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Dynamical phase transition of light in time-varying nonlinear dispersive media
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We demonstrate the existence of a prethermal dynamical phase transition (DPT) for fluctuating optical beams
propagating in nonlinear dispersive media. The DPT can be probed by suddenly changing in time the dispersion
and nonlinearity parameters of the medium (thus realizing a temporal interface), a procedure that emulates a
quench in a massive ϕ4 model. Above a critical value of the quench identifying the transition, the fluctuating
beam after the temporal interface is characterized by a correlation length that diverges algebraically at the
transition. Below the critical quench, the beam exhibits an algebraic relaxation and a self-similar scaling. Our
analysis also reveals a dimensional crossover of the critical exponent, a characteristic feature of the optical DPT.
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I. INTRODUCTION

In the nonequilibrium physics of isolated many-body
systems, dynamical phase transitions (DPTs) have recently
sparked considerable interest as examples of critical phenom-
ena characterized by scaling properties different from their
equilibrium counterparts. Loosely speaking, a DPT is asso-
ciated with the emergence of distinct temporal evolutions
of certain observables following a quantum quench. From
this general definition, however, several qualitatively different
types of DPTs have been identified. One type, for instance,
arises in the time evolution of Loschmidt echoes, which may
exhibit a cusp at a critical time upon quenching a parameter of
the Hamiltonian, with the rate function of the echo vanishing
at the critical time [1–3]. A second category of nonequilib-
rium critical phenomena has been observed for strong cooling
quenches of three-dimensional quantum gases. Following the
quench, the momentum distribution of the gas exhibits a uni-
versal, spatiotemporal self-similar scaling governed by a set
of dynamical exponents [4–8]. A characteristic feature of this
phenomenon, dubbed a nonthermal fixed point, is to be gov-
erned by the collisions between the quasiparticle excitations
of the cold gas [9]. A third type of DPT finally, which is the
subject of the present paper, arises in the so-called prether-
mal regime of many-body systems, where the quasiparticle
collisions are, in contrast, mostly ineffective [10]. Prethermal-
ization refers to an intermediate regime of times following a
quench, where the dynamics is governed by excitations whose
properties are renormalized by interactions but which can
be considered independent. A prethermal dynamics naturally
shows up, in particular, in weakly interacting systems close to
integrability [11–16], as recently observed experimentally in
cold-atom [17–19] and photonic [20] setups. In that context,
a prethermal DPT corresponds to the emergence of qualita-
tively different dynamics of the system’s correlations when
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quenching a control parameter of the Hamiltonian around a
critical value [10]. Theoretically, prethermal DPTs have been
described in particular in fully connected spin models [21–24]
and in ϕ4 field theories with O(N ) symmetry in the large-N
limit [25–32]. On the experimental side, observations and
characterizations of prethermal DPTs have been achieved with
cold atoms, including trapped ions [33], atoms in optical cav-
ities [34], Fermi gases [35], and spinor condensates [36,37].

In this paper we demonstrate theoretically the existence of
a prethermal dynamical phase transition in a closed optical
system made of a fluctuating light beam propagating in a
nonlinear, dispersive dielectric medium. In recent decades,
such optical platforms have been extensively investigated due
to their ability to emulate with light the low-energy physics
of quantum gases [38]. In particular, laser beams propagating
in nonlinear atomic vapors [39] have proven to constitute
a flexible tool to explore nonequilibrium phenomena such
as thermalization [40,41], prethermalization and light-cone
spreading [20], Zakharov-type oscillations [42], vortex dy-
namics [43], parametric resonances [44], and turbulence [45].
Likewise, in optical fibers the interplay between dispersion
and nonlinearity has revealed interesting prethermal effects
such as the Fermi-Pasta-Ulam-Tsingou recurrences [46,47]
and an associated mechanism of broken symmetry [48].

The existence of an optical DPT discussed in the present
work relies on the close resemblance between the wave equa-
tion governing light propagation in nonlinear dispersive media
and the equation of motion of a massive classical ϕ4 field
theory. From this observation, we propose an optical quench
protocol allowing us to trigger such a transition, based on a
temporal change of the dispersion parameters of the medium
(Sec. II), and we identify the precise condition under which
the transition effectively occurs (Sec. III). In Sec. IV we then
characterize the postquench dynamics of the optical beam
above the transition point. This analysis, in particular, re-
veals the existence of two critical exponents characterizing
the transition. In the close vicinity of the critical point, first,
the critical exponent ν coincides with that of the equilibrium
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quantum phase transition of the underlying two-dimensional
ϕ4 theory. When moving away from the transition, however,
we find that ν crosses over to the value expected for an
equilibrium quantum phase transition in dimension 3. This
dimensional crossover is a characteristic feature of the optical
DPT. Below the transition point, the dynamics exhibits scale
invariance and self-similar scaling, which we describe both
theoretically and analytically in Sec. V, following previous
ideas developed in the context of the O(N ) model [25–32]. In
Sec. VI we particularize the problem to a concrete system, a
light beam propagating in a resonant atomic vapor, and deduce
a possible phase diagram of the DPT in that type of medium.
We summarize the paper in Sec. VII.

II. MODEL

A. Wave equation in nonlinear dispersive media

We consider an optical beam propagating in a dielec-
tric medium in which the electric field is governed by the
Helmholtz equation

∇ × [∇ × E(r, ω)] = ω2

c2
ε(ω, r)E(r, ω), (1)

where the relative permittivity ε(ω, r) = εL(ω) + εNL(r)
decomposes into a linear dispersive part εL(ω) and a nonlinear
part εNL(r) ∝ |E|2 that depends quadratically on the wave
field (Kerr effect). We further suppose that the beam is mostly
directed along the axis z and that its spectrum is centered
around a carrier frequency ω0. This invites us to express the
electric field as

E(r, t ) = Re[E (r⊥, z, t )ei(k0z−ω0t )], (2)

where we isolated the envelope E (r⊥, z, t ), assumed to be
a slowly varying function of the transverse r⊥ ≡ (x, y),
longitudinal z, and temporal t coordinates. From now on,
we assume that this envelope has a fixed polarization in the
(x, y) plane and we focus on the evolution of the correspond-
ing amplitude, denoted by E . In Eq. (2) we also introduced
the optical wave number k0 ≡ √

εL(ω0)ω0/c at the carrier
frequency, with c the speed of light in vacuum.

To account for the dispersion of the medium, we Taylor
expand the linear part of the squared wave vector on the right-
hand side (rhs) of Eq. (1) around ω0 (slowly varying envelope
approximation) [49],

k2(ω) ≡ ω2

c2
εL(ω) � k2

0 + 2k0

v
(ω − ω0) + D(ω − ω0)2,

(3)

where v ≡ (∂k/∂ω)−1 is the group velocity and D ≡
1
2 (∂2k2/∂ω2) is the quadratic dispersion parameter, which
we assume to be positive from now on. Inserting Eqs. (2)
and (3) into Eq. (1) and dropping terms involving second-
order derivatives with respect to z (paraxial approximation),
we find(

D∂2
t − �⊥ − 2ik0∂z − 2ik0

v
∂t − ω2

0

c2
εNL

)
E = 0, (4)

(a) (b)

�me

FIG. 1. (a) Optical beam propagating for t < 0 in a dispersive
dielectric medium with dispersion parameters Di and vi and no
nonlinearity. The wave is assumed to exhibit spatial fluctuations
in the (x, y) plane, as well as frequency fluctuations (not shown
in the figure). (b) At t = 0, we suppose that the dispersion and
nonlinearity parameters are suddenly quenched from (Di, vi, g = 0)
to (Df , v f , g > 0). This defines a temporal interface, beyond which
two waves propagating forward and backward in time emerge.

where �⊥ is the Laplace operator in the transverse plane
(x, y). As a last step, we introduce the new field variable

φ(r⊥, z, t ) ≡ E (r⊥, z, t )e−iμt , (5)

where μ ≡ k0/Dv. In this frame, the wave equation becomes

(
D∂2

t − �⊥ − 2ik∂z + k2
0

Dv2
+ g|φ|2

)
φ(r⊥, z, t ) = 0, (6)

where we defined the nonlinear parameter g such that
−(ω2

0/c2)εNL ≡ g|φ|2. In the following, we suppose g > 0,
corresponding to a defocusing nonlinearity.

At this stage, it is interesting to note that the wave equa-
tion (6) resembles a nonlinear Klein-Gordon-type equation,
i.e., the equation of motion of a classical massive ϕ4 theory
with coupling constant g and mass k2

0/Dv2. Generally speak-
ing, the ϕ4 field theory is a prototypical model describing
the large-scale behavior of a broad range of systems near a
second-order equilibrium phase transition separating a disor-
dered and an ordered phase [50,51]. In the present context
though, the propagating wave is a priori not in a state of
thermal equilibrium, so probing such a phase transition with
light is not obvious. The ϕ4 model, nevertheless, is also known
to host a dynamical phase transition [10,25,26], which does
not necessarily require one to start from a thermal state. Such
a DPT usually arises when performing a temporal change
(quench) of a control parameter (often the mass) around a cer-
tain critical value. Following the quench, the system exhibits
distinctive dynamical evolutions on each side of this critical
point. In the following sections we give consistency to this
discussion by introducing a physical protocol allowing us to
probe a DPT of that type with light governed by the wave
equation (6).

B. Prequench optical state and quench protocol

To probe the optical DPT behind Eq. (6), we consider a
fluctuating beam initially propagating for t < 0 in a disper-
sive medium with v = vi, D = Di > 0, and no nonlinearity
(g = 0) [see Fig. 1(a)]. Defining the Fourier transform
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φ(q⊥, z, ω) ≡ ∫
d2r⊥

∫
dt φ(r⊥, z, t )e−iq⊥·r⊥+iωt , we assume

that the spectrum of the beam at z = 0 takes the form

φ(0)(q⊥, ω) ≡ φ(q⊥, z = 0, ω) =
√

IφT (q⊥)φF (ω), (7)

where I is the beam intensity and φT and φF are random fields
with independent statistics, which encode spatial fluctuations
in the transverse plane and frequency fluctuations, respec-
tively. In practice, the spatial fluctuations can be obtained
by, e.g., imprinting a speckle pattern onto the wavefront of
a laser [20], while the frequency fluctuations are associated
with deviations of the beam from pure monochromaticity. As
the first property of these fluctuations, we impose that the
statistical average of the field φ(0) vanishes, which is realized,
for instance, by setting

〈φT (q⊥)〉 = 0. (8)

Defined in this way, the optical field for t < 0 can be seen
as a kind of optical analog to a thermal system belonging
to a disordered phase. We further suppose that the spatial
and frequency fluctuations are translationally invariant and
stationary, respectively, i.e., their two-point correlators obey

〈φ∗
T (q⊥)φT (q′

⊥)〉 = δ2(q⊥ − q′
⊥)ST (q⊥) (9)

and

〈φ∗
T (ω)φT (ω′)〉 = δ(ω − ω′)SF (ω). (10)

These relations also define the spatial and frequency fluctua-
tion spectra ST (q⊥) and SF (ω), which we choose normalized:∫

d2q⊥/(2π )2ST (q⊥) = ∫
dω/2πSF (ω) = 1. In the quench

protocol presented below, we will see that the spatial spectrum
can be traced out of the description such that there is no need
to specify its exact shape at this stage. As for the frequency
spectrum, in the following we consider the simple Lorentzian
shape

SF (ω) = 2γ

(ω − μ)2 + γ 2
(11)

of bandwidth γ . Notice that SF (ω) is centered around ω =
μ, which corresponds to a spectrum of the original field E
centered around the carrier frequency ω0 by virtue of the
definitions (2) and (5).

To trigger a DPT in that system, the key idea is to perform
a temporal change of the optical parameters that emulates
a quench from the disordered to the ordered phase in the
underlying ϕ4 theory [10]. To achieve this goal, we assume
that, at t = 0, the dispersion parameters (v, D) and the nonlin-
ear strength g of the medium are suddenly changed according
to the protocol

(Di > 0, vi, g = 0) → (D f > 0, v f , g > 0), (12)

where D f and v f can, at this stage, a priori take arbitrary pos-
itive values.1 Note that, from the physical point of view, this

1Strictly speaking, the variations of dispersion parameters cannot
be infinitely fast, so the slowly varying envelope approximation
underlying Eq. (4) remains valid. A condition for D, e.g., is that
|∂t D| � 2k0/v. In terms of the quench duration tq, this gives the

quench protocol defines a time-varying interface in the dielec-
tric medium at t = 0, as illustrated in Fig. 1(b). This interface
generically gives rise, for t > 0, to two waves propagating
forward and backward in time, analogously to the well-known
transmitted and reflected waves arising at a spatial interface
between two dielectric media [52]. We will discuss this inter-
pretation more quantitatively at the end of Sec. IV A.

The wave field in the prequench regime t < 0, which is
solution of the wave equation (6), explicitly reads

φ(r⊥, z, t < 0) =
∫∫

dω

2π

d2q⊥
(2π )2

φ(q⊥, 0, ω)eiq⊥·r⊥−iωt

× exp

[
− iz

2k

(
q2

⊥ − Diω
2 + k2

0

Div
2
i

)]
.

(13)

Note that, due to the assumed factorized spectrum (7) of the
initial fluctuations, this solution is of the form φ(r⊥, z, t <

0) = ϕT (r⊥, z)ϕ(z, t ), i.e., the transverse fluctuations decou-
ple from the dynamics. A similar situation is encountered
in optical fibers, which could also be a good candidate to
implement the present scheme. In that case, φT would corre-
spond to a transverse mode of the fiber, and the condition of a
vanishing mean field (8) would be achieved by averaging over
the azimuthal phase of that mode. Starting from this optical
state and from the quench protocol (12), in the next section we
examine the dynamical evolution of the wave field for t > 0.

III. DYNAMICAL PHASE TRANSITION OF LIGHT

A. Mean-field postquench dynamics

To find the solution of the wave equation (6) for t > 0, we
use the ansatz

φ(r⊥, z, t > 0) =
∫∫

dω

2π

d2q⊥
(2π )2

φ(0)(q⊥, ω)eiq⊥·r⊥ fω(t )

× exp

[
− iz

2k

(
q2

⊥ − Diω
2 + k2

0

Div
2
i

)]
,

(14)

which has essentially the same form as Eq. (13) except for the
unknown function fω(t ). The latter can be found by imposing
that Eq. (14) is solution of the wave equation (6) with D = D f ,
v = v f , and g 
= 0. This yields∫∫

dω

2π

d2q⊥
(2π )2

φ(0)(q⊥, ω)

× exp

[
iq⊥ · r⊥ − iz

2k0

(
q2

⊥ − Diω
2 + k2

0

Div
2
i

)]

×
[

D f f̈ω(t ) +
(

Diω
2 + k2

0

D f v
2
f

− k2
0

Div
2
i

)
fω(t )

]

+ g|φ|2φ = 0. (15)

condition μtq � |m| = |1 − v f /vi|. For example, for the numerical
parameters chosen in Fig. 2, |m| ∼ 0.2 so that the assumption of
sudden quench is in fact restricted to 0.2 � μtq � t .

013519-3



NICOLAS CHERRORET PHYSICAL REVIEW A 109, 013519 (2024)

When evaluated with the ansatz (14), the last nonlinear term
g|φ|2φ on the left-hand side involves products of three ran-
dom fields φ(0) at different momenta and frequencies. To
simplify it, we employ a mean-field Hartree-Fock-Bogoliubov
approximation, a truncation scheme that consists in neglecting
all correlation functions beyond the second one [53]. While
this scheme cannot capture the long-time evolution after the
quench, it is known to accurately describe the intermediate
timescales, i.e., the prethermal dynamics, where a DPT is
expected to take place. In the term g|φ|2φ, this approximation
amounts to applying the factorization rule

φ(0)∗(q1, ω1)φ(0)(q2, ω2)φ(0)(q3, ω3)

→ 〈φ(0)∗(q1, ω1)φ(0)(q2, ω2)〉φ(0)(q3, ω3)

+ 〈φ(0)∗(q1, ω1)φ(0)(q3, ω3)〉φ(0)(q2, ω2). (16)

Making use of Eqs. (9) and (10) and invoking the normaliza-
tion condition for ST (q⊥), we infer

g|φ|2φ � 2gI
∫∫

dω

2π

d2q⊥
(2π )2

φ(0)(q⊥, ω)

×
∫

dω′

2π
SF (ω′)| fω′ (t )|2

× exp

[
iq⊥ · r⊥ − iz

2k0

(
q2

⊥ − Diω
2 + k2

0

Div
2
i

)]
.

(17)

Inserting this relation into Eq. (15), we finally obtain a closed
equation for fω(t ),

f̈ω(t ) +
(

Di

D f
ω2 + meff(t )

)
fω(t ) = 0, (18)

where

meff(t ) ≡ m + 2gI

D f

∫ ∞

−∞

dω

2π
SF (ω)| fω(t )|2, (19)

with m ≡ k2
0/(D f v f )2 − k2

0/DiD f v
2
i . The nonlinear equa-

tion (18) must be complemented by initial conditions, which
we find by ensuring the continuity of the field envelope E
and of its time derivative at the temporal interface. From the
prequench solution (13), these conditions yield

fω(0) = 1, ḟω(0) = −i(ω + μi − μ f ), (20)

where the factor μi − μ f = k0/Divi − k0/D f v f stems from
the phase relating the variables φ and E [see Eq. (5)], which
changes from μit to μ f t when the quench is performed.

In statistical physics, equations of the form of (18) have
been studied in the context of quenches in the O(N ) model,
for which they constitute the exact solution in the limit N →
∞ [25–31]. In that framework, m is the mass parameter of the
free theory (g = 0), which becomes self-consistently renor-
malized to meff(t ) when g is nonzero. In the present optical
problem, meff(t ) is a crucial quantity for the dynamics, which
in turn is related to the total wave intensity after the quench
through

〈|φ(r⊥, z, t )|2〉 =
∫

dω

2π
SF (ω)| fω(t )|2 = meff(t ) − m

2gI/D f
, (21)

where the first equality follows from Eq. (14), using Eqs. (9)
and (10). A core property of the equation of motion (18)
is that if m is chosen to be negative (which is realized for
D f v

2
f > Div

2
i ), the effective mass meff(t ) may vanish at long

time and induce a dynamical phase transition [25]. The precise
condition for this to happen is discussed in the next section.

It is interesting to notice, finally, that the initial trans-
verse fluctuations have been completely traced out in the
derivation of Eq. (18). This means that their precise prop-
erties are of no importance for the postquench dynamics,
which is solely governed by the frequency fluctuations. This
decoupling originates from the factorization of spatial and
frequency fluctuations that we assumed for the incoming wave
[Eq. (7)], as discussed at the end of Sec. II B. In fact, the
essential role of the transverse fluctuations is here to guarantee
that the mean field vanishes 〈φ(t )〉 = 0, due to Eq. (8), so
as to mimic a prequench state lying in a disordered phase.
In the case of a nonzero initial mean field, the equation of
motion (19) would be modified and should be complemented
by an additional equation governing the dynamics of 〈φ(t )〉.

B. Dynamical phase transition

In [54] it was shown that in nonlinear equations of the type
of Eq. (18), the effective mass meff(t ) generically converges at
long time to a constant positive value meff(∞). A dynamical
phase transition then exists if meff(∞) vanishes for a certain
critical (negative) value mc of the quench parameter m. To
find out whether such a DPT is present in the model of (18)
and (19), we use an ansatz originally proposed in [27,54]
for calculating meff(∞): We replace the stationary value of
| fω(t )|2 on the rhs of Eq. (19) by the result of the free theory
(g = 0) self-consistently evaluated at m = meff(∞). Since the
solution of the free theory is

f free
ω (t ) = cos(t

√
ω2Di/D f + m)

− i(ω + μi − μ f )√
ω2Di/D f + m

sin(t
√

ω2Di/D f + m), (22)

this ansatz leads to

meff(∞) = m + 2gI

D f

∫
dω

2π
SF (ω)

× (ω+ μi− μ f )2+ ω2Di/D f + meff(∞)

2[ω2Di/D f + meff(∞)]
. (23)

A DPT, if it exists, corresponds to a critical value m = mc for
which meff(∞) = 0. This imposes that

mc = − gI

Di

∫
dω

2π
SF (ω)

(ω + μi − μ f )2 + ω2Di/D f

ω2
. (24)

In this relation, the frequency integral on the rhs is nondi-
vergent at ω → 0 only when μi = μ f . This is the phase-
matching condition required for the dispersive medium to
display a DPT after the quench, which we assume to be
fulfilled from now on:

μi = μ f ≡ μ ⇔ Divi = D f v f . (25)
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The phase-matching condition allows us to rewrite the
equation of motion (18) in the dimensionless form

f̈ω(t ) +
(

v f

vi
ω2 + meff(t )

)
fω(t ) = 0,

meff(t ) = m + λ

2

∫ ∞

−∞

dω

2π

2γ

(ω − 1)2 + γ 2
| fω(t )|2,

(26)

where we introduced λ ≡ 4gI/D f μ
2. The mass parameter is

now m ≡ 1 − v f /vi, and time and frequency are expressed in
units of μ−1 and μ, respectively. Note that this equation of
motion depends on three independent parameters only: the
nonlinear coupling strength λ, the spectral width γ , and the
ratio v f /vi of group velocities before and after the quench,
this ratio being the natural control parameter allowing us to
explore the DPT. Equation (26) is also the form that will
be used in our numerical simulations below. At the phase-
matching condition (25), the critical quench (24) at which
the DPT occurs can be rewritten in terms of a critical value
v f /vi|c,

mc ≡ 1 − v f

vi

∣∣∣∣
c

= −λ

4

1 + v f /vi|c
v f /vi|c , (27)

which yields the critical ratio of group velocities

v f

vi

∣∣∣∣
c

= 1

8
[4 + λ +

√
16 + λ(24 + λ)]. (28)

In the next two sections, we characterize the general prop-
erties of the solutions of Eq. (26) in the vicinity of the
critical quench, i.e., for m > mc and m < mc, corresponding to
v f /vi < v f /vi|c and v f /vi > v f /vi|c, respectively. The practi-
cal realization of the critical ratio (28) for a concrete example
of dispersive medium will be discussed in Sec. VI.

IV. QUENCH ABOVE THE CRITICAL POINT

A. Divergence of the correlation length

We first show in Fig. 2 the effective mass meff(t ) as a
function of time, obtained by solving Eq. (26) numerically
for a few values of m above mc. As announced, following the
quench, the effective mass quickly saturates at a finite value
meff(∞) that gets closer and closer to zero as m approaches
mc. The saturation value is well described by the solution of
Eq. (23), shown as dashed lines.

Above the DPT, the saturation value of the effective mass
defines a correlation length ξ ≡ 1/

√
meff(∞), which diverges

algebraically near the critical point. Figure 3 shows ξ as
a function of the distance m − mc to the critical point, for
different values of the bandwidth γ of the frequency spec-
trum. Whatever γ is, we find that ξ diverges algebraically
at m = mc, which is a hallmark of the DPT. The numerical
results of Fig. 3, however, also demonstrate the existence of
a crossover between two algebraic scaling laws in the re-
gion 0 < m − mc � 1. Indeed, above a small but finite value
of m − mc we find ξ ∼ 1/(m − mc)1/2, whereas below that
value we have ξ ∼ 1/(m − mc), a scaling which persists up to
arbitrarily small m − mc. The existence of this crossover is
a characteristic feature of the optical DPT. It is in turn due
to the competition between two antagonistic effects: on the
one hand, the approach to the DPT, whose critical properties
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FIG. 2. Effective mass meff(t ) vs time for a few values of the
quench parameter m above its critical value mc, for λ = 0.5 and
γ = 0.1. At long time meff(t ) converges to a finite positive value
meff(∞). The latter is well captured by the solution of Eq. (23),
shown as black dashed lines. Here time and frequency are in units
of μ−1 and μ, respectively, and m, mc, and meff(t ) are in units of μ2.

are governed by the infrared frequency limit ω → 0, and, on
the other hand, the frequency spectrum of the beam, which
selects the finite frequency ω = 1 [see Eq. (26)]. This can
be explicitly demonstrated by combining Eqs. (23)–(25) to
express meff(∞) as a function of m − mc:

meff(∞) = m − mc − λ

2

∫
dω

2π

SF (ω)meff(∞)

2 v f

vi
[ v f

vi
ω2 + meff(∞)]

. (29)

The existence of the crossover between to critical behaviors
becomes clear if one notices that the value of the integral
on the rhs depends on which of the functions SF (ω) or
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FIG. 3. Correlation length ξ ≡ 1/
√

meff(∞) as a function of the
distance m − mc to the critical point, for different values of the
bandwidth γ . Symbols are numerical results, obtained by solving
Eq. (26). The dashed lines show the asymptotic analytical predic-
tions (30) and (31) in the close vicinity of the DPT and slightly away
from it. Here λ = 0.5 and the parameter units are the same as in
Fig. 2.
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[ v f

vi
ω2 + meff(∞)]−1 is the narrowest. At very small m − mc,

it is the second one, which selects the infrared frequencies and
eventually yields, to leading order in meff(∞) � 1,

ξ ≡ 1√
meff(∞)

� 1

m − mc

λSF (0)

8

vi

v f

∣∣∣∣
3/2

c

. (30)

On the other hand, at larger m − mc the frequency spectrum
becomes more peaked, so the frequency region around ω = 1
becomes the dominant contribution to the integral. As a result,
the second term on the rhs of Eq. (29) becomes subleading and
we find instead

ξ � 1√
m − mc

. (31)

The two asymptotic laws (30) and (31) are displayed in Fig. 3
(dashed lines). They match very well the numerical results
without any fit parameter. The crossover point separating the
two regimes is readily obtained by equating the asymptotes.
We find m − mc � λ2γ 2/16.

Let us finally discuss the distribution function fω(t ) above
the critical point. Since the effective mass saturates at long
time, fω(t ) is approximately given by

fω(t ) � cos(t
√

ω2 + ξ−2) − iω sin(t
√

ω2 + ξ−2)√
ω2 + ξ−2

, (32)

where we used that v f /vi is close to one in the vicinity of
the critical point. Returning to the physical problem of light
propagation, we see that this solution actually describes the
superposition of two optical waves propagating forward and
backward in time for t > 0. This phenomenon, illustrated
in Fig. 1(b), is characteristic of waves scattered from time-
varying dielectric interfaces (see, e.g., [52] for a review).

B. Link to the O(N) model and dimensional crossover

The two asymptotic laws (30) and (31) can be recast as
ξ ∼ (m − mc)−ν , with a critical exponent ν crossing over
from 1 to 1

2 when moving away from the transition. To
better understand this crossover, it is instructive to make a
connection with the critical properties of the usual quantum
(i.e., zero-temperature) equilibrium phase transition of the ϕ4

model with O(N ) symmetry that we recall here. The O(N )
model describes an N-component scalar field � in dimension
d with the Hamiltonian [27,28,51]

H =
∫

dd x
1

2

(
�2 + (∇�)2 + m�2 + u

12N
(�2)2

)
, (33)

where � is the canonical conjugate momentum of � (for sim-
plicity we use the same denotation m for the mass parameter
as in the optical problem). In the limit N → ∞, a Hartree
approximation similar to that we used in Sec. III A allows us
to exactly map the Hamiltonian (33) onto a quadratic one with
effective mass self-consistently given by [27,51]

meff = m + u

12

∫
dd q

(2π )d

1√
q2 + m

, (34)

where |q| is supposed to be bounded from above by an ultra-
violet cutoff. This equation similarly defines an equilibrium
quantum critical point mc = −(u/12)

∫
dd q/(2π )d/|q| where

100
�me

500 1000

10-7

10-6

10-5

10-4

10-3

below cri�cal pointLorentzian

Gaussian

FIG. 4. Effective mass meff(t ) vs time obtained by solving nu-
merically Eq. (26) for m − mc = −0.3 and λ = 4. The blue and
green curves show numerical results for a Lorentzian spectrum (with
γ = 0.1) and a Gaussian spectrum (with γ = 0.45), respectively.
The red dashed line is the analytical prediction (41), a consequence
of scale invariance below the critical point. Here time and frequency
are in units of μ−1 and μ, respectively, and m, mc, and meff(t ) are in
units of μ2.

meff = 0, showing that a transition only exists when d > 1. In
that case, the correlation length ξ ≡ √

meff
−1 in the vicinity

of the critical point obeys the algebraic law ξ ∼ (m − mc)−ν

with

ν = 1

d − 1
(1 < d < 3), ν = 1

2
(d � 3). (35)

A comparison with Eq. (30) suggests that the critical expo-
nent of the optical DPT in dispersive media when m − mc →
0 is the same as the one of second-order equilibrium quantum
phase transitions in dimension 2. Furthermore, the smooth
change of the critical exponent from 1 to 1

2 observed in Fig. 3
can be seen as a dimensional crossover, where the class of
the optical DPT turns from that of a quantum phase transi-
tion in dimension 2 to that of a quantum phase transition in
dimension 3 (the upper critical dimension) as one moves away
from the critical point. In recent works [28,29], a somewhat
related quantum-to-classical crossover (but at fixed spatial
dimension) was reported, but a dimensional crossover in a
DPT is a different phenomenon. As mentioned in the previous
section, it stems from the peculiar shape of the fluctuation
spectrum (11), which selects out a nonzero frequency when
the spectral width γ is small enough. Previous works on
DPTs in the O(N ) models, on the contrary, have so far been
restricted to fluctuation spectra centered on ω = 0 [29].

V. QUENCH BELOW THE CRITICAL POINT

A. Scale invariance

Let us now consider quenches below the critical point,
namely, m < mc (or v f /vi > v f /vi|c). Numerical resolution
of Eq. (26) for meff(t ) in that case is shown in Fig. 4. After
a transient regime, one finds that the effective mass decays
algebraically as meff ∼ 1/t2. Such a behavior was previously
reported in the context of the O(N ) model in the limit
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N → ∞, where it was found to be associated with scale
invariance [29]. To show this, let us consider a rescaling
(t → εt, ω → ω/ε) of the time and frequency variables in
Eq. (26). The rescaled equation reads

1

ε2
f̈ω/ε (εt ) +

(
v f

vi

ω2

ε2
+ meff(εt )

)
fω/ε (εt ) = 0. (36)

A comparison with Eq. (26) immediately shows that scale in-
variance is achieved when meff(εt ) = (1/ε2)meff(t ), i.e., when
meff(t ) ∝ 1/t2, in agreement with the numerical observation
of Fig. 4. Scale invariance is thus a core dynamical property of
nonlinear dispersive medium below the critical quench. Below
we show how this feature manifests in the scaling properties
of the distribution function fω(t ).

B. Scaling properties of the distribution function

The scale-invariance property of the equation of motion
below the critical point is expected to give rise to a specific
universal self-similar behavior of the distribution function
fω(t ). To disclose this behavior, we look for asymptotic
expressions of the solution of Eq. (26) in the regime of scale
invariance where meff(t ) = a/t2, with a a numerical constant
to be determined. In the context of the O(N ) model, a method-
ology to achieve this goal was proposed in [29] in a particular
deep-quench limit where the initial conditions for fω and ḟω
are constant. This is not the case in the present optical DPT,
which requires us to adapt the method of [29], as we now
discuss.

For ω � 0, the general solution of Eq. (26) with meff(t ) =
a/t2 is given by

fω(t ) = √
ωt

[
AωJα

(√
v f

vi
ωt

)
+ BωJ−α

(√
v f

vi
ωt

)]
, (37)

where α = √
1/4 − a and Aω and Bω are coefficients to be

found. This solution is only expected to hold beyond a cer-
tain timescale t0 beyond which scale invariance emerges.2

Therefore, to find Aω and Bω we cannot directly use the
initial conditions for fω, but instead we should to match the
solution (37) with an approximate expression of fω(t ) at t =
t0 [29]. To find the latter, we extrapolate from the initial con-
dition using the Taylor expansion fω(t0) = fω(0) + t0 ḟω(0) +
O(t2

0 ). From Eq. (20) we infer

fω(t0) � 1 − iωt0 + O
(
t2
0

)
. (38)

On the other hand, Eq. (37) in the limit ωt0 � 1 provides

fω(t0) � Aω(ωt0)α+1/2 (1/2
√

v f /vi )α

�(α + 1)

+ Bω(ωt0)−α+1/2 (1/2
√

v f /vi )−α

�(−α + 1)
. (39)

In this expression we can show that the scaling (ωt0)α+1/2 of
the first term on the rhs eventually provides values of α which

2The timescale t0 is not universal and in particular depends on the
form of the fluctuation spectrum. For the case of the Lorentzian
spectrum with γ = 0.1 shown in Fig. 4, one has, e.g., t0 � 300/μ.
For a Gaussian spectrum, t0 is much shorter.

are incompatible with the self-consistent relation obeyed by
meff(t ) [Eq. (26)]. This imposes that Aω = 0. Comparing
Eqs. (38) and (39) then implies that Bω = B(ωt0)α−1/2(1 +
B′ωt0/2), with B and B′ prefactors independent of ω, such that

| fω(t )|2 � |B|2 t

t0
(ωt0)2α (1 + B′ωt0)J2

−α

(√
v f

vi
ωt

)
. (40)

The last step of the calculation consists in inserting this result
into the self-consistent equation (26) obeyed by the effective
mass meff(t ). Matching both sides of this equation in the long-
time limit imposes the value of a. The details of this procedure
are presented in the Appendix for clarity. It leads to the only
possible value α = 1

4 , or equivalently a = 3
16 , so that

meff(t ) = 3

16

1

t2
(41)

for quenches below the critical point. As shown in Fig. 4, this
analytical result captures very well the numerical simulations
at long time with, in particular, the correct prefactor 3

16 .
It should be noted that, according to the above analy-

sis, both the scaling law 1/t2 and the prefactor 3
16 follow

from the property of scale invariance and are, in this sense,
universal. In particular, the law (41) a priori holds for dif-
ferent types of frequency spectra. We have verified this
by numerically computing meff(t ) for a Gaussian spectrum
SF (ω) = (

√
2π/γ ) exp[−(ω − μ)/(2γ )2]. The result, shown

in Fig. 4, converges as well to the prediction (41) (the
timescale t0 is even faster than for the Lorentzian spectrum in
that case).

The value α = 1
4 also governs the asymptotic frequency-

time scaling of the distribution function below the critical
quench, which follows from Eq. (40):

(42)
| fω(t )|2 ∼

{
(t/t0)1/2, ωt � 1(

1
ωt0

)1/2
cos2(ωt − π

8 ), ωt � 1. (43)

To verify this analysis, in Fig. 5 we show the distribu-
tion | fω(t )|2 numerically obtained from Eq. (26). The plot
shows | f0(t )|2, which indeed scales like t1/2 at long time,
in agreement with Eq. (42). The inset also shows | fω(t )|2
as a function of frequency for a fixed long time. It suggests
| fω(t )|2 ∼ ω−0.43, close to the prediction (43) [the small de-
viation from ω−1/2 observed here is due to finite-time effects,
Eq. (43) strictly holding in the limits ωt0 � 1, t/t0 � 1, and
ωt � 1]. In Fig. 6, finally, we plot the numerical distribution
ω0.43| fω(t )|2 as a function of the product ωt for several values
of ω. The curves at different frequencies all fall on a single
one and oscillate as cos2(ωt − π/8), directly confirming the
prediction (43).

As originally pointed out in [25,26,29] in the context of
the O(N ) model, both asymptotic relations (42) and (43)
can be seen as parts of the general scaling law | fω(t )|2 =
L1/2(t )F[ωL(t )], which closely resembles the coarsening dy-
namics expected when quenching a classical system below a
critical point. The quench process then gives rise, for t > 0,
to the local formation of domains of size L(t ) ∼ t growing
linearly in time [55].
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FIG. 5. Distribution function | fω(t )|2 at zero frequency as a func-
tion of time, obtained by solving numerically Eq. (26) for m − mc =
−0.3, λ = 4, and γ = 0.1. At long time | f0(t )|2 ∝ √

t , in agreement
with Eq. (42). The inset shows the distribution function | fω(t )|2 as a
function of ω. Here time is averaged over a small temporal window
of width �t = 54, centered around t = 1420. The numerics suggests
| fω(t )|2 ∝ ω−0.43 at small frequency, close to the prediction (43). The
parameter units are the same as in Fig. 2.

VI. EXAMPLE: LIGHT IN ATOMIC VAPORS

A representative example of nonlinear dispersive medium
for light is vapors of hot atoms optically illuminated in the
vicinity of an atomic resonance. Recently, this platform was
extensively used to investigate a variety of nonequilibrium
phenomena with light [20,40–45,56–58]. In this section we
discuss under what conditions they could be exploited to also
explore the dynamical phase transition studied in the present
paper. Note that here we do not aim to provide an exhaustive
description of this system, but merely to give an example

0.50.2 1 2 5
0

1

2

3

4

5

6

FIG. 6. Rescaled distribution ω0.43| fω(t )|2 as a function of the
product ωt for several values of ω, obtained by solving numerically
Eq. (26) for m − mc = −0.3, λ = 4, and γ = 0.1. The dashed curve
is the theoretical prediction (43), in which the only free parameter is
the (nonuniversal) prefactor. The parameter units are the same as in
Fig. 2.

of practical quench protocol and to emphasize its possible
limitations.

Let consider an ensemble of two-level atoms consisting
of a ground state |g〉 and an excited state |e〉. We denote
by ω0 the resonance frequency between these two states and
by � the decay rate of the excited state. According to the
discussion in Sec. III B, observing the DPT requires us to
perform a temporal change of the group velocity v in the vapor
from vi to v f , the critical quench being achieved for the ratio
v f /vi = v f /vi|c defined by Eq. (28). When v f /vi < v f /vi|c,
the postquench optical beam lies in the normal dynamical
phase, characterized by a finite effective mass and a finite
correlation length, as discussed in Sec. IV. When v f /vi >

v f /vi|c, the beam instead lies in the coarsening phase and the
effective mass decays algebraically (see Sec. V).

In order to be able to observe the DPT in practice, three
constraints must be satisfied: (i) Because v f /vi|c > 1 [see
Eq. (28)], crossing the DPT requires the postquench velocity
v f to be larger than the prequench velocity vi, (ii) the pre-
quench and postquench dispersion parameters should obey
the phase-matching condition (25), and (iii) the nonlinear
parameter λ should be positive. In an atomic vapor, a tem-
poral quench of the dispersion parameters can be achieved
by exploiting the dependence of the group velocity v and the
quadratic dispersion D upon the detuning � ≡ ω − ω0 of the
laser exciting the transition: A change from �i to � f changes
vi ≡ v(�i ) to v f ≡ v(� f ) and similarly Di ≡ D(�i) to D f ≡
D(� f ). To express these quantities, we assume that the vapor
is dilute so that its refractive index n depends on the detuning
as n(�) ≡ 1 − (6πρ�/2k3

0 )�/(�2 + �2/4), where ρ is the
atom density and k0 ≡ ω0/c [59]. The group velocity and the
quadratic dispersion parameter follow from v ≡ (∂k/∂ω)−1

and D ≡ 1
2 (∂2k2/∂ω2), respectively, where k ≡ nω/c is the

wave number in the vapor.
A possible configuration satisfying the above conditions

(i)–(iii) is illustrated in Fig. 7(a), where we show the group
velocity v and the product Dv as a function of �: By
quenching the detuning from the initial value �i � (−√

3 +
�/2ω0)�/2 to a final one � f < 0 such that |� f | � �/2, one
simultaneously realizes v f /vi > 1, D f v f = Divi, and λ > 0
[the latter condition follows from the proportionality relation
λ ∝ g ∝ −� f in an atomic vapor; see Eq. (44) below]. Within
this protocol, it is also required that the laser power is in-
creased from a small to a finite s0 value [see Eq. (44) below]
to realize the interaction quench.

In the configuration described above, the two dynamical
phases of the DPT can be probed by varying the ratio v f /vi

via � f around the critical value v f /vi|c. The latter is identified
by the relation (28), which is a function of the nonlinear
parameter λ ≡ 4gID f v

2
f /k2

0 . In an ensemble of two-level
atoms, the product gI is conveniently expressed in terms of
the resonant saturation parameter s0, which is the ratio of the
laser intensity to the intensity required to saturate the atomic
transition [60]:

gI = −6πρ

k0

� f �
3/4

(�2
f + �2/4)2

s0. (44)

Inserting this relation into Eq. (28) and making explicit
the � f dependence of the ratio v f /vi, we infer the phase
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FIG. 7. (a) Detuning dependence of the group velocity v and of
the product Dv (with D the quadratic dispersion) in a dilute atomic
vapor. By choosing �i � (−√

3 + �/2ω0)�/2 and quenching to a
large negative detuning � f , one simultaneously satisfies the condi-
tions v f /vi > 1, Df v f = Divi, and � f < 0 required to observe the
DPT. The horizontal dashed line is a guide to the eye, identifying the
condition Df v f = Divi. (b) Phase diagram of the DPT in the (s0, � f )
plane for the choice �i � (−√

3 + �/2ω0)�/2. In both plots, we
take 6πρ/k3

0 = 10−2 for the atomic density and 2ω0/� = 10 for the
quality factor of the transition.

diagram of the DPT in the plane (s0,� f ) for the atomic
vapor [see Fig. 7(b)]. For a given laser intensity s0, this di-
agram suggests that the DPT can be crossed by choosing a
large enough (negative) value of the postquench detuning. As
the nonlinearity is increased (larger s0), larger detunings are
required because of the increase of the critical ratio v f /vi|c.
Note that in this simple model, we have neglected a num-
ber of effects such as Doppler broadening or absorption.
While the impact of Doppler broadening should be limited
by operating at large detuning, residual absorption is always
present and it is not clear how it will affect the physics of
the DPT.

VII. CONCLUSION

In this work we have provided theoretical evidence for
a dynamical phase transition for fluctuating optical beams
propagating in nonlinear dispersive media. The existence of
this DPT fundamentally relies on a mapping between the
nonlinear dispersive wave equation in the slowly varying
envelope approximation and a massive ϕ4 theory. From this

observation, the DPT can be triggered by a temporal change
of the dispersion parameters, which simulates a quench in
the corresponding ϕ4 model. From this perspective, we have
identified the precise phase-matching condition required for
the DPT to occur. Generally speaking, the idea of applying
temporal quenches to dielectric media has recently gained
more and more interest in optics [52], even though so far it
has not been explored much in nonlinear media.

By numerically and theoretically investigating the optical
DPT in the vicinity of the critical point, we have connected
its critical exponent to the one of equilibrium quantum phase
transitions in the ϕ4 theory. Slightly above the critical point,
we have also disclosed a dimensional crossover of the critical
exponent. This crossover is a characteristic feature of the
optical problem, stemming from the peculiar shape of the fluc-
tuation spectrum, which competes with the infrared physics
of the transition by favoring a finite optical frequency. Be-
low the transition, we have numerically and theoretically
described the postquench coarsening dynamics. In particular,
because it describes a DPT with quantumlike critical prop-
erties, our analytical approach in this regime differs from
those of previous work [29], which focused on a classical
deep-quench limit.

The DPT discussed in this work is an example of a fixed
point arising in the short-time prethermal regime of a weakly
nonlinear system [30] and thus does not involve any inelastic
scattering processes. Such processes are nevertheless present
in the original nonlinear dispersive equation, and their onset
corresponds to a breakdown of the factorization ansatz (16).
They are expected to make the system deviate from the
fixed point at long time and eventually to thermalize it. The
timescale where this thermalization occurs is expected to scale
as 1/g2 and can therefore be very long for a weak nonlinearity.
Nevertheless, while the crossover from prethermalization to
thermalization in quantum fluids has been recently studied
in a few cases [61–64], its general description in situa-
tions where a prethermal DPT is present remains an open
problem.
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APPENDIX: DETERMINATION OF THE SCALING
FACTOR A

To find the value of the scaling factor a, we use that, below
the critical point, the solutions meff(t ) = a/t2 for the effective
mass and Eq. (40) for the distribution function are related
through Eq. (26) at long enough time. Introducing the rescaled
time x ≡ √

v f /vit , Eq. (26) reads

v f

vi

a

x2
= m + �R(x), (A1)
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where � ≡ λ|B|2√vi/v f t
2α−1
0 /2 (with α = √

1/4 − a) and

R(x) = x
∫ ∞

−∞

dω

2π

2γ

(ω − 1)2 + γ 2
ω2α (1 + B′t0ω)J2

−α (ωx).

(A2)

Then we follow the method proposed in [29] and expand R(x)
at large x. The expansion reads

R(x) = C0(α, B′) + C1(α)

x2α
+ C2(α, B′)

x2α+1
+ C3(α, B′)

x2
+ · · · .

(A3)

The coefficients Ci of this expansion all depend on α and B′,
except C1 (they also all depend on γ , but this dependence is
not relevant in the reasoning).

In order for Eq. (A1) to be satisfied, both prefactors C1 and
C2 should be zero. Since C1 is independent of B′, the condition
C1(α) = 0 is the one that restricts the possible values of α.
From the expansion of R(x) at large x we find

C1(α) ∝ 1

�(1/2 − 2α)�(1/2 − α)
, (A4)

where � is the gamma function. This leads to the pos-
sible sets of values α = {1/4 + n/2} or α = {1/2 + n},
with n an integer. Among these values, only the one
α = 1/2 is compatible with a positive effective mass, i.e.,
a > 0. The condition C2(α, B′) = 0, on the other hand, en-
forces the value of B′, while the equations m + �C0(α,

B′) = 0 and �C3(α, B′) = (v f /vi )a fix the values of B
and t0.
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