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Photonic-structure optimization using highly data-efficient deep learning:
Application to nanofin and annular-groove phase masks
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Metasurfaces offer a flexible framework for the manipulation of light properties in the realm of thin-film
optics. Specifically, the polarization of light can be effectively controlled through the use of thin phase plates.
This study aims to introduce a surrogate optimization framework for these devices. The framework is applied to
develop two kinds of vortex phase masks (VPMs) tailored for application in astronomical high-contrast imaging.
Computational intelligence techniques are exploited to optimize the geometric features of these devices. The
large design space and computational limitations necessitate the use of surrogate models like partial least-squares
kriging, radial basis functions, or neural networks. However, we demonstrate the inadequacy of these methods in
modeling the performance of VPMs. To address the shortcomings of these methods, a data-efficient evolutionary
optimization setup using a deep neural network as a highly accurate and efficient surrogate model is proposed.
The optimization process in this study employs a robust particle swarm evolutionary optimization scheme, which
operates on explicit geometric parameters of the photonic device. Through this approach, optimal designs are
developed for two design candidates. In the most complex case, evolutionary optimization enables optimization
of the design that would otherwise be impractical (requiring too many simulations). In both cases, the surrogate
model improves the reliability and efficiency of the procedure, effectively reducing the required number of

simulations by up to 75% compared to conventional optimization techniques.
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I. INTRODUCTION

Metasurfaces offer a flexible framework for shaping the be-
havior of light in the realm of thin-film optics [1-3]. However,
their utilization in some applications necessitates intricate ma-
terial configurations, posing a significant design challenge. To
tackle this obstacle, inverse design methods fueled by com-
putational intelligence have attracted interest [4,5]. Among
them, evolutionary optimization [6] has the power to lever-
age deep learning within a versatile surrogate optimization
framework. Its performance, however, should be evaluated on
a challenging case. The design of metasurfaces such as vor-
tex phase masks, specifically, all-dielectric phase plates [7,8],
tailored for use in coronagraphy, is certainly a relevant choice.

Coronagraphy is a powerful technique for imaging exo-
planets. It enables the detection of faint planetary signals in
a star’s surrounding regions. One promising coronagraphic
implementation is the annular-groove phase mask (AGPM),
which employs a focal-plane phase mask comprised of a
circular subwavelength dielectric grating [8—11]. The grating
acts as a spatially variant half waveplate, which creates a
helical phase ramp (i.e., an optical vortex) on the optical axis
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of the telescope, ending up creating a dark region in the field
of view.

The performance of AGPMs has traditionally been an-
alyzed using the rigorous coupled-wave analysis (RCWA)
method [12]. However, the validity of this infinite, one-
dimensional grating model reaches its limits as focus shifts
from the outskirts to the center of the device [13]. Therefore,
the use of three-dimensional (3D) electromagnetic solvers has
become necessary for modeling of the center of AGPMs.
These new tools, by allowing more freedom in the AGPM
design, provide a challenging benchmark for our framework
and new ways to improve the AGPMs.

Two approaches are devised for designing the center of
the phase mask, as explained below. Each one leads to pho-
tonic devices that are difficult to optimize due to the complex
interplay between numerous mask parameters and the opti-
cal system. The figure of merit of the optimization is the
simulated efficiency of the devices in producing the optical
vortex. Both designs present large design spaces that require
a tremendous number of simulations to be properly sampled:
Up to a trillion simulations are required to try only two values
for each of the 38 design parameters in one of the two ap-
proaches. Therefore, we need an optimization procedure that
is efficient in terms of the number of simulations required
while exploring the vast search space.

©2024 American Physical Society
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In this work we combine a particle swarm optimization
(PSO) global optimization algorithm with a U-Net surrogate
model in order to optimize the mask parameters. The model
is improved throughout the optimization process using active
learning [14,15]. This combination aims to achieve an au-
tomatic and efficient exploration of the phase mask design
space. On one hand, U-Net, a deep learning architecture bor-
rowed from image segmentation [16], is effective in providing
quick (measured in milliseconds) and accurate predictions of
field distributions based on the structure topology [17]. On the
other hand, PSO is a well-known global optimization heuristic
algorithm. Importantly, the methodology proposed here, while
being applied to coronagraphy, is general enough to optimize
any complex photonic device defined by 10-100 parameters
with efficient exploitation of 200—1000 simulations. The code
[18] and the data [19] required to reproduce our numerical
experiments are available on Github.

The present work is organized as follows. Sections IT A
and IIB describe the proposed U-Net surrogate modeling
methodology for optimization. Sections II C and II D provide
an overview of the vortex phase mask coronagraph parameters
and simulations. Section I E describes the model enrichment
process, which consists in the interaction between the opti-
mizer, the simulation, and the U-Net. Section III A compares
the implemented surrogate accuracy and efficiency with other
existing models such as dense neural networks, radial basis
functions, and partial least-squares Kriging. Section III B in-
vestigates the influence of the number of simulations used
in the training of the surrogate model in order to identify a
minimal data-set size. Section III C follows with the AGPM
designs produced by the proposed process. Section IV sum-
marizes the paper and discusses future research directions.

II. METHODS

A. Evolutionary optimization approach to metasurface design

Evolutionary computation served electromagnetic design
for a long time [20]. Global optimizers such as PSO [21] or a
genetic algorithm [22] allows us to find a solution to problems
that otherwise would require an extremely high number of
simulations [23]. However, for the design of metasurfaces,
this approach can result in unreasonably high computational
needs, as they most often require complex solvers such as the
finite-difference time domain (FDTD). In fact, evolutionary
global optimizers still require thousands of figure of merit
evaluations in order to find an optimal combination for several
tens of variables.

Surrogate models have been devised [24-26] to reduce
the number of simulations required by partially relying on
the quick predictions they provide for evaluation. Surrogate
models also have other interesting properties [27]: A simpler
model of a complex simulation will offer a smoother perfor-
mance metric to the optimizer.

We chose this global evolutionary optimization approach
over more popular inverse design methods [17,28,29]
for several reasons. First, the surrogate optimization
approach provides an interesting compromise between
the fast convergence of adjoint solvers [29] and the global
exploration of the design space allowed by global optimizers.

Second, a metasurface design consists in a tight geometrical
description of the device using bounded parameters, contrary
to inverse design techniques that use a freeform density-based
description [29]. Finally, the surrogate optimization scheme
is straightforward to implement, consistent across different
devices, and it enables massively parallel workloads for the
full solver. Other types of parameters such as categorical
variables can easily be implemented for materials and shapes.

B. Surrogate solver: U-Net

Various black-box methods can be substitutes (surrogate
models) for simulations, including interpolation techniques
such as radial basis functions, Kriging [30,31], or other classic
machine learning methods such as regression trees [32,33].
In recent years, deep neural networks (DNNs) were often
used as surrogate models [34,35], particularly in photonics
[36]. These DNNs are described as universal approximators
[37,38] for any continuous bounded function, making them a
versatile tool used in many tasks. In fact, DNNs can take many
forms, referred to as architectures, to adapt to the data of the
problem at hand. In this work we will be using an architecture
of DNN called the U-Net [16] implemented using PYTORCH
[39]. The number of layers and the activation functions are
kept identical to those in the seminal article [16], while the
number of neurons saw around a fivefold decrease, follow-
ing the parsimony principle [40] to avoid overfitting. This
architecture, illustrated in Fig. 1, excels in image-translation
tasks such as image segmentation, where the spatial topol-
ogy of the image is preserved while the meaning of each
pixel changes. In our case, the input is the relative dielectric
permittivity and the output is a real function of the electro-
magnetic fields, namely, the leakage field. While the U-Net
is able to handle 3D data [41], a 2D representation of both
the structure and the polarization leakage field is numerically
more efficient and sufficient to reproduce the physics of the
whole system. Therefore, characteristic 2D slices of the di-
electric and polarization leakage field are used as represented
in Fig. 1. The slices go through a sequence of convolution
operations until they reach a low-dimensional representation
at the center (bottleneck) of the U-Net (Fig. 1). This com-
pressed representation is then transformed back to match
its original size at the output, using transposed convolution
operators.

Up to this point, U-Net is very similar to a convolutional
autoencoder (CAE) [42]. However, U-Net is completed by
skip connections (shortcuts in Fig. 1), allowing low-level local
features to pass through and merge with features emerging
from the bottleneck, along the decoder. These shortcuts make
U-Net effective in modeling the behavior of electromagnetic
fields inside metasurfaces as they link more easily the fields
to the local dielectric topology. This network architecture
has been shown recently to perform well for a diffracting
system [36].

C. Metasurfaces: Case of annular-groove phase masks

The optimization framework presented in this paper is ap-
plied to the design of the AGPM center. The AGPM is one
way of implementing a vector vortex phase mask capable
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FIG. 1. Representation of the U-Net architecture. The network is comprised of an encoding and a decoding module. These are located at
each side of a bottleneck. The input of the network is a slice of the dielectric structure (left), while the output is a conforming slice of the
polarization leakage field (right). The shortcuts directly connecting layers along the encoder and decoder are represented by the black arrows.

of achieving contrasts of several orders of magnitude across
a large bandwidth [10,43]. Several AGPMs have been suc-
cessfully installed on the world’s most advanced telescopes
to date [44-47]. The AGPM uses the artificial birefringence
of subwavelength gratings etched onto a diamond substrate
to create the helical phase ramp characteristic of a vortex
phase mask. The grating parameters are tuned to provide a
7 phase shift between orthogonal polarizations and create an
achromatic half waveplate. The characteristic helical phase
ramp is obtained by spatially varying the fast axis of the half
waveplate across the mask, resulting in the circular groove
pattern of the AGPM.

D. Physics solver: Finite-difference time-domain simulations

While the grating parameters of the AGPM are optimized
using RCWA [12], which is well suited for describing infinite
periodic gratings, at the center of the AGPM, the pattern is no
longer periodic. The FDTD method [48] is used here to fully
describe the behavior of the AGPM at its center. A circularly
polarized plane wave is propagated through the AGPM. The
half-waveplate character of the AGPM flips the helicity of
the wave while imprinting the textbook helical phase ramp,
leaving a small fraction unaffected, referred to as polarization
leakage. The polarization leakage is numerically computed as
the mean intensity of the circular polarization with the same
handedness as the input in a slice 2.25 um inside the substrate.
This polarization leakage quantifies the amount of light that
does not acquire the phase ramp due to the chromaticity of the
design. The effects of the curved grating lines near the AGPM
center can be described accurately and an optimal size can be
estimated for the central pillar [13].

Here the AGPM center is inversely designed by using a
more complex metasurface structure. Starting from the AGPM
pattern, a region with a radius of five grating periods is opti-
mized. These five periods correspond to the region in which
the central leakage is localized (optimizable area in Fig. 2).
A simple pattern of concentric grooves of varying line width
and position is first considered to minimize the leakage term

at the center of the mask. Figure 2(a) shows an example of a
concentric groove pattern defined by its inner and outer
radii for each groove. The design freedom is then drastically
increased by using rectangular nanofins [2] placed in a hexag-
onal pixelization grid [Fig. 2(b)], leading to an optimization
problem with hundreds of free parameters. Each nanofin in the
pixelization grid has five free parameters: its position (two),
size (two), and its tilt angle (one). In principle, for 91 blocks
shown in Fig. 2(b) within the optimized region this results
in 455 free parameters. However, for the case of the AGPM,
the circular symmetry of the problem is exploited by using
the symmetry of the hexagonal pixelization grid. Forcing the
orientation of the blocks to be parallel or orthogonal to the an-
nular grooves further reduces the number of free parameters:
While keeping the vectorial nature of the mask, the number of
independent parameters is reduced to 38. Figure 2(b) shows
an example of a nanofin pattern, including the hexagonal
pixelization grid overlaid as thin gray lines. The depth of
the structures is fixed throughout the mask for both patterns
and is optimized for the annular-groove pattern beyond the
central region considered for optimization. Such parameters
are available in the Supplemental Material (S3) [49].

E. Global optimization scheme

In this section, a surrogate optimization process [50] is
presented. This active learning [14] process will iteratively
feed the U-Net with new designs and leakage maps computed
through the FDTD method to improve its accuracy. The choice
of those designs is left to a PSO algorithm [51] that will probe
designs with increasing performance. This choice is further
refined by a selection strategy similar to that in [15]. The
whole model building and optimization process is illustrated
in Fig. 3.

The process starts by generating Ny random designs
[Fig. 3(a)]. This value is fixed following a study in an upcom-
ing section (Ny = 50). These initial designs enter the main
loop and are evaluated using FDTD simulations, as described
in Sec. II C [Fig. 3(b)]. Once this first batch of simulations
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FIG. 2. Dielectric permittivity €, profile of (a) an annular-groove phase mask and (b) a nanofin phase mask. The AGPM pattern is
maintained in the region beyond the optimizable area (red circle) and determines the depth of the full pattern. The hexagonal pixelization
grid used to define the metasurface pattern is overlaid as thin gray lines in (b).

is performed, the first U-Net is trained on the initial set
of simulations [Fig. 3(c)]. The U-Net will then be explored
by multiple (npso) parallel executions of the PSO algorithm
[Fig. 3(d)]. This exploration leads to pairs consisting of the
design that is probed by PSO and the corresponding leakage
maps predicted by U-Net. Since PSO is a stochastic algorithm,
each instance will lead to a different path and sequence of
probed designs. These design-prediction pairs are then stored
in a raw database for further analysis [Fig. 3(d)].

This raw database cannot be directly used to improve
U-Net as its performance is only an estimation made by
U-Net itself. As such, it may include significant errors, es-
pecially at the early stages of training. Furthermore, the
data set is large and redundant. For all these reasons, a
selection process [Fig. 3(e)] is required to pick just a
few designs that are allowed to go back to the evalua-
tion step [Fig. 3(b)]. Due to this selection, only the most
relevant of these designs will be associated with correct
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FIG. 3. Summary of the surrogate based optimization scheme. (a) To initiate the algorithm, a randomly generated selection of designs is
formed. (b) The selected designs are evaluated in the expensive FDTD simulations. (c) The new designs are appended to the data set and the
U-Net is updated. (d) A PSO algorithm searches for better designs using the U-Net model. (¢) The designs proposed by PSO are filtered using
k-means clustering and a design is elected in each cluster. The loop is closed by going back to step (b).
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FIG. 4. Benchmark of U-Net against dense neural network, KPLS, and CAE models. Scatter plots of the predicted versus the FDTD mean
leakage from various methods are shown: (a) DNN, (b) KPLS, (c¢) CAE, and (d) U-Net. The ground-truth leakage computed by the FDTD
method is found on the abscissa while the ordinate represents the corresponding predicted values. The results for two groups of designs are
shown and correspond to the training set and the validation set. Predictions made during optimization are also shown for the U-Net. The
Pearson correlation coefficient R is displayed in the legend. (e) CAE, U-Net, and FDTD leakage maps are shown for six random designs.

leakage maps in the step in Fig. 3(b) using the FDTD
solver.

Relevant designs are those that provide information about
the search space (diversified) and achieve optimal optical
performance. Failing to balance exploration (attempting less
promising designs) and exploitation (refining the best ones)
would lead to either early convergence on a suboptimal de-
sign or failure to converge altogether. To make the selection,
the raw database is split in k clusters by applying k-means
[52] (k = 4) on the topology of the designs as illustrated in
Fig. 3(e). The approach works in synergy with PSO due to
the observed tendency of particle swarms to form a sequence
of design niches during the optimization process of the step
in Fig. 3(c). Evidence for this statement is available in the
Supplemental Material (S2) [49]. The clusters of k-means then
allow us to sample these niches as they each correspond to
a local optimum for the design coined archetype. Finally, a
design is picked with a probability inversely proportional to its
performance in each cluster. More details about the selection
can be found in the Supplemental Material (S2) [49].

Once filtered, the few remaining designs take the same path
as the initial random sample: They are evaluated accurately
with the FDTD method in Fig. 3(b) and the pairs of dielectric
and leakage maps are stored in the database [Fig. 3(c)]. The U-
Net model then incorporates the increased data set in Fig. 3(c).
This new model is finally used in Fig. 3(d), like the initial one,
closing on the surrogate optimization loop.

Using npso = 5 parallel PSO instances, with one design
sampled in each of k = 4 clusters, turns out to perform well,
leading to k x npso = 20 FDTD evaluations for each model
update. From 15 to 20 model updates were found to be suffi-
cient for the optimization to converge. These parameters were
used in the optimization of nanofin and annular-groove phase
masks.

II1. RESULTS
A. Quality of the polarization leakage predictions

In the previous sections, U-Net was introduced as a
promising architecture for surrogate modeling of complex
metasurfaces. In this section, this statement is supported by
comparing the U-Net approach to competing methods for the
prediction of the spatially averaged polarization leakage.

Figure 4 shows, for the nanofin designs, the predicted
spatial average of the polarization leakage [ against its ground-
truth value obtained through the FDTD method. Results for
different groups of designs are shown in Figs. 4(a)—4(d): the
training data set used for building each model and the vali-
dation data set that is unknown to each model. The optimizer
data set represents all designs probed during an optimization
session and is only shown in Fig. 4(d) as red A’s. The training
and validation sets were the same for all methods and con-
tained 2500 designs each. While the training or validation set
is randomly sampled, the optimizer set is biased towards better
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designs not found in a random sampling, as can be seen in
Fig. 4(d) by the lower values of [.

The U-Net model showed consistent accuracy over the
training, validation, and optimizer data sets with a Pearson
correlation coefficient (PCC) [53] R of 0.98, 0.98 and 0.99,
respectively. The CAE reached the second best performance
with a correlation coefficient of 0.82. This is expected as the
CAE and U-Net share the way they handle the inference: They
match spatial distributions (i.e., maps) of the dielectric permit-
tivity and leakage fields. Maps of the dielectric permittivity
are directly built from the design parameters described in
Sec. II C, while the produced leakage field maps are spatially
averaged to obtain the mean leakage /. The relationship be-
tween the dielectric and the leakage field spatial distributions
proves to be well modeled as shown in Fig. 4(e).

The performance gap between the CAE and U-Net can
be observed through the predicted leakage maps of Fig. 4(e).
The only architectural difference brought by the U-Net is the
presence of skip connections. Due to these, U-Net predicts
finer local design features accurately, which is an expected
property of U-Net [16]. Some nonphysical field artifacts are
present in the CAE predictions, while they do not appear with
U-Net.

Contrasting with CAE and U-Net approaches, DNNs
and Kriging partial least-squares (KPLS) regression models
[24,31] attempt to predict the mean leakage [ directly start-
ing from the geometric parameters of the dielectric structure.
These approaches failed, barely reaching a moderate correla-
tion (R = 0.5) with this large training data set. This poor result
is mainly due to the complexity of the interaction between
the geometric structure parameters and the mean leakage. The
KPLS interpolation is particularly ineffective as the mean
leakage reacts abruptly to many of the geometric parameters.

Our approach yields a robust deep learning model, capable
of being repurposed for future predictions, even when ap-
plied to a similar but different devices. Specifically, the model
trained on nanofins serves as a solid foundation for making
predictions in the annular-groove case and vice versa. More-
over, this network is also valuable for tasks such as inverse
design or Shapley additive explanation analysis, as introduced
in the work of Lundberg and Lee [54].

The key takeaway message is the superior accuracy of U-
Net, with R > 0.95. These results strongly justify the choice
of U-Net as a surrogate for FDTD simulations in photonics,
particularly when characteristic slices can be extracted to re-
duce the complexity and size of the model.

B. Influence of the data-set size

While the accuracy displayed by U-Net is compelling for
optimization, its benefits have to be balanced against the
number of simulations required to train it. In fact, machine
learning models generally require thousands of simulations,
with a great dependence on the problem at hand. It is difficult,
if not impossible, to meet this expectation for numerically
expensive simulations. This study aims to define the minimal
number Ny of simulations required to initiate a coarse U-Net
model that brings the validation PCC R above 0.5. This partic-
ular value was selected based on observation of the field maps
and corresponds to a moderate correlation in statistics.

The efficiency of the U-Net predictions is assessed in
Fig. 5, where the model is trained with increasingly scarce
training data. The validation set PCC R is plotted against a
decreasing number of training set simulations. The training
and validation sets are obtained by splitting a common source
data set of 5000 simulations from randomly chosen designs.

Figure 5 shows that U-Net maintains an R > 0.5 for the
validation set for as few as Ny = 100 simulations in the
training set. Even better results can be achieved through data
augmentation. Data augmentation [55] helps to improve the
robustness of machine learning models by exposing them to a
greater variety of data, which enables them to better generalize
to unseen data by coping with noise, variations, and biases.
In our case, the data are augmented by cropping and rotating
the designs and corresponding polarization leakage maps at
random angles while training. U-Net with data augmentation
is shown to achieve R > 0.5 with as few as Ny = 50 simu-
lations (Fig. 5, on the right). For large simulation data sets,
on the other hand, data augmentation has a limited impact on
the validation PCC (Fig. 5, on the left). This is expected as
the available data become sufficient to fully train the network.
In short, data augmentation proves to be a key tool to handle
the small data-set sizes at the beginning of an optimization
process.

C. Performance analysis of vortex-phase-mask designs

Figure 6 compiles the optimizations of the annular-groove
(AG) and the nanofin (NF) vortex phase mask designs for the
above-discussed surrogate optimization method and the direct
PSO optimizer (directly using the FDTD solver instead of
U-Net to evaluate the figure of merit /). The four resulting
processes are labeled as follows: AG-D and AG-S optimize
the annular-groove design with direct and surrogate optimiz-
ers, respectively, while NF-D and NF-S optimize the nanofin
pattern. Each marker in Fig. 6 corresponds to a full optimiza-
tion process and shows the optimal performance computed
using the FDTD solver with regard to the number of evalu-
ations required. For efficient use of computational resources,
optimizers were stopped when no progress happened during
40 evaluations using simulations. This condition corresponds
roughly to two iterations for the surrogate optimizer (AG-S or
NF-S) as well as for the direct optimizer (AG-D or NF-D).

Figure 6 shows how efficient our surrogate optimizer ap-
proach is when compared to direct optimization. In the NF-S
case, surrogate optimization finds equivalent or better solu-
tions in four times fewer evaluations than in the NF-D case.
The surrogate method is also more reliable, with two-thirds of
processes ending up with a polarization leakage below 0.04,
while the direct optimizer only has one-fourth.

Another noteworthy aspect is the reduced leakage observed
in annular-groove designs, suggesting that the concentric rings
are superior in converting right-handed circular polarization
and generating the anticipated helical phase ramp compared to
the nanofins. This also appears in the inset nanofin designs, for
two of them (A and C) mimic an annular groove. This system-
atic approach confirms that the highest geometrically induced
anisotropy is achieved by the 1D grating, even at the center.

For the annular-groove optimization, results are similar
on average to the ones reported in a previous work [13]
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FIG. 5. Regression quality with varying data-set size. The PCC on the validation set is shown for different sizes of the training set. Five
randomly seeded trainings were considered for each data-set size. The data augmented training (blue) is compared to a standard training
(orange). The performance of the simpler dense neural network is charted in black for a benchmark.

(I = 0.02), where an annular-groove pattern (defined by two
parameters) was devised by plotting the leakage value for
25 values of both parameters, amounting to 625 evalua-
tions. Best designs of the direct optimizer (E) managed to
obtain leakage [ of 0.0143, which represents a 25% improve-
ment with respect to previous work [13]. Meanwhile, the

surrogate optimizer enabled a slightly lower (better) leakage
(D) of 0.017 with a similar simulation budget. The superior
efficiency of the direct optimizer in this case is expected
since it operates within a smaller search space, consisting
of only 10 free parameters, compared to the nanofin design,
which involves 38 parameters. Moreover, designs D and E
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are very practically similar, suggesting that the difference of
performance originates from small variations in the design.
Still, the surrogate optimizer found it with four times fewer
evaluations.

While many produced designs tend to imitate an annular-
groove pattern such as in Fig. 6, designs A and C, some of the
best performing ones use a mix of agglomerated fins parallel
to or orthogonal with the external annular groove. This is a
sensible design as the birefringence can also be produced by
a radial pattern.

IV. CONCLUSION

This work has demonstrated the potential of global opti-
mization methods in a new era of photonic design lead by
novel machine learning and adjoint optimization methods.
Specifically, we have highlighted the role of evolutionary op-
timization (PSO), which enables a stable global exploration of
the search space. The staggering need for evaluations of evo-
lutionary algorithms was alleviated due to a U-Net surrogate
solver.

An already efficient surrogate FDTD solver (U-Net) was
made even more efficient due to data augmentation. This sur-
rogate provided swift and accurate evaluations of designs for
a PSO global evolutionary optimization algorithm. The U-Net
worked by matching characteristic slices of the design and
figure of merit instead of considering the whole simulation
domain, resulting in a simpler and faster model. The result-
ing surrogate optimization framework enabled optimization
of designs with four times fewer simulations than required
by the evolutionary algorithm. The optimization scheme was

also shown to be more reliable given the lower variance in the
results obtained when compared to direct optimization of the
simulation.

The surrogate-based optimization was applied on two
types of devices: an annular-groove and a nanofin pattern.
An optimum was identified in the former case, achieving
performance that is either comparable to or surpasses previous
attempts. This optimization scheme is versatile: It could
integrate other types of design parameters such as categorical
parameters for choosing materials and shapes aside from
geometric lengths. Moreover, as this scheme makes no
preliminary hypothesis on the underlying simulation, it can
be applied to a wide range of photonic design problems
such as gratings, multiplexers or demultiplexers, scattering
problems, and multilayered photonic crystals.
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