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Impact of surface roughness on light absorption
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We study oblique incident light absorption in opaque media with rough surfaces. An analytical approach with
modified boundary conditions taking into account the surface roughness in metallic or dielectric films has been
discussed. Our approach reveals interference-linked terms that modify the absorption dependence on different
characteristics. We have discussed the limits of our approach that hold valid from the visible to the microwave
region. Polarization and angular dependences of roughness-induced absorption are revealed. The existence of an
incident angle or a wavelength for which the absorptance of a rough surface becomes equal to that of a flat surface
is predicted. Based on this phenomenon a method of determining roughness correlation length is suggested.
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I. INTRODUCTION

Surface roughness is an inherent property of all materials.
The scattering and reflection of electromagnetic waves from
rough surfaces have been the subject of research by numerous
papers (see Ref. [1] for a recent review). For a long time, it
has been well known [2–8] that the incident light is scattered
diffusively if the characteristic size of roughness is of an
order of the wavelength λ, and mostly specularly if it is much
smaller.

Unlike reflection and scattering the roughness effect on
absorption has received less attention. However, in opaque
systems, even from a scattering perspective in certain cases
(for example, if one is interested in total scattered intensity),
the calculation of absorptance is more convenient. Reflectance
is directly found from the absorptance. The effect of surface
roughness on metal absorption at microwave frequencies was
investigated in Refs. [9–12]. Early works on the absorption
of electromagnetic waves in metals in optics focused on the
absorption enhancement due to the excitation of plasmon
polaritons on rough surfaces [13–21]. In the weak roughness
case, the plasmon contribution to absorptance is negligible.

At optical frequencies roughness effect on metal absorp-
tion was studied in Refs. [22,23]. Below we extend the study
reported in Ref. [23], focusing on the normal incidence onto
the weakly rough metal surface, to the oblique incidence of
different polarizations and dielectric films. It is shown that the
oblique incidence case includes new important effects related
to absorptance dependence on incident angle polarization, etc.
The importance of the roughness effect on the absorption
in nonmetals (Si for example) is associated with their wide
use in microelectronics, chips, etc. [24]. Particularly, the haze
problem is very important in Si wafers [25]. In the case of
semiconductor materials, both numerical and experimental
studies have been reported to highlight the impact of sur-
face roughness in light-matter interaction, specifically in the
framework of solar cell efficiencies [26].

The purpose of this paper is to develop a consistent per-
turbative approach to oblique incident light absorption by

weakly rough surfaces characterized by Gaussian random pro-
file function h with RMS amplitude δ and correlation length
a. Note that other profile height distributions are possible as
well. Fortunately, in real systems, the Gaussian distribution is
often found as the proper one [1].

We want to develop an approach that describes wavelength
regions from microwave to visible and infrared optics and
is correct both for metals and dielectrics. One of the main
problems of the perturbative approach in these systems is the
choice of reference field [27]. We address this issue by ex-
tending the boundary conditions for unperturbed fields to the
actual surface profile and show that the accurate treatment of
this problem significantly changes the first-order absorptance
corrections [23].

The paper is organized as follows. In Sec. I, we set out
our perturbation approach to the absorption by weakly rough
surfaces. In Sec. II, we calculate various contributions to the
absorptance and derive the asymptotic expressions for the case
of small-scale roughness. In Sec. III, we discuss the results
of our numerical calculations for silver and Si films, and in
Sec. IV we summarize our results. The Appendix is devoted
to the details of derivations of formulas.

II. INITIAL RELATIONS

Consider the oblique incidence of a monochromatic wave
E , H ∼ e−iωt on the medium with rough surface, see Fig. 1.
Maxwell equations have the form

∇ × E = ik0H, ∇ × H = −ik0ε(r)E, (1)

where k0 = ω/c,

ε(r) = �(z − h(x, y)) + εeff�(h(x, y) − z) (2)

and h(x, y) is the random profile of rough surface. Here we use
Gaussian units. The effective dielectric constant is introduced
to describe both conducting and dielectric losses in metals and
dielectrics from microwaves to visible and infrared optics [28]

εeff(ω) = ε(ω) + 4π iσ (ω)

ω
. (3)
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FIG. 1. Schematic illustration of the light incidence on the rough
surface where θ is the incidence angle of the light beam, δ is ampli-
tude, and a is the correlation length. Region 1 corresponds to the air
and Region 2 to the material. The effective dielectric constant of the
medium consists of real and imaginary parts: εeff = ε′ + iε′′.

Note that each of the two terms in Eq. (3) is important
in different wavelength regions and for different materials.
For example, for metals, the first term dominates in visible
and infrared optics, while the second term is in microwaves.
Therefore one should substitute the proper expression for ε

in each wavelength region. In most cases the roughness size
is much smaller than the incident wavelength. Therefore one
can expand Eq. (2) over h

ε(r, ω) = �[z − h(x, y)] + εeff(ω)�[h(x, y) − z]

≈ ε0(z, ω) + ε1(r, ω), (4)

where

ε0(z, ω) =
{

1, for z > 0

εeff(ω), for z < 0
(5)

is the permittivity for a smooth medium-air interface, which,
in the following, we refer to as the reference system,

ε1(r, ω) = [εeff(ω) − 1]δ(z)h(x, y). (6)

ε1 is the perturbation due to small variations of h, δ(z) is the
Dirac delta function. Excluding magnetic field from Eq. (1)
one gets Maxwell equation for electric field

∇2E − ∇(∇ · E) + k2
0ε(r, ω)E = 0. (7)

It is convenient to decompose the electric field into parts
E = E0 + Es, namely reference and the scattered one due to
roughness, They correspondingly obey the following Maxwell
equations

∇2E0 − ∇(∇ · E0) + k2
0ε0(z)E0 = 0, (8)

and

∇2Es − ∇(∇ · Es) + k2
0ε(r)Es = −k2

0ε1(r)E0. (9)

The scattered fields can be obtained in a standard manner
using the dyadic Green’s functions defined as [19,29],[

k2
0ε0(z) − ∇∇ + ∇2 + k2

0ε1(r)
]
D(r, r′) = 4πδ(r − r′),

(10)

where perturbation expansion over ε1 is implied.
The reference field E0 can be chosen as the sum of incident

and reflected plane waves in the air and a transmitted plane
wave in the medium for a system with a smooth air-medium
interface. However, this is not a good choice for the |ε′| � 1

case because even a small change in the air-medium interface
position leads to abrupt and significant field variations [27].
To avoid this shortcoming, one can modify the reference field
by extending it up to the actual interface [23]:

Ẽ0y(r) =
{

eikxx−ikzz − reikxx+ikzz, for z > h(x, y),

teikxx−ikz− z, for z < h(x, y),
(11)

where kx = k0 sin θ, kz = k0 cos θ, kz− = k0

√
ε − sin2 θ , θ is

the incidence angle and for brevity, we omit the index in
εeff, ε ≡ εeff. Note that Ẽ0x = Ẽ0z = 0 for our choice of s
polarization. Here, the incident wave amplitude Einc is taken
to be unity, while r and t are the standard Fresnel coefficients
of reflection and transmission:

r =
√

ε − sin2 θ − cos θ√
ε − sin2 θ + cos θ

, t = 2 cos θ√
ε − sin2 θ + cos θ

. (12)

Accordingly, the field decomposition now has the form E =
Ẽ0 + Ẽs, where the modified scattered field is expressed
through the dyadic Green’s function D(r, r′) as

Ẽs(r) = − k2
0

4π

∫
dr′D(r, r′)Ẽ0(r′)ε̃1(r′). (13)

Here, ε̃1(r) = (ε − 1)δ[z − h(x, y)]h(x, y) is the modified
perturbation obtained from Eq. (6) by the replacement z →
z − h(x, y) in the δ function in order to make it consistent
with the extended boundary conditions Eq. (11). Note that,
while ε̃1(r) and ε1(r) coincide in the first order, the accu-
rate choice of reference field leads to significant changes in
roughness-induced corrections as we show later in this paper.
For the calculation of absorptance, one needs field values in
the medium z � h(x, y). Integration over z′ in Eq. (13) is
carried out through the δ function in ε̃1.

For a monochromatic wave with frequency ω, the power
absorbed in a metal is given by [30]

Q = ω

8π
ε′′
∫

dV |E|2, (14)

where integration is carried out over the medium volume
and ε′′ = Imε + 4πReσ/ω is the imaginary part of ef-
fective dielectric constant Eq. (3). The absorptance A is
obtained by normalizing Q by the incident energy flux Qinc =
c|Einc|2S0cosθ/8π , where S0 = LxLy is the normalization
area. Using the above field decomposition, the absorptance
averaged over the roughness configurations takes the form

A =
〈

ε′′k0

S0 cos θ

∫
dV[|Ẽ0|2 + 2Re(Ẽ∗

0 · Ẽs) + |Ẽs|2]

〉
. (15)

We evaluate all contributions to Eq. (15) perturbatively, i.e., up
to the order δ2. Specifically, we assume that the dimensionless
parameters δ/λ, δ/d are small, but no restriction is imposed on
the parameters δ/a, a/d . Here d is the penetration depth into
the opaque medium (see below).
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III. ELECTROMAGNETIC ENERGY LOSS
IN THE MEDIUM

A. Reference field contribution

Let us consider the first term in Eq. (15) describing the
reference field contribution:

Ar = ε′′k0

S0 cos θ

〈∫
dV |Ẽ0|2

〉
. (16)

The integration over the medium volume can be presented as∫
dV = ∫

dxdy
∫ h(x,y)
−∞ dz, with z = h(x, y) profile. Note that

in the determination of volume integral in Ref. [23] there is
an unnecessary multiplier

√
1 + h′2. Taking into account the

extended boundary conditions Eq. (11), we have

Asr = ε′′k0|t |2
S0 cos θ

〈∫
dxdy

∫ h

−∞
dze−2κθ k0z

〉
, (17)

where we adopted the standard notation
√

ε = n + iκ for the

complex refraction index as well as κθ = Im
√

ε − sin2θ . In-
tegrating over z and expanding the integrand over h, one gets

Asr = As0

S0

∫
dxdy

[
1 + 2〈h2(x, y)〉

d2

]
, (18)

where As0 = ε′′|t |2/2κθcosθ is the absorptance for an s-
polarized wave by a smooth surface and d = (k0κθ )−1 is
penetration depth in the medium. Averaging over roughness
configurations as 〈h2(x, y)〉 = δ2, we finally obtain

Asr = As0

(
1 + 2δ2

d2

)
. (19)

B. Interference term contribution

Next, consider the interference term

Ai = ε′′k0

S0 cos θ
2Re

〈∫
dV Ẽ∗

0Ẽs

〉
. (20)

Up to the order h2, the scattered field can be presented as
a sum, Ẽs = Ẽ(1)

s + Ẽ(2)
s , corresponding, respectively, to the

lowest- and first-order perturbation expansion of the Green’s
function D in Eq. (13). Accordingly, this contribution to the
absorptance can also be split as Ai = Ai1 + Ai2. We start with
the first contribution obtained by inserting the unperturbed
Green’s function D0 corresponding to ε1 = 0 in Eq. (10)
into Eq. (13). One could think that since Ẽ(1)

s ∼ h, the cor-
responding absorptance Ai1 would vanish after performing
averaging over the roughness configurations. However, as we
show below, the extended boundary conditions Eq. (11) for the
modified reference field Ẽ0 lead to a negative contribution to
the absorptance, which balances out the excessive absorption
increase due to scattered field penetration into the medium.

It is convenient to introduce two-dimensional Fourier
transforms

Dμν (�ρ − �ρ ′, z, z′) =
∫

dq
(2π )2

dμν (q, z, z′)eiq(�ρ− �ρ ′ ). (21)

Substituting expressions for E0, Es from Eqs. (11), (13), going
to Fourier transforms over the plane coordinates x, y, this

contribution can be represented in the form

A1
i = −k3

0ε
′′(ε − 1)

2πS0 cos θ
|t |2Re

〈∫
d �ρd �ρ ′

∫ h

−∞
dz

×
∫

d �q
(2π )2

ei(�q−kx �ex )(�ρ−�ρ ′ )dyy(�q, z, h( �ρ ′))

× eikz− h( �ρ ′ )−ik∗
z− zh( �ρ ′)

〉
, (22)

where z coordinate is always in the medium z < h(�ρ) and
we used that dyy(q, z, h+) = dyy(q, z, h−). We note that h is
included not only in the scattered fields but also in the material
boundary. As was noted above bare Green’s functions for the
boundary problem are found in [19]

dμν (q, z, z′) =
∑
αβ

S−1
μαgαβ (q, z, z′)Sβν, (23)

where gμν (q, z, z′) is tabulated in Refs. [19,29] and 3 × 3
matrix is determined by the following elements Sxx = Syy =
q̂x, Szz = 1, Sxy = −Syx = q̂y, Sxz = Szx = Syz = Szy = 0, and

ˆqx,y = qx,y/q. Using expressions for S, S−1 and gμν (q, z, z′)
one can make sure that

dyy(q, z, z′) = gxx(q, z, z′)q2
y

q2
+ gyy(q, z, z′)q2

x

q2
, (24)

where

gxx(q, z, z′) = −2π ik1c2

εω2

[
k1 + εk

k1 − εk
eik1(z+z′ ) − e−ik1|z−z′ |

]

gyy(q, z, z′) = −2π i

k1

[
k1 + k

k1 − k
eik1(z+z′ ) + e−ik1|z−z′ |

]
(25)

and

k(q) =
⎧⎨
⎩
(

ω2

c2 − q2
)1/2

, q < ω/c

i
(
q2 − ω2

c2

)1/2
, q > ω/c

k1(q) = −
(

ε
ω2

c2
− q2

)1/2

. (26)

Here we assume that the points z, z′ are in the medium.
Substituting Eqs. (24), (25), (26) into Eq. (22), expand-
ing all the expressions on h(�ρ), h(�ρ ′) averaging by using
<h(�ρ )h(�ρ ′) >= δ2exp[−(�ρ − �ρ ′)2/2a2] and integrating al-
ternately, one has

A1
i = 4A0δ

2

ad
Re[(ε − 1)I2D(β )]

− 2A0δ
2k2

0Re

[
(ε − 1)

cos θ −
√

ε − sin2 θ

cos θ +
√

ε − sin2 θ

]
, (27)
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where β = k0a and the integral

I2D(β ) = iexp(−β2 sin2 θ/2)
∫ ∞

0
drrexp(−r2/2)

×
[ √

(εβ2 − r2)(β2 − r2)√
εβ2 − r2 + ε

√
β2 − r2

f+(rβ sin θ )

+ β2√
εβ2 − r2 +

√
β2 − r2

f−(rβ sin θ )

]
(28)

with

f±(x) = I0(x) ∓ I2(x)

2
. (29)

(In is the nth modified Bessel function of the first kind).
Making use of |ε|β2 � 1 we get

A1
i = −A0δ

2
√

2π

ad
Re

[
ε − 1

ε + 1

]

− 2A0δ
2k2

0Re

[
(ε − 1)

cos θ −
√

ε − sin2 θ

cos θ +
√

ε − sin2 θ

]
. (30)

Now consider the second interference contribution Ai2. We
expand the Green’s function D, defined by Eq. (10), to the
first order in h, and present the second-order scattered field in
Eq. (13) as

Ẽ(2)
s =

(
k2

0

4π

)2 ∫
dr′dr′′D0(r, r′)ε1(r′)

× D0(r′, r′′)ε1(r′′)E0(r′′). (31)

Substituting Eq. (31) into Eq. (20) and evaluating A2
i in a

similar manner, we obtain

A2
i = A0

√
2πδ2

2ad
Re

[
(ε − 1)2

iκθ (ε + 1)(
√

ε − sin2 θ + cos θ )

]
.

(32)

Note that the formulas Eqs. (30), (32) are correct provided that
|ε|β2 � 1.

C. Scattering term contribution

Consider now the scattered field contribution to the absorp-
tance, which is presented in the form

Asc = ε′′k0

S0

〈∫
dV (|Ẽsx|2 + |Ẽsy|2 + |Ẽsz|2)

〉
. (33)

After evaluating each term in the way outlined in the previous
section, the result in the limit |ε|β2 � 1 can be presented as

Asc = A0

√
2πδ2

2ad

|ε − 1|2
|ε + 1|2 . (34)

Finally, the full absorptance for s-polarized wave at oblique
incidence is obtained by summing up all contributions: As =
Ar + Ai + Asc

As

As0
= 1 + 2δ2

d2
− δ2

√
2π

ad
Re

[
ε − 1

ε + 1

]

− 2δ2k2
0Re

[
(ε − 1)

cosθ −
√

ε − sin2θ

cosθ +
√

ε − sin2θ

]

+
√

2πδ2

2ad
Re

[
(ε − 1)2

iκθ (ε + 1)(
√

ε − sin2θ + cosθ )

]

+
√

2πδ2

2ad

|ε − 1|2
|ε + 1|2 . (35)

D. p polarization

In this case, reflection and transmission coefficients from
smooth surfaces are determined as

rp = ε cos θ −
√

ε − sin2 θ

ε cos θ +
√

ε − sin2 θ
, tp = 2

√
ε cos θ

ε cos θ +
√

ε − sin2 θ
.

(36)

The absorptance for the p-polarized wave is found analo-
gously to s polarization, see Appendix B.

Ap

Ap0
= 1 + 2δ2

d2
− δ2

√
2π

ad
Re

[
ε − 1

ε + 1
(|nx|2 − 2|nz|2/ε)

]
− 2δ2k2

0Re

[(
1 − 1

ε

)√
ε − sin2 θ − ε cos θ√
ε − sin2 θ + ε cos θ

((ε − sin2 θ )|nx|2

+ 2i sin θ
√

ε − sin2 θIm(n∗
z nx ) − sin2 θ |nz|2)

]
+

√
2πδ2

2ad
Re

[
(ε − 1)2 cos θ

√
ε − sin2 θ

iκθ (ε + 1)(
√

ε − sin2 θ + ε cos θ )

×
(

|nx|2 + 2 tan θ

ε2
n∗

x nz − sin θ√
ε − sin2 θ

n∗
z nx − 2 sin θ tan θ

ε2
√

ε − sin2 θ
|nz|2

)]
+

√
2πδ2

2ad

|ε − 1|2
|ε + 1|2 [|nx|2 + 2|nz|2/|ε|2], (37)

where Ap0 = ε′′|tp|2τ 2/2κθ cos θ is the absorptance
of p-polarized wave from smooth surface and nx =
τ−1

√
1 − sin2 θ/ε, nz = sin θ/(τ

√
ε) together with

τ =
√

|1 − sin2 θ/ε|2 + sin2 θ/|ε|.

Concluding this section, we note that the accurate choice of
reference field Eq. (11) ensures the small magnitude of first-
order correction to the absorptance in the weak-roughness
case. Specifically, had we chosen the standard, rather than
extended, boundary conditions for reference fields, the
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FIG. 2. Light absorptance dependence on the wavelength in case
of an oblique incidence of 50◦ on the silver surface.

interference term giving negative contribution would be ab-
sent, and total absorptance Eqs. (35), (37) would have
increased, signaling a poor choice of basis set for the pertur-
bation expansion.

IV. RESULTS AND DISCUSSION

A. Metals

We have derived asymptotical analytical formulas
Eqs. (35), (37) for the light absorptance in an opaque
medium with a weakly rough surface at oblique incidence.
They are correct provided that β � 1, |ε|β2 � 1. Below
we present some physical results, which follow from these
formulas. Let us consider, for example, the light absorptance
of metals in the microwave region. In this case, ε = 4π iσ/ω,
where σ is almost equal to the dc conductivity and is a real
number, ε is a purely imaginary number. Taking into account
that |ε| � 1, one finds from Eqs. (35), (37)

As,p ≈ As,p0

(
1 + 2δ2

d2

)
, (38)

where As,p0 are absorptances of smooth surface for s and p po-
larizations, respectively, and d = c/

√
πσω is the skin depth

in metal at microwaves. This result qualitatively coincides
with the one [12] obtained previously. Figure 2 illustrates the
normalized absorptance over a smooth silver surface in the
microwave region. Here we used the expression for the silver
dc conductivity from Ref. [31].

Differently, in the visible and infrared the real part of ε is a
large negative number and it follows from Eqs. (35), (37) that
all the roughness-induced corrections cancel each other pro-
vided that |ε| � 1, |√ε|cosθ � 1, As,p ≈ As,p0. Therefore, in
the IR region the absorptance is insensitive to the roughness,
as opposed to the MW region [see Figs. 2, 3, and 4 together
with Eq. (38)].

Below we present the results of numerical calculations
of absorptance for weakly rough opaque silver films. The
roughness parameters were chosen in the range δ � d and
a � d , while the experimental dielectric function of silver
was used in all calculations [32]. The wavelength interval is
chosen from λ = 400–1500 nm in order to avoid the influence
of surface plasmon (λ ≈ 350 nm in silver) and of interband

FIG. 3. Light absorptance dependence on its wavelength consid-
ering an oblique incidence 35◦ on silver surface. (a), (c) Absolute
absorptance and (b), (d) normalized absorptance over smooth sur-
face. In both cases, correlation length a = 10 nm and different values
of amplitude δ are considered, and δ = 0 nm corresponds to an
ideally smooth surface. For an oblique incidence s-, (a), (b), and
p-, (c), (d), polarization states are considered. The arrow in the inset
indicates the wavelength at which the absorptance is equal for both
the smooth and rough surfaces.

transitions, both of which lead to enhanced absorption not
directly related to roughness. All numerical calculations were
carried out using the full expression for absorptance A, see
the Appendix, while the small-scale roughness asymptotic ex-
pression Eqs. (35), (37) is used to discuss qualitative features
of obtained results.

In Figs. 3 and 4 the relative absorptances for s- and p-
polarized waves at incident angles 35◦, 75◦ in the optical
region are shown. As was mentioned above, in this case, the
roughness effect for the wavelengths λ > 600 nm is small
and absorptances are almost equal to their values for the

FIG. 4. The same plot as in Fig. 3, but for an oblique incidence
of 75◦.
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FIG. 5. Light absorptance dependence on its wavelength con-
sidering an oblique incidence 35◦ on the silicon surface. (a),
(c) Absolute absorptance and (b), (d) normalized absorptance over
smooth surface. In both cases, correlation length a = 10 nm and
different values of amplitude δ are considered, and δ = 0 nm cor-
responds to an ideally smooth surface. For an oblique incidence s-
(a), (b) and p- (c), (d) polarization states are considered.

flat surface. The roughness effect is better seen in relative
absorptance plots. Due to the interference term absorptance is
smaller than that for flat surfaces. Weak wavelength depen-
dences of absorptances at λ > 600 nm are associated with
weak wavelength dependences of skin depth d in this re-
gion [33]. The absorptance value, as was mentioned above,
is almost equal to that of a flat surface. The increase of ab-
sorptance at λ < 400 nm is caused by approaching the surface
plasmon resonance [20] (for silver ∼350 nm) and interband
transition. Plasmonic contribution to the absorptance is in-
creasing with the roughness scale.

B. Silicon in the visible and infrared regions

In this section, we apply our formulas to the absorptance
of rough silicon film in the optical region. We use the data for
n, κ from Ref. [34]

As is seen from Fig. 5 roughness effect is significant for the
wavelengths λ < 500 nm. This is associated with approaching
the direct band gap of silicon ≈360 nm. At small incident an-
gles absorptances for s and p polarizations are almost the same
and roughness increases the absorptances at wavelengths λ >

290 nm and decreases at wavelengths λ < 290 nm. There is a
wavelength of 290 nm at which absorptances of rough and flat
surfaces become equal. In an opaque medium, the reflectance
is determined as R = 1 − A. At the above-mentioned wave-
length, the reflectance from a rough surface is equal to the one
from a flat surface. Therefore there will be no haze in the re-
flected light. At a small incident angle zero haze wavelengths
coincide for s and p polarizations, see Fig. 5 . At an incident
angle of 75◦, the zero haze wavelength for the s-polarized
wave remains the same (290 nm) while for the p-polarized
wave, it moves to the larger wavelengths, see Fig. 6. Fig-
ure 7 shows the existence of an incident angle for which the

FIG. 6. The same plot as in Fig. 5, but for an oblique incidence
of 75◦.

absorptances and correspondingly the reflectances R = 1 − A
(there is no transmitted wave) for rough and flat surfaces are
equal to each other. This means that, in terms of an integral
reflectance, there will be no haze when a p-polarized wave is
incident onto the rough surface at this angle. Consider now
the reflectance as a sum of two parts: specular and nonspecu-
lar (diffusive): R(θ ) = Rs(θ ) + Rd (θ ). At zero haze incidence
angle, the absorptance of a rough system equals that of a flat
one: Rs(θzh) + Rd (θzh) = R f (θzh). As is shown in Ref. [8],
Rs(θzh) = R f (θzh)(1 − bδ2/λ2) provided that |ε| � 1 and b
is a number of order unity. Substituting this equation into
the above one obtains: Rd (θzh) ∼ R f δ

2/λ2 → 0 for nanoscale
roughness in visible or larger wavelengths region. On the
contrary for other incident angles Rd (θ ) ∼ δ2/ad .

Note that this zero haze angle differs from Brewster’s angle
at which absorptance is maximal. As seen from Fig. 7 for
λ = 350 nm zero haze angle equals θzh = 76◦ while Brew-
ster’s angle for Si at this wavelength equals to 80.6◦. Zero haze
angle θzh depends on a and not on δ. Equalizing roughness-
induced correction in Eq. (B13) to zero one can express the

FIG. 7. Light absorptance dependence on the angle of incidence
on the silicon surface. (a) Absolute absorptance and (b) normalized
absorptance over a smooth surface. In both cases both s and p
polarization states are considered, correlation length is a = 10 nm
and the amplitude is δ = 2 nm, while δ = 0 nm corresponds to an
ideally smooth surface. The light wavelength is 350 nm. The arrow
in the inset indicates the incident angle at which the absorptance is
equal for both the smooth and rough surfaces.
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roughness correlation length through the θzh

a =
√

2π

4

Re
[
1 − ε cos θzh

iκθ (θzh )(1+√
ε cos θzh )

]
1 − Re

[
ε

κ2
θ (θzh )

1−√
ε cos θzh

1+√
ε cos θzh

] × d (θzh). (39)

Here we use the asymptotic expression for Ap, Eq. (37).
It follows from Figs. 5 and 6 that for short wavelengths

λ < 300 nm the zero haze angle exists also for the s-polarized
wave contrary to Brewster’s angle, which exists only for the
p-polarized wave. As to the Brewster angle, it shifts because
of surface roughness [35–38].

V. SUMMARY

In summary, we developed a perturbative approach for
absorption of oblique incident light in weakly rough opaque
systems characterized by a Gaussian surface profile with RMS
amplitude δ and correlation length a that are smaller than
penetration depth d in the medium. General formulas are
derived that apply to all materials and wavelength regions.
We have shown that in such systems the accurate choice
of boundary conditions leads to a negative contribution of

interference term that dominates in certain cases. Polarization
and angular dependences of absorptance are revealed. We
demonstrate the existence of zero haze incidence angle and
wavelength at which absorptance and reflectance R = 1 − A
equal to those of a flat surface. This phenomenon allows us to
independently determine the Gaussian roughness correlation
length from optical measurements.

For the calculated average absorptance to have any rela-
tion to the experiment it should be self-averaged, namely, the
sample-to-sample fluctuations should be small. We can con-
sider our system to consist of a large number of macroscopic
parts. If we assume that the integral absorptance is an ergodic
quantity, averaging over the ensemble can be substituted by
averaging over different parts. Besides, the fluctuations in the
average value because of the central limit theorem will be
inversely proportional to the square root of the number of
constituent parts and thus, can be made negligibly small. This
puts our theoretically derived averaged quantity to that of the
experimental one.
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APPENDIX A: GENERAL EXPRESSION FOR THE ABSORPTION RATIO IN CASE OF S-POLARIZED WAVE

As

As0
= 1 + 2δ2

d2
− 2k2

0δ
2Re

[
(ε − 1)

cos θ −
√

ε − sin2 θ

cos θ +
√

ε − sin2 θ

]
+ 4δ2

ad
Re[(ε − 1)I2D(k0a)]

− 2δ2

ad
Re

[
(ε − 1)2I2D(k0a)

iκθ (cos θ +
√

ε − sin2 θ )

]
+ 2δ2

ad
|ε − 1|2I2D

s (k0a) (A1)

with

I2D(β ) = i × exp(−β2 sin2 θ/2)
∫ ∞

0
drr × exp(−r2/2)

[ √
(εβ2 − r2)(β2 − r2)√

εβ2 − r2 + ε
√

β2 − r2
f+(rβ sin θ )

+ β2√
εβ2 − r2 +

√
β2 − r2

f−(rβ sin θ )

]
(A2)

I2D
s (β ) = exp(−β2 sin2 θ/2)

∫ ∞

0
drr

exp(−r2/2)

2|Im
√

εβ2 − r2|

[
|β2 − r2|(r2 + |εβ2 − r2|)
|
√

εβ2 − r2 + ε
√

β2 − r2|2 f+(rβ sin θ )

+ β4

|
√

εβ2 − r2 +
√

β2 − r2|2 f−(rβ sin θ )

]
, (A3)

where

f±(x) = I0(x) ∓ I2(x)

2
. (A4)
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APPENDIX B: DERIVATION OF THE ABSORPTION RATIO FOR THE P-POLARIZED CASE

For brevity, we omit the index in rp and tp. The only nonzero components of an electric field are

Ẽ0x(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos θ × (eikxx−ikzz − reikxx+ikzz ),

for z > h(x, y),

t cos θt × eikxx+ik−z,

for z < h(x, y),

(B1)

and

Ẽ0z(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin θ × (eikxx−ikzz + reikxx+ikzz ),

for z > h(x, y),

t sin θt × eikxx+ik−z,

for z < h(x, y),

(B2)

where sin θt = sin θ/
√

ε, cos θt =
√

1 − sin2 θ/ε, θt is the transmission angle and is generally complex and k− = −kz−.

1. Reference field contribution

Putting Eqs. (B1), (B2) into Eq. (16) we obtain

Apr = ε′′k0|T |2
S0 cos θ

〈∫
dxdy

∫ h(x,y)

−∞
e−2κθ k0z

〉
, (B3)

where T = t × τ, τ =
√

|1 − sin2 θ/ε| + sin2 θ/|ε|. With Ap0 = ε′′|T |2/2κθ cos θ we write

Apr = Ap0

[
1 + 2δ2

d2

]
. (B4)

2. Interference term contribution

As previously for the s-polarization case, by putting Eqs. (13), (B1), (B2) into Eq. (20) we get

A1
i = −k3

0ε
′′(ε − 1)

2πS0 cos θ
|t |2Re

〈∫
d �ρd �ρ ′

∫ h

−∞
dz
∫

d �q
(2π )2

ei(�q−kx �ex )(�ρ−�ρ ′ )

⎛
⎝ ∑

α,α′∈{x,z}
[d( �q, z, h( �ρ ′))]α,α′n∗

αnα′

⎞
⎠eikz− h( �ρ ′ )−ik∗

z− zh( �ρ ′)

〉
,

(B5)

where α, α′ in sum take values of either x or z independently from each other and nx = sin θ/(
√

ετ ), nz = τ−1
√

1 − sin2 θ/ε.
Averaging by using < h(�ρ)h( �ρ ′) >= δ2exp(−(�ρ − �ρ ′)2/2a2), then integrating alternatively we get

A1
i = 4A0δ

2

ad
Re

⎡
⎣(ε − 1)

∑
α,α′∈{x,z}

I (2D)
α,α′ (k0a)n∗

αnα′

⎤
⎦+ 2A0δ

2Re

⎡
⎣(ε − 1)

∑
α,α′∈{x,z}

Hα,α′n∗
αnα′

⎤
⎦, (B6)

where

I (2D)
xx (β ) = ie−β2 sin2 θ/2

∫ ∞

0
drre−r2/2

[ √
β2 − r2

√
εβ2 − r2√

εβ2 − r2 + ε
√

β2 − r2
f−(rβ sin θ ) + β2√

εβ2 − r2 +
√

β2 − r2
f+(rβ sin θ )

]

I (2D)
xz (β ) = ie−β2 sin2 θ/2

∫ ∞

0
drre−r2/2

[
r
√

εβ2 − r2

ε(
√

εβ2 − r2 + ε
√

β2 − r2)
I1(rβ sin θ )

]

I (2D)
zx (β ) = ie−β2 sin2 θ/2

∫ ∞

0
drre−r2/2

[
r
√

β2 − r2√
εβ2 − r2 + ε

√
β2 − r2

I1(rβ sin θ )

]

I (2D)
zz (β ) = ie−β2 sin2 θ/2

∫ ∞

0
drre−r2/2

[
r2

ε(
√

εβ2 − r2 + ε
√

β2 − r2)
I0(rβ sin θ )

]
(B7)

013515-8



IMPACT OF SURFACE ROUGHNESS ON LIGHT … PHYSICAL REVIEW A 109, 013515 (2024)

Hxx = −k2
−

k−/ε + k0 cos θ

k− − εk0 cos θ

Hxz = −k−k0 sin θ
k−/ε + k0 cos θ

k− − εk0 cos θ

Hzx = k−k0 sin θ
k−/ε + k0 cos θ

k− − εk0 cos θ

Hzz = k2
0 sin2 θ

k−/ε + k0 cos θ

k− − εk0 cos θ
. (B8)

For the second interference contribution Ai2 substitute Eqs. (31), (B1), (B2) into Eq. (20). The successive evaluation leads to

A2
i = 2A0δ

2

a
Re

⎡
⎣(ε − 1)2

∑
α,α′∈{x,z}

(G × I(2D)(k0a))α,α′n∗
αnα′

⎤
⎦, (B9)

where (G × I(2D) )α,α′ = ∑
γ∈{x,z} Gα,γ I (2D)

γ ,α′ and

Gxx = ik0
cos θ

√
ε − sin2 θ√

ε − sin2 θ + ε cos θ

Gxz = ik0
sin θ

√
ε − sin2 θ

ε(
√

ε − sin2 θ + ε cos θ )

Gzx = ik0
sin θ cos θ√

ε − sin2 θ + ε cos θ

Gzz = ik0
sin2 θ

ε(
√

ε − sin2 θ + ε cos θ )
. (B10)

3. Scattering term contribution

Substituting Eqs. (13), (B1), (B2) into Eq. (33) and performing the successive evaluations we get

Asc = 2A0δ
2

ad
|ε − 1|2

∑
α,α′∈{x,z}

(Is)(2D)
α,α′ (k0a)n∗

αnα′ , (B11)

where

(Is)(2D)
xx (β ) = e−β2 sin2 θ/2

∫ ∞

0
drr

e−r2/2

2Im[
√

εβ2 − r2]

[
|β2 − r2|(r2 + |εβ2 − r2|)
|
√

εβ2 − r2 + ε
√

β2 − r2|2 f−(rβ sin θ )

+ β4

|
√

εβ2 − r2 +
√

β2 − r2|2 f+(rβ sin θ )

]

(Is)(2D)
xz (β ) = e−β2 sin2 θ/2

∫ ∞

0
drr2 e−r2/2

2Im[
√

εβ2 − r2]

[
(r2 + |εβ2 − r2|)(

√
β2 − r2)∗

ε|
√

εβ2 − r2 +
√

β2 − r2|2 I1(rβ sin θ )

]

(Is)(2D)
zx (β ) = [

(Is)(2D)
xz (β )

]∗
(Is)(2D)

zz (β ) = e−β2 sin2 θ/2
∫ ∞

0
drr3 e−r2/2

2Im[
√

εβ2 − r2]

[
r2 + |εβ2 − r2|

|ε|2|
√

εβ2 − r2 + ε
√

β2 − r2|2 I0(rβ sin θ )

]
. (B12)

Finally, the full absorptance for p wave:

Ap

Ap0
= 1 + 2δ2

d2
+ 4δ2

ad
Re

⎡
⎣(ε − 1)

∑
α,α′∈{x,z}

I (2D)
α,α′ (k0a)n∗

αnα′

⎤
⎦+ 2δ2Re

⎡
⎣(ε − 1)

∑
α,α′∈{x,z}

Hα,α′n∗
αnα′

⎤
⎦

+ 2δ2

a
Re

⎡
⎣(ε − 1)2

∑
α,α′,γ∈{x,z}

(
Gα,γ I (2D)

γ ,α′ (k0a)
)
α,α′n

∗
αnα′

⎤
⎦+ 2δ2

ad
|ε − 1|2

∑
α,α′∈{x,z}

(Is)(2D)
α,α′ (k0a)n∗

αnα′ . (B13)
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