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Topological phases in photonic microring lattices with projective symmetry
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Symmetry plays a key role in classifying topological phases, which can be enriched by the projective symmetry
group in the presence of artificial gauge fields (AGFs). Here, we utilize two-dimensional (2D) photonic microring
lattices to create three different topological states based on projective symmetry. By engineering link rings, we
are able to flexibly manipulate the AGFs and coupling magnitude. As each plaquette carries a π flux, the two
translation symmetries of a rectangle microring lattice are projectively represented. By applying different types
of dimerization, we tune the spatial space to break translation symmetry and achieve a Möbius topological
insulator with twisted edge bands and a graphenelike topological semimetal with flat bands, which we reflect by
unique excitation spectra and field distributions. Additionally, by changing the configuration of gauge flux, the
mirror and translation operators become anticommutative, leading to the fractal translation of the Brillouin zone.
As a result, the band structure of topological edge modes experiences twice the period in momentum space. All
results are confirmed by full-wave simulation. Our study has the potential to construct unprecedented photonic
topological insulators benefiting from gauge fields.
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I. INTRODUCTION

Topological photonics provides an alternative approach to
controlling light transport via the topology degree of freedom
and it is exploited for developing novel photonic devices that
are robust to perturbations [1–11]. Advancing nanofabrication
technology has enabled the demonstration of topological in-
sulators [12,13], semimetals [14], high-order states [15,16],
and non-Hermitian topology [17–23] in a variety of pho-
tonic platforms. Remarkably, symmetry, another important
concept of modern physics, plays a crucial role in the clas-
sification of topological phases. For example, topological
insulators and superconductors are categorized by the tenfold
method of Altland-Zirnbauer symmetry classes according to
internal symmetries [24], such as time-reversal, particle-hole,
and chiral symmetries. This formulation provides a com-
plete Periodic Table to understand symmetry-enriched and
symmetry-protected topological phases [25]. Building on this
progress, the technique has been extended to the case that
is protected by space-group symmetries. These symmetries
describe the spatial transformations, like translations, rota-
tions, and reflections, that leave a crystal structure unchanged
[26–28]. The application of spatial symmetries yields a richer
catalog of topological matters and abundant topological crys-
talline insulators that have not been reported before, providing
a rather comprehensive search for candidate topological ma-
terials [29].

However, the traditional definition of crystal symmetry
does not involve gauge fields. The recent developed metacrys-
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tals enable the possibility of generating artificial gauge fields
(AGFs), whereby the crystal symmetries are projectively rep-
resented, enriching the classification of topological phases
[30–41]. The underlying mechanism relies on the phase ac-
cumulated for wave functions that would change the algebra
of spatial symmetry operations. Using projective inversion or
mirror symmetry, the spinless system can host spinful topo-
logical phases under Z2 gauge fields. In a rectangle lattice,
breaking the projective translation symmetries gives rise to
novel Möbius topological insulators [42–44] and graphenelike
semimetal phases [32,42,45]. In addition, the projective sym-
metry algebra dramatically lead to the fraction of reciprocal
lattice, deforming the Brillouin zone from torus into Klein
bottle [46], producing novel topological phases distinct from
Chern insulators [43]. The principle of projective symmetry
and the enriched topological phases have been demonstrated
in acoustic cavities [31,43,47–49]. However, the generation
of such phases in photonic systems has not been thoroughly
explored due to the simultaneous control required for coupling
strength and gauge fields.

In this work, we bridge this gap by proposing that micror-
ing resonator lattices can be utilized as a versatile platform for
exploring projective symmetry and the associated topological
phases, where the flexible manipulation of gauge flux and
coupling strength can be simultaneously achieved by engi-
neering the link rings that connect resonant site rings [50–58].
In indirectly coupled microring resonators, the evanescently
coupling strength is determined by the gap distance between
adjacent rings, while the AGFs are generated by shifting
link rings to arouse direction-dependent phases [13,16,59].
Moreover, the resonant frequencies of individual rings can
be easily manipulated to introduce the on-site potentials.
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Therefore, a variety of topological tight-binding lattice mod-
els were proposed and demonstrated based on microring
resonators, such as the photonic analogy of the quantum
Hall insulator [13], quadrupole topological insulators [16,60],
quadratic-node semimetals [61], and antihelical edge states
[62]. In addition, it is important to note that optics differs
from phonics, which seeks to address the impact of fabrica-
tion imperfections and disorder in compact photonic devices
through the utilization of topological degrees of freedom. The
topology provides alternative ways to manipulate and control
electromagnetic waves over a broad range of frequencies.
Topological photonic systems hold the potential for various
applications, such as disorder-robust waveguides, delay lines,
optical isolators, and topological lasers [1,2]. Hence the inte-
gration of these concepts into the photonic platform is of great
importance. Here we utilize microring resonators to construct
two-dimensional (2D) rectangle lattices with π flux threading
certain plaquettes, formulating projective spatial symmetries.
Subsequently, we achieve three kinds of topological phases
unique to gauge lattices, including the Möbius topological
insulator, graphenelike semimetal, and the Brillouin Klein
bottle. We also perform full-wave simulation to verify the
theoretical results. The simulated absorption spectra, field
distributions, and discussions regarding robustness provide
more comprehensive insight into the behavior of the coupled
ring resonator arrays. Furthermore, this analysis incorporates
all pertinent physical parameters, including refractive in-
dices, ring lengths, and coupling gaps. This approach extends
beyond a tight-binding treatment of eigenvalues and eigenvec-
tors, thereby serving as a link to experimental observations.
The study is helpful for the design of photonic integrated
topological insulators offered by projective symmetry algebra.

II. MÖBIUS TOPOLOGICAL INSULATOR

We start by investigating a microring array arranged in
a 2D rectangular lattice that respects projective translation
symmetry. As shown in Fig. 1(a), each unit cell contains four
main site rings (in green), which are evanescently coupled to
their neighbors via a set of link rings (in gray and red). The
resonant frequency of link rings is different from that of the
site rings due to an added length used to control the magni-
tude and phase of effective coupling. The key to achieving
projective symmetry is to generate a π flux threading each
plaquette, which is equivalent to inserting a negative coupling
into each cell. Towards this goal, we horizontally shift a link
ring (plotted in red), as illustrated in Fig. 1(b). For clockwise
rotation modes, light coupling from the lower to upper site
rings along the y direction experiences a longer propagation
distance compared to that from the inverse direction. This
yields a direction-dependent coupling phase that leads to
AGFs based on the Peierls phase configuration [13]. Thus we
can realize an arbitrary gauge flux determined by the shift dis-
placement, with ϕ = 2neff k0�x, where �x, k0, and neff denote
the shift displacement, the wave vector in vacuum, and the
effective refractive index of the ring waveguide, respectively.
Furthermore, the magnitude of coupling is tunable by the gap
distance between site and link rings, either by deforming the
link rings or by changing the distance directly, as shown in
Figs. 1(c) and 1(d). The former method has the advantage of

FIG. 1. Schematic diagram of the microring array and the cou-
pling modules. (a) Structural model of the microring array under a
square lattice with projective translation symmetry. The green ring
indicates the main site rings. The gray (red) indicates connecting
rings with positive (negative) coupling. (b) The unit cell with π flux.
The red link ring is shifted to create a negative coupling. (c,d) plot
the design of link rings to control the coupling strength between the
two main rings.

preserving the lattice period, which is useful for implementing
different forms of dimerization.

In the absence of AGFs, the two primary translation op-
erators for a rectangle lattice, Lx and Ly, should commutate
with each other [Lx, Ly] = 0, which is the fundamental repre-
sentation in an ordinary crystal lattice. However, they develop
into projective symmetry since each plaquette carries a π flux
[30]. This is because the wave function acquires an additional
π phase during the transformation. The algebra of the two
symmetries is expressed in the anticommutation relation,

{L̂x, L̂y} = 0, (1)

with

L̂x = GLx =

⎛
⎜⎜⎝

0 1 0 0
eikx 0 0 0
0 0 0 −1
0 0 −eikx 0

⎞
⎟⎟⎠,

L̂y = Ly =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

eiky 0 0 0
0 eiky 0 0

⎞
⎟⎟⎠, (2)

where G denotes a gauge transformation. An immediate con-
sequence of projective symmetry is that each band must be
doubly degenerated at a single momentum. Furthermore, the
system also respects time-reversal symmetry for equivalent
spatial space due to ±π yielding the same gauge flux. There-
fore, there must be a fourfold Dirac point enforced at the M
point (kx = π, ky = π ) [30]. This observation can also be
derived from the periodic eigenvalues as

E± = ±t
√

2(cos kx + cos ky + 2), (3)

where t represents the coupling coefficients and kx(ky) repre-
sents Bloch momentum along the x(y) direction. It is evident
that the eigenvalues coalesce to E = 0 at the M point (kx =
π, ky = π ).
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FIG. 2. Möbius topological insulator based on microring resonators. (a) The diagram of the lattice model and the location of excitation
ports. (b) Simulated band structure for Möbius topological insulator. (c) Absorbance spectra of Möbius insulators excited from the x edge and
y edge. The spatial gaps are g1 = 0.35μm and g2 = 0.26μm. (d–f) The field distributions (|E|) at different frequencies with ω − ω0 = −35.7,
13.4, and 41.4 GHz.

The emergence of the fourfold Dirac point is a unique
feature of the projective symmetry group that does not require
additional point group symmetries. Moreover, this Dirac point
has a unique topological property that gives rise to novel
topological insulators for different coupling configurations.
To explore this, we begin by investigating the Möbius topo-
logical insulator by breaking Ly symmetry while preserving

Lx symmetry. The corresponding lattice model is illustrated in
Fig. 2(a), where there is an alternating coupling strength along
the y direction but it is uniform in the x direction. The thick
and thin lines depict strong and weak coupling coefficients,
respectively, which can be achieved by adjusting the gap dis-
tance between site and link rings along the y direction. The
Hamiltonian of the proposed system is given by

HM =

⎛
⎜⎜⎝

0 0 t1 + t1e−ikx t1 + t2eiky

0 0 −t1 − t2e−iky t1 + t1eikx

t1 + t1eikx −t1 − t2eiky 0 0
t1 + t2e−iky t1 + t1e−ikx 0 0

⎞
⎟⎟⎠, (4)

where t1 and t2 denote the intra- and intercouplings along the
y direction, and the coupling strength along the x direction is
also t1.

We conducted a full-wave simulation based on the fi-
nite element method using COMSOL to work out the band
structure of a strip lattice. In this simulation, the width and
the refractive index of the waveguide core are fixed at w =
0.27μm and ncore = 3, respectively. The cladding material is
assumed to be air for simplicity. The waveguide only sup-
ports a single TE-polarized mode with an effective refractive
index neff = 2.39 at a wavelength λ = 1.55μm. The vertical
and horizontal lengths of the site rings are L1 = L2 = 8μm
with a fillet radius r = 3μm. With these parameters, the
resonant frequency of a single site ring is calculated to be
ω0 = (196.05 + 6i × 10–4) THz with a small imaginary part
induced by radiation loss. The extra circumference of the
link rings is set to be �L = π/(neffk0) = 0.32μm to ful-
fill the antiresonant condition. The gap distances between

site and link rings for weak and strong couplings are cho-
sen as g1 = 0.35μm and g2 = 0.26μm, corresponding to
t1 = 8.9 GHz and t2 = 44 GHz, respectively. The shift dis-
placement of the link ring is �x = 0.16μm to generate a π

flux in each plaquette. Figure 2(b) shows the resulting band
structure for open boundary conditions (OBCs) along the y
direction and the periodic boundary condition (PBC) along
the x direction. There are 16 site rings along the y direction.
Due to the dimerization, the Dirac point is destroyed, and
the band structures are open. In the band gap, two twisted
bands appear without touching the bulk bands, which are
topological edge modes and referred to as the Möbius topo-
logical insulator. Each edge band is twofold degenerate as
a result of projective symmetry. Moreover, the two bands
cross at kx = π and run parallel to the horizontal at kx = 0,
2π , indicating that the edge bands have a 4π periodicity as
opposed to the general Bloch bands, which only have a 2π

periodicity.
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The Möbius twisted edge bands can be understood using
a tight-binding model. Considering [L̂x, H ] = 0, the Hamilto-
nian of the proposed system can be block diagonalized in the
eigenspace of projective translation operator L̂x,

UHMU † =
(

h1(k) 0
0 h2(k)

)
, (5)

with

h1,2(k) =
(

0 t1 + t2eiky

t1 + t2e−iky 0

)
± 2t1 cos (kx/2). (6)

Each block corresponds to a Su-Schrieffer-Heeger (SSH)
model with alternating couplings t1 and t2 and an additional
on-site term 2t1 cos kx. Therefore, at a fixed momentum kx,
each block will support two topological edge modes as t1 < t2
with energies given by

E±
edge = ±t1 cos (kx/2). (7)

It is apparent that the band structure for edge modes experi-
ences a 4π periodicity and they cross each other at kx = π .
In Fig. 2(b), the circles and lines represent the numerical and
theoretical results, which are in good agreement with each
other.

The Möbius edge bands can be reflected further from ab-
sorption spectra and field distributions by extra excitation,
which can be regarded as an experiment signature for observ-
ing Möbius topological insulators. To achieve this, we added
two extra ports at the x and y edges of the 2D array, with their
locations indicated in Fig. 2(a). Figure 2(c) displays the ab-
sorption spectra of an 8 × 8 array of resonant cavities. When
light is launched from the y-edge port, two separate resonant
peaks appear near ω − ω0 = ±50 GHz, corresponding to two
bulk bands. Here the maximum value of the absorption peak
is affected by the gap between the port and the array, but
different gaps do not have a significant effect on the shape
of the absorption line. The amplitudes of absorption peaks are
strongly dependent on the gap distances, which will determine
whether the external port and the arrays are over-, under-, or
critically coupled. As shown in Fig. 2(c), the amplitudes of
absorption peaks of the bulk band can reach unity as the gap
gx(gy) = 0.38μm, which corresponds to the critical coupling
of edge bands. The deviation from this gap distance will lead
to lower peaks. We note that the absorbance spectra within
the x-periodic edge band gap of the Möbius insulator are
fluctuating. This is related to the number of edge loops. As
the number of rings becomes larger, the number of peaks
also becomes larger. We depict two typical field distributions
(|E|) for these bands in Figs. 2(d) and 2(f), where light is
distributed throughout the arrays, revealing their bulk nature.
On the other hand, a remarkable peak appears near ω0 when
light is injected from the x edge. This resonant peak corre-
sponds to edge modes, where the fields are confined at the
boundary, as depicted in Fig. 2(e). The intensity of the edge
state decreases when it reaches the corner of the lattice. Such
field distribution may be caused by the interference between
propagating waves and the reflected wave from the corner. The
resonant peak frequencies for both bulk and edge modes are
consistent with the eigenfrequencies shown in Fig. 2(b). The
edge modes that appear at the x or y directions are determined
by the dimerization of spatial spacing. Here, we dimerized the

FIG. 3. Robustness of Möbius edge modes. (a,b) The field distri-
bution after removing one of the connecting rings or the main ring.
(c) The absorption spectrum calculated after removing one ring.

spacing along the y direction and thus the edge modes appear
at the x direction. We emphasize that each edge band is doubly
degenerated, with the edge states of one band localized at the
top boundary and the other at the bottom. In Fig. 2, we launch
light from the bottom, which only stimulates the edge states
at the bottom.

To test the robustness of the Möbius edge states, we re-
moved a connecting ring and a main ring from the edge for
two cases. We excited the system at the same frequency as
in Fig. 2(e). As shown in Figs. 3(a) and 3(b), the Möbius
edge states persist. Subsequently, we calculated the absorption
spectrum after removing the ring and found that the shape of
the spectrum did not change significantly compared to that in
Fig. 2(c). The results indicate the edge states are robust against
the defect. Since Möbius edge states only appear along the x
edge here, we specifically calculated the absorption spectrum
for the x-edge excitation.

III. GRAPHENELIKE SEMIMETAL

We have utilized a distinct dimerization pattern to disrupt
both Lx and Ly symmetries, ultimately eliminating the fourfold
Dirac point and arousing a pair of twofold Weyl points along
the kx direction [32]. These two points possess nontrivial topo-
logical charges, marked by a quantized Berry phase of π along
an enclosed loop and protected by PT symmetry. Similar to
graphene with a hexagonal lattice, they create a topological
flat band of edge modes that connect the projection of the
two Weyl points [32,47]. The diagram of the lattice model
is shown in Fig. 4(a), where the thick and thin lines indicate
the strong and weak coupling coefficients, respectively. This
fluctuation in coupling strength among different rows can
be achieved by altering link rings to modify gap distances
while preserving the lattice constant. To clarify, the position
of the primary site rings remains unaffected, as explained in
Fig. 1(c).

The corresponding tight-binding Hamiltonian is given by

HG =

⎛
⎜⎜⎝

0 0 t1 + t1e−ikx t1 + t2eiky

0 0 −t2 − t1e−iky t1 + t1eikx

t1 + t1eikx −t2 − t1eiky 0 0
t1 + t2e−iky t1 + t1e−ikx 0 0

⎞
⎟⎟⎠
(8)
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FIG. 4. Graphenelike semimetal and the flat-band topological
edge modes based on microring array. (a) The tight-binding lattice
and scheme of excitation ports. (b–d) are the simulated band struc-
tures for spacing g2 = 0.38, 0.40, and 0.46 µm, respectively. In all
cases, the other spacing is fixed at g1 = 0.35μm.

as the fourfold degenerate point locates at (kx = π, ky = π ).
After introducing the dimerization, the resulting Weyl points
appear at momentum (±Kx, π ). The location of momentum
Kx is determined by the characteristic polynomial and is de-
rived as

Kx = ±2 arccos

(
t2 − t1

2t1

)
. (9)

The simulated band structures for OBC along the x bound-
ary and PBC along the y direction are presented in Fig. 4(b).
In the simulation, the gap distances for the strong and weak
couplings are g1 = 0.35μm and g2 = 0.38μm. The length of
link rings is adjusted to be L1 = 7.4μm and L′

1 = 8.6μm,
while their widths are adjusted to keep the total circumference
constant and ensure an antiresonant condition for the link
rings. The resulting weak and strong couplings are figured
out to be t1 = 4 GHz and t2 = 8.9 GHz, respectively. The
energy band exhibits a boundary band that is relatively flat
(red dots) at frequency ω = ω0, connecting the nodes on both
sides (Kx ≈ 2π/3 and Kx ≈ 4π/3), resulting in a semimetal
phase. By increasing the gap distance to g2 = 0.4μm, the
difference between the strong and weak coupling coefficients
is enhanced, leading to an enlarged range of flat band in the
Brillouin zone, as shown in Fig. 4(c). Further increasing g2,
when t2 > 3t1 according to Eq. (9), the two Weyl points van-
ish, and the flat band extends throughout the Brillouin zone,
as shown in Fig. 4(d).

To further investigate the property of the flat band, we
likewise reflect it by the absorption spectra. There are two
additional ports on the x edge and y edge of the 2D micror-
ing array as depicted in Fig. 4(a). Figure 5(a) presents the
absorption spectra with the red and green lines denoting the
excitation from the x and y edges, respectively. The distance
between the array and two ports is equal, with gx = gy =
0.42μm. When the light is incident from the y-edge port,
two resonant peaks near ω − ω0 = ±10 GHz are observed,
corresponding to the bulk band. The field distributions at
two typical frequencies for the resonant peaks are shown in

FIG. 5. Excitation of flat-band topological edge modes in micror-
ing array. (a) Absorption spectra for excitation from the y-axis and
x-axis ports as g1 = 0.35μm and g2 = 0.46μm. (b–d) are the field
distributions (|E|) for bulk and boundary modes at the absorption
peaks ω − ω0 = –7.5, 0, and 7.7 GHz, respectively.

Figs. 5(b) and 5(d), where the fields are distributed into the
center of the array, indicating their bulk nature. On the other
hand, when the light is illuminated from the x-edge port, a
significant resonant peak appears near ω0, arising from the
flat band of the edge modes. The field distribution is shown
in Fig. 5(c), where the fields are confined to the site rings
near the incidence, indicating their compact nature which is
useful to decrease the array size along the x direction. It does
not matter which ring is coupled to the external port. The
topological flat mode can be excited from any rings at the
x edge. This is because the edge states corresponding to the
flat band become compacted states. The frequencies of the
resonant peaks for the bulk and the edge modes are consistent
with the eigenfrequency spectra shown Fig. 4(d).

We also tested the robustness of the flat-band edge modes,
as shown in Fig. 6. We removed one connecting ring or the
main ring from the edge, as shown in Figs. 6(a) and 6(b). We
excited it at the same frequency as in Fig. 5(c) and present
the corresponding field distribution, where the fields are still
confined near the port, confirming the persistence of the edge

FIG. 6. Robustness of flat-band edge states. [(a), (b)] The field
distribution of edge mode after removing one of the connecting rings
or the main ring. (c) The absorption spectrum after removing one
ring.
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states. Subsequently, we calculated the absorption spectrum
after removing the ring and found that the shape of the
spectrum did not change significantly compared to that in
Fig. 5(a), indicating the flat edge band is still present.

IV. BRILLOUIN KLEIN BOTTLE

We now investigate the Klein bottle in the Brillouin zone
resulting from projection symmetry in microring lattices.
In typical lattices, their Brillouin zones in reciprocal space
form a torus. However, under a special flux configuration,
the Brillouin zone can be deformed into a Klein bottle due

to a projective representation of the algebra between mirror
and translation symmetries, resulting in the nonsymmorphic
momentum-space glide reflection [46,48,49]. The proposed
lattice model is depicted in Fig. 7(a), where the array has
alternating zero and π fluxes in adjacent rows. In the lattice,
the green and red lines represent positive and negative cou-
plings, respectively, and the thick and thin lines depict the
strong and weak couplings, respectively. The two kinds of
gauge flux can be obtained by shifting the link rings, while
the magnitude of effective coupling between the main rings
is similarly controlled by compressing (stretching) the link
rings. The Hamiltonian is given by the following equation,

H0 =

⎛
⎜⎜⎝

�ε tx1 + tx2e−ikx ty1 + ty2e−iky 0
tx1 + tx2eikx �ε 0 ty1 − ty2e−iky

ty1 + ty2eiky 0 −�ε tx2 + tx1e−ikx

0 ty1 − ty2eiky tx2 + tx1eikx −�ε

⎞
⎟⎟⎠, (10)

where the lattice constants are assumed to be 1, txi and tyi

denote coupling coefficients indicated in Fig. 7(a), and �ε

is the detuning of on-site potentials. In the gauge lattice, the
mirror symmetry M̂x and the translation symmetry L̂y become
anticommutative, that is,

{M̂x, L̂y} = 0. (11)

This occurs due to the requirement of an additional gauge
transformation for mirror symmetry M̂x=GMx in the presence
of π flux [46]. In momentum space, if we consider the opera-
tor L̂y = eikyb with b denoting the lattice constant along the y

FIG. 7. Fraction of Brillouin zone from projective mirror sym-
metry based on a microring array. (a). Lattice model for the Brillouin
Klein bottle. (b) The fundamental domain of the Brillouin zone
is τ1/2. (c,d) are the simulated band structure for two associated
momentums as ky = −0.9π and ky = 0.1π . This confirms that the
spectrum at (kx, ky) is equivalent to the spectrum at (−kx, ky + π ).

direction, an immediate consequence of Eq. (11) is

M̂xeikybM̂x = −eikyb = ei(ky+Gy/2)b, (12)

with Gy depicting the length of the reciprocal lattice. As a
result, mirror symmetry must contain a half translation, re-
garded as momentum-space glide reflection, which imposes
constraints on the Hamiltonian given by

M̂xH (kx, ky)M̂x = H (−kx, ky + π ). (13)

Thus the energy at momentum (kx, ky) is equal to that at
(−kx, ky + π ), leading to the division of the Brillouin zone
into two parts (τ1/2 and τ̄1/2), as shown in Fig. 7(b), whereby
only one region is independent. The fundamental domain of
momentum space is now half of the Brillouin zone, and the
Brillouin zone only has a period π in the y direction, culmi-
nating in the formation of the Klein bottle.

We performed full-wave simulations on a microring lattice
to verify this property. In the simulation, we vary the widths
of the upper and lower main rings of the unit cell to be
8.0001 and 7.999 µm, respectively, to introduce an on-site
energy offset �ω = 3 GHz. The on-site detuning is �ε =
8.9 GHz, and the effective coupling coefficients are tx1 =
8.9 GHz, ty2 = 15 GHz, ty1 = 18.5 GHz, and tx2 = 36.5 GHz.
The corresponding coupling distances between the main ring
and the connecting ring are gx1 = 0.35μm, gy2 = 0.32μm,
gy1 = 0.31μm, and gx2 = 0.27μm, respectively. Figures 7(c)
and 7(d) depict two typical energy bands as a function of
momentum kx for ky = −0.9π and 0.1π , respectively. Upon
comparing the two bands, they are identical when reflected
with respect to the momentum kx = 0. This confirms the non-
symmorphic behavior in momentum space, meaning that the
spectrum at (kx, ky) is equivalent to that of (−kx, ky + π ).

The fraction of the Brillouin zone changes the fundamental
domain for topological classification, extending beyond the
Chern number and resulting in a Klein bottle topological
insulator [46]. Figure 8(a) plots the band structure for a ribbon
with OBC along the x direction and PBC along the y direction,
where the coupling coefficients and the coupling distances
between the main ring and the connecting ring are consistent
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FIG. 8. The Klein bottle topological insulator. (a) The band
structure of a strip computed using the tight-binding model. (b)
Simulated topological band structure of the Klein bottle.

with the energy band diagrams obtained in Figs. 7(c) and 7(d).
The structure is topologically nontrivial as the intermediate
band gap is opened and two edge bands plotted in red appear
near zero energy. This Klein bottle insulator has unique prop-
erties. The bands are only independent in the range ky ∈ (0, π ]
and that in ky ∈ (−π, 0] can be obtained by shifting the spec-
tra of ky ∈ (0, π ] by π . Furthermore, these edge bands can
be completely detached from the bulk band. Additionally, we
performed full-wave simulations using COMSOL. The numer-
ical band structure is shown in Fig. 8(b), which is consistent
with the theoretical results in Fig. 8(a).

V. CONCLUSIONS

In conclusion, we have investigated three distinct topologi-
cal phases by leveraging gauge fields and projective symmetry
algebra in a photonic platform consisting of arrays of mi-
croring resonators. By exploring the projective translation
symmetry on a rectangle lattice, we achieve a Möbius topo-
logical insulator and a graphenelike semimetal by employing
different spatial dimerization configurations. Moreover, we

have examined the projective representation between mirror
and translation symmetries, resulting in a Klein bottle topo-
logical insulator, where the band structures of topological
edge modes exhibit a doubled period in the Brillouin zone.
However, it is important to note that the proposed micror-
ing lattices are limited to two dimensions. Expanding these
topological phases into three dimensions can be achieved
by incorporating the pseudospin of clockwise and counter-
clockwise modes in each resonator or by employing synthetic
frequency dimensions through dynamic modulation. This ex-
pansion into the third dimension opens up possibilities for
a wider range of topological phases originating from pro-
jective symmetry in photonic lattices, such as the spinful
topological phases and high-order topological phases. Fur-
thermore, the combination of projective symmetry groups
and non-Hermitian topological physics remains an intriguing
and unexplored topic. The interaction between these areas
holds great potential for the development of novel photonic
topological insulators and new approaches to steering the
transmission of light.
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