics of I � IMI self-focusing. Indeed, as an
expression of nonlinearity of underlying wave dynamics, the
MI threshold IMI [Eq. (1)] is defined with respect to a nonlin-
ear function of the driver envelope, ψ (t ) = f ([ρ(t )]), rather
than the driver envelope itself. The rare-event statistics of
such nonlinear dynamics thus connects to the mean num-
ber of upward crossings N+

ψ (Cψ ,T) between ψ(t) and Cψ =
f (Cρ ) = C2

ρ/2 within a time interval from t0 to t0 + T ,

N+
ψ (Cψ, T ) =

∫ t0+T

t0

dt
∫ ∞

0
ψ̇wψ2(Cψ, ψ̇ )dψ̇, (19)

where wψ2(ψ, ψ̇ ) is the joint probability density of ψ and
its time derivative ψ̇ and wψ2(Cψ, ψ̇ ) is obtained from
wψ2(ψ, ψ̇ ) by formally replacing x1 = ψ by x1 = Cψ as the
first argument of the two-variable function wψ2(x1, x2).

For any continuous one-to-one map q = f (p) with a dif-
ferentiable inverse p = g(q), Cρ = g(Cψ ), and ρ̇ = ψ̇g′(Cψ ),
with g′(Cψ ) = dg(q)/dq|q=Cψ

, leading to

N+
ρ (Cρ, T ) =

∫ t0+T

t0

dt
∫ ∞

0
ρ̇wρ2(Cρ, g′(Cψ ))[g′(Cψ )]2d ρ̇.

(20)

With wρ2(ρ, ρ̇ ) as defined by Eq. (15), the joint prob-
ability distribution of ψ and ψ̇ is found via wψ2(ψ, ψ̇ ) =
wρ2(g(ψ ), g′(Cψ )ψ̇ )[g′(Cψ )]2. Plugging this expression into
Eq. (19) gives

N+
ψ (Cψ, T ) =

∫ t0+T

t0

dt
∫ ∞

0
ψ̇wρ2[g(Cψ ), g′(Cψ )ψ̇]

× [g′(Cψ )]2dψ̇. (21)

Combining Eq. (21) with Eq. (6), we find

N+
ψ (Cψ, T ) = N+

ρ [g(Cψ ), T ]. (22)

Provided that η(t) is stationary, Eqs. (6), (12), (21), and
(22) yield

νψ (Cψ ) = T −1N+
ψ (Cψ, T ) = νρ[g(Cψ )]. (23)

In a specific case of MI-induced small-scale self-focusing,
ψ(t)= f ([ρ(t )]) = I (t ) = [ρ(t )]2/2, f (ρ) = ρ2/2, g(q) =
(2q)1/2, Cψ = f (Cρ ) = C2

ρ/2 = IMI, Eq. (23) becomes

νI (IMI) = νρ[g(IMI)] = νρ

(
21/2I1/2

MI

)
. (24)

Combining Eqs. (16) and (24), we find

νI (IMI) = ε[(2IMI)
1/2/σ ] exp[−(a2 + 2IMI/σ

2)/2]

× I0(a(2IMI)
1/2/σ ). (25)

Equation (25) expresses the count rate νI as a function of
the signal-to-noise ratio a and the dimensionless parameter
IMI/σ

2. Our aim, however, is to understand the properties of
νI as a function of a and the ratio x = IMI/Ī of the MI threshold
IMI to the mean intensity of the laser beam Ī = 〈ρ2〉/2 as
a measure of how deeply subthreshold the self-focusing is.
To isolate the dependence of νI on x = IMI/Ī , we calculate
Ī = 〈ρ2〉/2 via a statistical averaging of ρ2 with a probability
density function as defined by Eq. (6). The integral involved
in this calculation is found as Ī = 〈ρ2〉/2 = μ2/2 from

μk =
∫ ∞

−∞
ρkWρ (ρ)dρ = 2k/2σ k�(1 + k/2)Lk/2

[−ρ2
s /(2σ 2)

]
,

(26)
where �(n) is the gamma function and Lν (x) is the Laguerre
polynomial. Setting k = 2 in Eq. (26) for Ī = 〈ρ2〉/2 = μ2/2,
we find L1[−ρ2

s /(2σ 2)] = 1 + ρ2
s /(2σ 2), leading to

Ī = σ 2(1 + a2/2). (27)

Solving Eq. (27) for σ and plugging the solution into
Eq. (25), we derive

νI (IMI) = νI (x)

= εx1/2(a2 + 2)
1/2

exp{−[a2(x + 1)

+ 2x]/2}I0(ax1/2(a2 + 2)
1/2

). (28)

Equation (28) is one of the central results of our treatment.
With x > 1, it provides a closed-form analytical solution for
the count rate of subthreshold, Ī < IMI self-focusing events
in nonlinear beam dynamics of a noisy laser field. When
x < 1, on the other hand, the mean intensity Ī is above the
IMI threshold. For such Ī , νI (IMI) is the count rate of down-
ward crossings from the above-threshold region to the region
below the IMI threshold, where self-focusing does not occur
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FIG. 3. (a) The normalized count rate νI/ε calculated with (solid,
dashed, and dash-dotted lines) Eq. (28), (diamonds) Eq. (29), and
(circles) Eq. (32) as a function of x = IMI/Ī for a = 0.1 (blue solid
line), 3 (green dash-dotted line), and 8 (red dashed line). (b) The
normalized count rate νI/ε of subthreshold, IMI/Ī � 1 self-focusing
events calculated with Eq. (28) for a = 0.1 (solid line), 3 (dash-
dotted line), and 7 (dashed line).

[Figs. 2(c) and 2(d)]. In other words, with x < 1, νI (IMI) gives
the count rate of events of no self-focusing. For very low x,
the gap between Ī and IMI is very large, leading to a very small
number of excursions to the subthreshold, Ī < IMI region. In
this regime, νI (IMI) becomes very low, tending to zero in
the most general setting as x → 0 [Fig. 3(a)], indicating that
no-self-focusing events are extremely rare.

As one of the key properties of Eq. (28), the fac-
tor ε = [|R′′

0|/(2π )]1/2 in this solution isolates effects of
the noise bandwidth and the shape of the noise spec-
trum. Indeed, with |R′′

0| expressed, from Eq. (4), as |R′′
0| =

(2π )−1
∫ ∞
−∞ ω2S(ω)dω, |R′′

0 |1/2 is recognized as a measure
of the bandwidth of the noise component of the laser field
(2). Accordingly, τc = 2π/|R′′

0|1/2 provides a measure of the
respective correlation time.

V. UNDERSTANDING THE ROLE OF THE
SIGNAL-TO-NOISE RATIO

Equation (28) offers important insights into the role of
the signal-to-noise ratio a as a parameter that controls the
properties of the count rate νI (x) [Figs. 3(a) and 3(b)], defining
how probable extreme subthreshold self-focusing events are.
To understand the significance of a, we first examine the
properties of νI (x) in the a � 1 limit, in which the driver η(t)
is dominated by the deterministic component, while the noise
ξ (t ) is weak. In this limit, Eq. (28) reduces to

νI (x) = ε(2π )−1/2exp[−a2(x1/2 − 1)
2
/2]. (29)

In Fig. 3(a), the plot of νI (x) calculated by using Eq. (29)
(diamonds) is seen to closely follow the plot of νI (x) calcu-
lated with the exact result of Eq. (28) (red dashed line). The
count rate νI (x) for a � 1 beams peaks at x = 1, which trans-
lates into IMI = Ī on the field-intensity scale. As x = IMI/Ī
increases above x > 1, νI (x) rapidly falls off [dashed line and
diamonds in Fig. 3(a)], displaying an exponential behavior in
the x � 1 limit,

νI (x) ≈ ε(2π )−1/2exp(−a2x/2). (30)

Deeply subthreshold, IMI/Ī � 1 self-focusing of low-noise,
a � 1 beams is thus a rare event whose count rate decays
exponentially with IMI/Ī [red dashed line in Fig. 3(b)]. In the

case of a purely deterministic field, a → ∞, the count rate
νI (x) in Eq. (29) becomes a delta function, thus restoring
the status of IMI as a self-focusing threshold. In this regime,
small-scale self-focusing is only possible for laser beams with
Ī � IMI, in agreement with the canonical treatment of MI-
induced self-focusing of deterministic laser beams.

As IMI is set exactly at Ī , the mean number of upward
excursions that I (t ) makes across the MI threshold IMI within
the time interval τc = 2π/|R′′

0|1/2 is

NI (IMI) = τcνI (IMI = Ī ) = 1 (31)

This result is readily understood in terms of an intuitive
physical picture. Indeed, with the threshold IMI set exactly at
Ī , the field intensity I (t ) = [ρ(t )]2/2 of a purely deterministic
driver, i.e., a driver with no noise component, ξ (t ) = 0, would
have made no excursions to the region above the threshold.
A driver with a high, yet finite a, however, includes a weak,
yet nonzero noise component, which gives rise to excursions
of I (t ) above IMI. When the threshold IMI is set exactly at
Ī , each upward fluctuation imposed by the noise component
of η(t ) translates into an excursion into the region above the
threshold. Thus, within the correlation time τc = 2π/|R′′

0|1/2,
the mean number of above-threshold excursions is exactly
one, exactly as Eq. (31) suggests.

In the opposite limit of a noisy field with a very low a,
the behavior of νI (IMI) is drastically different. To appreciate
this, we first consider the case of a field waveform with a = 0,
i.e., a pure-noise waveform whose deterministic part is zero,
ρs = 0. For such a waveform, the envelope distribution Wρ (ρ)
[Eq. (6)] reduces to the Rayleigh probability density func-
tion, Wρ (ρ) = Q(v, 0) = R(v). The count rate νI (x) is then
given by

νI (x) = ε(2x)1/2 exp (−x). (32)

In Fig. 3(a), the plot of νI (x) calculated by using Eq. (32)
(circles) is almost indistinguishable from the exact solution
provided by Eq. (28) (blue solid line). The count rate νI (x)
for a � 1 beams increases for small x, reaches its maximum,
and then falls off with a further growth in x [solid line and
circles in Fig. 3(a)]. Such a behavior of νI (x) reflects upon the
properties of a field waveform with a = 0 as a random process
with zero mean and intensity Ī = σ 2. For such a waveform,
νI (x) starts to fall off only when IMI becomes much larger than
Ī = σ 2 [solid line and circles in Fig. 3(a)]. Unlike the count
rate νI (x) for a � 1 beams, which falls off exponentially
for IMI/Ī � 1 [Eq. (30)], the IMI/Ī � 1 behavior of νI (x) for
a � 1 fields [Eq. (32)] is manifestly nonexponential [blue
solid lines in Figs. 3(a) and 3(b)]. The heavy tail of νI (x) is
indicative of a higher rate of IMI/Ī � 1 extreme self-focusing
events for a = 0 fields compared to the rate of IMI/Ī � 1
self-focusing events for low-noise fields.

For field waveforms with intermediate signal-to-noise
ratios, the behavior of νI (x) is intermediate between the dis-
tributions predicted by Eqs. (29) and (32) [dash-dotted lines
in Figs. 3(a) and 3(b)], gradually evolving from the count rate
as described by Eq. (32) toward νI (x) as expressed in Eq. (29)
with a growth in the signal-to-noise ratio a.
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VI. STOCHASTIC PROPERTIES
OF A MULTIMODE LASER

Equations (28)–(32) provide a closed-form solution for the
count rate of extreme self-focusing events universally appli-
cable to a vast range of stochastic field-evolution scenarios
in which the input field is a superposition [Eq. (2)] of a de-
terministic waveform and a narrowband, normally distributed
stationary noise. To illustrate how fields of such a nature can
emerge in a laser-experiment setting, we consider a generic
laser source, whose output is a mixture of N modes,

y(t ) =
N∑

n=1

bn cos (ωnt + ϕn) =
N∑

n=1

bn cos �n. (33)

The characteristic function of such a process,

θ (u) = 〈exp (iyu)〉 (34)

is

θ (u) =
N∏

n=1

θ (ubn), (35)

where

θ (ubn) = 〈exp (iubn cos �n)〉

= (2π )−1
∫ π

−π

exp [iubn cos (ωnt + ϕn)]dϕn

= J0(ubn)

is the characteristic function of the nth mode, and J0(ζ ) is the
zeroth-order Bessel function of ζ .

The distribution function of y is then found as

w(y) = (2π )−1
∫ ∞

−∞
θ (u) exp (−iuy)du, (36)

leading to

w(y) = (2A)−1

[
1 + 2

∞∑
k=1

cos (πky/A)
N∏

n=1

J0(πkan/A)

]
,

(37)

where A = ∑N
n=1 an.

For low N, the distribution w(y) is distinctly non-Gaussian.
It becomes Gaussian, however, as N → ∞. To see this, we
consider a process z(t ) = N−1/2y(t ). The characteristic func-
tion of such a process with bn = b is

θz(u) = [J0(N−1/2bu)]
N
. (38)

In the N �1 limit,

ln [θz(u)] ≈ −(bu)2/4 + (bu)4/(64N ), (39)

leading to [33]

w(z) = (π )−1/2b−1[1 − (64N )−1H4(z/b)] exp(−z2/b2),
(40)

where Hn(x) is the nth-order Hermite polynomial.
As N → ∞, both w(z) and w(y) become Gaussian, with

w(y) = (2π )−1/2σ−1 exp[−y2/(2σ 2)], (41)

2σ 2 = Nb2.

We now see that, as the number of lasing modes N in-
creases, the distribution of a multimode lasing process (33)
converges to a Gaussian distribution regardless of the spec-
trum of the lasing modes {ωn}. The lowest-order moments
of y are 〈y2〉 = Nb2/2 = σ 2 = Ī , 〈y4〉 = 3[1 − (2N )−1]Ī2,
〈y6〉 = 15[1−3(2N )−1 + 2(3N2)−1]Ī3. With N → ∞, these
moments recover the moments of a Gaussian random process
[42].

Archetypes of laser sources capable of delivering stochas-
tic field waveforms that can give rise to self-focusing, MIs,
and laser-induced damage are found among high-power gas
and solid-state lasers [43,44], as well as fiber lasers with
a multimode- or multibeam-combining output [45,46]. An
estimate on the correlation time τc = 2π/|R′′

0|1/2, as one
of the key parameters defining the count rate of stochastic
self-focusing, is readily available for the latest generation
high-energy excimer lasers, whose terahertz output band-
widths place τc at ≈ 1 ps [43,44]. For fiber lasers with
incoherent beam combining, on the other hand, a typi-
cal beam-combining bandwidth δλ ≈ 10 nm [45,46] at λ ≈
1 µm, suggests correlation-time estimates of the same order
of magnitude, τc ≈ λ2/(cδλ) ≈ 1 ps.

With a standard estimate on the nonlinear refractive index
of quartz glass taken at n2 ≈ 2 × 10–16 cm2/W, a deter-
ministic λ≈1 µm laser beam becomes unstable for IL�
50 GW/cm. Thus, with the field-intensity–path-length product
set at IL ≈ 6.25 GW/cm, a deterministic laser pulse with λ ≈ 1
µm will be stable, with a comfortable margin of safety, against
MI-driven beam breakup. However, a stochastic pulse with
a = 0 and τc ≈ 1 ps with the same field intensity will give
rise, in accordance with Eq. (32), to a νIτp ≈ 1 self-focusing
event per τp ≈ 0.3 ns laser pulse, thus dramatically increasing
the risk of laser-induced damage.

VII. DISPERSION AND PULSE STRETCHING

Because of intracavity dispersion, the phase and group
velocities of individual lasing modes in a multimode laser
output, as well as their phases �n are different. However,
as long as the intracavity dispersion is deterministic, which
is almost always the case for the existing solid-state and
fiber-optic lasing settings, these dispersion-induced changes
in phases �n and the related slips of the carrier-envelope phase
of the laser output have no effect on the statistics of the laser
output and, therefore, cannot prevent the distribution w(y)
from universally converging to a Gaussian distribution in the
N �1 limit, as dictated by Eqs. (40) and (41). The closed-form
solution for the count rate of extreme self-focusing events as
provided by Eqs. (28)–(32) is thus invariant with respect to
changes in intracavity dispersion, remaining applicable for a
vast variety of multimode laser sources and a broad range of
multimode field-evolution scenarios.

While an added deterministic dispersion has no effect
on the distribution w(y) and its convergence to a respec-
tive Gaussian distribution in the large-N limit [Eqs. (40) and
(41)], it can lead to pulse stretching, thus lowering the peak
power and the peak intensity of the laser beam. Because such
dispersion-induced pulse stretching will decrease the mean
intensity of the laser beam Ī– and inasmuch as it lowers
Ī– the probability of self-focusing will be diminished. Such
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self-focusing suppression via a dispersion-induced stretching
of random field waveforms would represent an extension
of the celebrated concept and technology of chirped-pulse
amplification to stochastic field waveforms. Unlike the self-
focusing of deterministic field waveforms, however, the
self-focusing of stochastic beams is never totally avoided,
but can only be suppressed in a statistical sense. Equations
(28)–(32) provide a quantitative measure for the extent to
which stochastic self-focusing can be suppressed as it yields
the self-focusing count rates νI (x) as decreasing functions of
x = IMI/Ī > 1, allowing the absolute values of νI (x) and their
roll-off rates as functions of x to be defined, as shown in
Figs. 3(a) and 3(b), for the specific bandwidth, intensity, and
signal-to-noise ratio of the driver field waveform.

VIII. A BIGGER PICTURE

The analysis presented in this study is concerned with
beam-stability thresholds in stochastic nonlinear optics, aim-
ing to identify conditions under which stochastic beams
become prone to self-focusing and MIs. While this study
answers the question of when stochastic beams become unsta-
ble, it does not address the question of how such instabilities
unfold. To answer this latter question, nonlinear spatiotempo-
ral field-evolution equations need to be solved for a specific
stochastic pulse envelope and a specific stochastic beam pro-
file. The present study can be viewed as the first step of such
an analysis.

The realm of closed-form solutions for the extreme-event
count rates as provided by Eqs. (28)–(32) is in no way limited
to optics, but extends, via the universal arguments behind
these solutions, to a vast variety of processes that can be
understood in terms of a nonlinear transform f (ρ) of the
envelope of a stochastic waveform (2). Specifically, nonex-
ponential tails of νI (x) as predicted by Eqs. (28) and (32) are
universal signatures of enhanced rare-event counts, often re-
ferred to as rogue waves [47,48], in a broad variety of settings

ranging from ocean waves [49] to optical soliton dynamics
[50] and epileptic seizures [51]. Some of these rogue-wave
settings, such as forest fires [52] or an emerging complexity
of neuronal dynamics [53,54], are also a focus of studies con-
cerned with self-organized criticality. The physical picture and
mathematical framework in which such rare-event phenom-
ena emerge in our study, however, does not invoke a critical
state as an essential point in a stochastic field-waveform
evolution. Thus, while the relation of solutions (28)–(32) to
self-organized criticality is intriguing, self-organized critical-
ity is not necessary for a system to reach solutions (28)–(32).
These solutions are thus applicable to a broad class of pro-
cesses beyond those exhibiting the self-organized criticality.

IX. CONCLUSION

To summarize, we derived a closed-form analytical so-
lution for the count rate of extreme self-focusing events in
nonlinear beam dynamics of noisy laser fields deeply below
the self-focusing threshold. Analysis of this solution shows
that the rare-event statistics of such deeply subthreshold
self-focusing is highly sensitive to the signal-to-noise ratio
and the bandwidth of the laser field waveform. For low-
signal-to-noise beams, the rare-event distribution of deeply
subthreshold self-focusing is shown to exhibit a manifestly
nonexponential tail, thus indicating the enhancement of ex-
treme self-focusing events. The subthreshold self-focusing
is further enhanced by a broader bandwidth of the noise
component of the laser field. It is such broadband, low-
signal-to-noise laser fields that are especially prone to deeply
subthreshold, rogue-wave self-focusing, lowering, via a laser-
induced breakdown, the lifetime of downstream optics.

ACKNOWLEDGMENT

This research was supported in part by the Welch Founda-
tion (Grant No. A-1801–20210327).

[1] Y. R. Shen, The Principles of Nonlinear Optics (Wiley-
Interscience, New York, 1984).

[2] S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, Sov.
Phys. Usp. 10, 609 (1968).

[3] Self-Focusing: Past and Present, edited by R. W. Boyd, S. G.
Lukishova, and Y. Shen, Topics in Applied Physics, Vol. 114
(Springer, New York, 2009).

[4] E. Garmire, R. Y. Chiao, and C. H. Townes, Phys. Rev. Lett. 16,
347 (1966).

[5] N. F. Pilipetsky and A. R. Rustamov, JETP. Lett. 2, 55 (1965).
[6] D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42

(1991).
[7] H. A. Haus, J. Sel. Top. Quantum Electron. 6, 1173 (2000).
[8] A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47

(2007).
[9] L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep.

Prog. Phys. 70, 1633 (2007).
[10] A. M. Zheltikov, J. Phys. B: At., Mol. Opt. Phys. 50, 09200

(2017).

[11] The Supercontinuum Laser Source: The Ultimate White Light,
edited by R. Alfano (Springer, New York, 2022).

[12] A. Zheltikov, J. Opt. Soc. Am. B 36, A168 (2019).
[13] A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. M. Nazarov, A.

A. Voronin, M. V. Rozhko, A. B. Fedotov, and A. M. Zheltikov,
Opt. Lett. 46, 1081 (2021).

[14] D. Strickland and G. Mourou, Opt. Commun. 55, 447
(1985).

[15] M. D. Perry and G. Mourou, Science 264, 917 (1994).
[16] G. Fibich and A. L. Gaeta, Opt. Lett. 25, 335 (2000).
[17] R. W. Boyd, Nonlinear Optics (Academic, Boston, MA, 1992).
[18] V. I. Bespalov and V. I. Talanov, JETP Lett. 3, 307 (1966).
[19] V. V. Shkunov and D. Z. Anderson, Phys. Rev. Lett. 81, 2683

(1998).
[20] A. A. Voronin, A. M. Zheltikov, T. Ditmire, B. Rus, and G.

Korn, Opt. Commun. 291, 299 (2013).
[21] A. Zheltikov, Opt. Express 24, 20716 (2016).
[22] E. A. Khazanov, S. Yu. Mironov, and G. Mourou, Phys. Usp.

62, 1096 (2019).

013520-7

https://doi.org/10.1070/PU1968v010n05ABEH005849
https://doi.org/10.1103/PhysRevLett.16.347
https://doi.org/10.1364/OL.16.000042
https://doi.org/10.1109/2944.902165
https://doi.org/10.1016/j.physrep.2006.12.005
https://doi.org/10.1088/0034-4885/70/10/R03
https://doi.org/10.1088/1361-6455/aa6109
https://doi.org/10.1364/JOSAB.36.00A168
https://doi.org/10.1364/OL.410030
https://doi.org/10.1016/0030-4018(85)90151-8
https://doi.org/10.1126/science.264.5161.917
https://doi.org/10.1364/OL.25.000335
https://doi.org/10.1103/PhysRevLett.81.2683
https://doi.org/10.1016/j.optcom.2012.10.057
https://doi.org/10.1364/OE.24.020716
https://doi.org/10.3367/UFNe.2019.05.038564


A. M. ZHELTIKOV PHYSICAL REVIEW A 109, 013520 (2024)

[23] A. A. Voronin and A. M. Zheltikov, Phys. Rev. A 94, 023824
(2016).

[24] V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A.
M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, and A.
Pugžlys, Nat. Commun. 7, 12877 (2016).

[25] P. A. Zhokhov, V. Ya. Panchenko, and A. M. Zheltikov, Phys.
Rev. A 86, 013835 (2012).

[26] A Voronin and A. Zheltikov, Sci. Rep. 7, 36263 (2017).
[27] M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann,

G. Mourou, W. Kautek, and F. Krausz, Phys. Rev. Lett. 80, 4076
(1998).

[28] P. A. Zhokhov and A. M. Zheltikov, Phys. Rev. Lett. 113,
133903 (2014).

[29] A. M. Zheltikov, A. L’Huillier, and F. Krausz, in Handbook of
Lasers and Optics, edited by F. Träger (Springer, New York,
2007), pp. 157–248.

[30] T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[31] P. A. Zhokhov and A. M. Zheltikov, Phys. Rev. A 96, 033415

(2017).
[32] S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarsky, Introduction

to Statistical Radiophysics, Part II: Random Fields (Nauka,
Moscow, 1978).

[33] S. A. Akhmanov, Yu. E. D’yakov, and A. S. Chirkin, Introduc-
tion to Statistical Radiophysics and Optics (Nauka, Moscow,
1981).

[34] S.O. Rice, Bell System Tech. J. 23, 282 (1944).
[35] S. O. Rice, Bell System Tech. J. 27, 109 (1948).
[36] P. I. Kuznetsov, R. L. Stratonovich, and V. I. Tikhonov, Zh,

Tekh. Fiz. 24, 103 (1954).
[37] H. Steinberg, P. M. Schultheiss, C. A. Wogrin, and F. Zweig,

J. Appl. Phys. 26, 195 (1955).
[38] V. I. Tikhonov, Sov. Phys. Usp. 5, 594 (1963).
[39] V. A. Ivanov, Theory Probab. Appl. 5, 319 (1960).
[40] M. R. Leadbetter, Ann. Math. Statist. 37, 260 (1966).

[41] G. L. Stuber, Principles of Mobile Communication (Kluwer,
Boston, MA, 1996).

[42] W. Bryc, The Normal Distribution: Characterizations with Ap-
plications (Springer, Berlin, 1995).

[43] S. Obenschain, R. Lehmberg, D. Kehne, F. Hegeler, M.
Wolford, J. Sethian, J. Weaver, and M. Karasik, Appl. Opt. 54,
F103 (2015).

[44] E. M. Campbell, T. C. Sangster, V. N. Goncharov, J. D. Zuegel,
S. F. B. Morse, C. Sorce, G. W. Collins, M. S. Wei, R. Betti,
S. P. Regan, D. H. Froula, C. Dorrer, D. R. Harding, V.
Gopalaswamy, J. P. Knauer, R. Shah, O. M. Mannion, J. A.
Marozas, P. B. Radha, M. J. Rosenberg, T. J. B. Collins, A.
R. Christopherson, A. A. Solodov, D. Cao, J. P. Palastro, R.
K. Follett, and M. Farrell, Philos. Trans. R. Soc. A 379, 0011
(2020).

[45] T. Y. Fan, IEEE J. Quantum Electron. 11, 567 (2005).
[46] S. J. Augst, J. K. Ranka, T. Y. Fan, and A. Sanchez, J. Opt. Soc.

Am. B 24, 1707 (2007).
[47] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T.

Arecchi, Phys. Rep. 528, 47 (2013).
[48] J. M. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias,

Nat. Rev. Phys. 1, 675 (2019).
[49] K. Dysthe, H. E. Krogstad, and P. Müller, Annu. Rev. Fluid

Mech. 40, 287 (2008).
[50] J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, Nat.

Photonics 8, 755 (2014).
[51] C. Witton, S. V. Sergeyev, E. G. Turitsyna, P. L. Furlong, S.

Seri, M. Brookes, and S. K. Turitsyn, J. Neural Eng. 16, 056019
(2019).

[52] B. D. Malamud, G. Morein, and D. L. Turcotte, Science 281,
1840 (1998).

[53] D. R. Chialvo, Nat. Phys. 6, 744 (2010).
[54] C. Bédard, H. Kröger, and A. Destexhe, Phys. Rev. Lett. 97,

118102 (2006).

013520-8

https://doi.org/10.1103/PhysRevA.94.023824
https://doi.org/10.1038/ncomms12877
https://doi.org/10.1103/PhysRevA.86.013835
https://doi.org/10.1038/srep36263
https://doi.org/10.1103/PhysRevLett.80.4076
https://doi.org/10.1103/PhysRevLett.113.133903
https://doi.org/10.1103/RevModPhys.72.545
https://doi.org/10.1103/PhysRevA.96.033415
https://doi.org/10.1002/j.1538-7305.1944.tb00874.x
https://doi.org/10.1002/j.1538-7305.1948.tb01334.x
https://doi.org/10.1063/1.1721959
https://doi.org/10.1070/PU1963v005n04ABEH003439
https://doi.org/10.1137/1105031
https://doi.org/10.1214/aoms/1177699615
https://doi.org/10.1364/AO.54.00F103
https://doi.org/10.1109/JSTQE.2005.850241
https://doi.org/10.1364/JOSAB.24.001707
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1038/s42254-019-0100-0
https://doi.org/10.1146/annurev.fluid.40.111406.102203
https://doi.org/10.1038/nphoton.2014.220
https://doi.org/10.1088/1741-2552/ab225e
https://doi.org/10.1126/science.281.5384.1840
https://doi.org/10.1038/nphys1803
https://doi.org/10.1103/PhysRevLett.97.118102

