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Classical Purcell factors and spontaneous emission decay rates in a linear gain medium
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Recently the photonic golden rule, which predicts that the spontaneous emission rate of an atom depends
on the projected local density of states, was shown to fail in an optical medium with a linear gain amplifier.
We present a classical light-matter theory to fix this widely used spontaneous emission rate, fully recovering the
quantum-mechanical rate reported in Franke et al. [S. Franke, J. Ren, M. Richter, A. Knorr, and S. Hughes, Phys.
Rev. Lett. 127, 013602 (2021)]. The corrected classical Purcell factor, for media containing linear amplifiers,
is obtained in two different forms, both of which can easily be calculated in any standard classical Maxwell
equation solver. We also derive explicit analytical results in terms of quasinormal modes, which are useful for
studying practical cavity structures in an efficient way, including the presence of local-field effects for finite-size
dipole emitters embedded inside lossy or gain materials (using a real cavity model). Finally, we derive a full
classical correspondence from the viewpoint of quantized quasinormal modes in the bad cavity limit. Example
numerical calculations are shown for coupled loss-gain microdisk resonators, showing excellent agreement
between few-mode expansions and full numerical dipole simulations.
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I. INTRODUCTION

Spontaneous emission (SE) is one of the most striking
examples of quantum electrodynamics [1–3], where vacuum
fluctuations cause the emission of a photon in the absence of
any coherence, from an excited-state population [4–7]. On the
other hand, a classical interpretation of SE is also possible,
whereby a classical dipole is excited, and the subsequent SE
decay can be interpreted through “radiation reaction” [8]. In
a fully quantum description, both viewpoints are valid, de-
pending on the chosen ordering of the operators, including
mixed operator ordering [4]. This is extremely convenient for
modeling SE in various nanophotonic cavity environments
[9–11], and is well exploited in a number of research fields,
since classical field solvers can be used to obtain such rates.
Understanding and controlling SE is also of fundamental
interest to many areas in nanophotonics [12], including the
study of nanolasers [13–15], active fibers [16], exceptional
points [17–23], and coupled loss-gain systems [24–27].

For a point-dipole emitter or two-level system (TLS) at
position r0, with dipole moment d (assumed real), the SE rate
in a lossy medium (including also lossless dielectrics) takes on
the following form:

�SE(r0, ω) = πω|d|2
3h̄ε0

ρLDOS(r0, ω) ≡ �LDOS(r0, ω)

= 2

h̄ε0
d · Im[G(r0, r0, ω)] · d, (1)
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where ρLDOS is the (projected) local density of states (LDOS),
and G is the classical Green’s function of the medium, defined
from

∇ × ∇ × G(r, r′, ω) − ω2

c2
ε(r, ω)G(r, r′, ω)

= ω2

c2
1δ(r − r′), (2)

and ε(r, ω) is the dielectric function of the medium which is
in general complex, and 1 is the unit tensor. This picture of
SE decay can be derived using standard perturbation theories,
and is valid when the emitter-medium coupling is weak, i.e.,
when the field and matter states are not entangled.

For single-mode cavities, and for dipoles aligned with the
cavity mode polarization, at a field maximum, the standard
Purcell formula can be written as

FP ≡ 3

4π2

(
λ

nB

)3 Q

Veff
, (3)

where λ is the wavelength, nB is the background refractive
index, Q is the quality factor, and Veff is the effective mode
volume [28]. A more general Purcell factor can be defined
through [28,29]

F LDOS
P (r0, ω) = 1 + �SE(r0, ω)

�0(ω)
, (4)

where

�0(ω) = 2

h̄ε0
d · Im[Ghom(r0, r0, ω)] · d (5)

is the homogeneous medium SE rate, obtained using
the background Green’s function: Im[Ghom(r0, r0, ω)] =
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1nBω3/(6πc3), with �SE(r0, ω) defined from Eq. (1). For
a two-dimensional (2D) TM system, as we will consider
below for our numerical example, Im[Ghom(r0, r0, ω)] =
1ω2/(4c2). For dipoles that are located outside the cavity
structure of interest, then we also include a factor of 1 in the
Purcell factor formula [29]; otherwise the factor of 1 can be
dropped.

To appreciate how vacuum fluctuations connect to the
LDOS in dielectric media, we briefly sketch out a quantum-
mechanical derivation of the SE rate. We start by using a
Green’s-function approach [30] for quantizing the electric
field in a purely lossy medium (i.e., one without gain), yield-
ing Ê(r) = ∫ ∞

0 dωÊ(r, ω) + H.a., with

Ê(r, ω) = i

ωε0

∫
dr′G(r, r′, ω) · ĵ(r′, ω), (6)

where ĵ(r, ω) ∝ √
εIm(r, ω)b̂(r, ω) is a current noise op-

erator counteracting the nonradiative and radiative dissipa-
tion, which are encoded in the imaginary part εIm of the
complex permittivity ε(r, ω) = εRe(r, ω) + iεIm(r, ω) [with
εIm(r, ω) > 0] and an integration over all space from Eq. (6)
(for more details on the derivation of the radiative dissipation,
see Ref. [31]). Moreover, b̂(†)(r, ω) are the bosonic operators
of the combined medium-photon system and act as annihila-
tion (creation) operator on the Fock states |n〉 (containing all
spatial and frequency dependencies), respectively. The point-
dipole emitter is introduced into the quantum model as a
simple TLS and is coupled to the electric field via dipole-field
interaction Hamiltonian ĤI = d̂ · Ê(r0). Here, d̂ is the dipole
operator d̂ = dσ̂+ + dσ̂− and σ̂−(+) is the lowering (raising)
operator, acting on the ground state |g〉 and the excited state
|e〉. Next, we will consider the SE rate as defined through
vacuum fluctuations [4] of the quantum field:

�VF(r0, ω) = 2π

h̄2 d · 〈0|[Ê(r0, ω), Ê†(r0, ω)]|0〉 · d, (7)

where |0〉 is the photon-medium vacuum state, which fulfils
b̂(r, ω)|0〉 = 0. Inserting the quantum field from Eq. (6), one
immediately recognizes that this rate explicitly depends on an
integration over all space. However, exploiting the Green’s-
function identity [30,31]∫

R3
dsεIm(s, ω)G(r, s, ω) · G∗(s, r′, ω) = Im[G(r, r′, ω)],

(8)

then one can show that �VF = �LDOS = �SE, and both ap-
proaches yield equivalent results for the SE decay rate, which
depends on the projected LDOS. Consequently, one can also
model the enhanced SE as the normalized power flow in
classical photonic simulations, which is essentially a model
of radiation reaction.

Recently, however, it was shown that this LDOS picture
of SE breaks down in a medium containing a linear ampli-
fier [27,32]. Indeed, it is entirely possible to have a negative
LDOS in a gain medium, even though the medium is still
in the linear regime, which is quantified by the poles in the
Green’s function (which is only allowed to have complex
poles in the lower complex half plane, i.e., the complex eigen-
frequency has a negative imaginary part). Note that the lossy

and gain media can be modeled with a dielectric function that
has positive and negative imaginary parts, respectively.

Using a quantum field theory, the reason for the breakdown
of the LDOS SE formula, with gain, is related to the different
form of the electric-field operator. Indeed, in the presence of
gain in a volume VG, Eq. (6) modifies to

Ê(r, ω) = i

ωε0

∫
R3−VG

dr′G(r, r′, ω) · ĵL(r′, ω)

+ i

ωε0

∫
VG

dr′G(r, r′, ω) · ĵG(r′, ω), (9)

where ĵL(r, ω) ∝
√

εL
Im(r, ω)b̂(r, ω) is the loss-induced

noise operator and ĵG(r, ω) ∝
√

|εG
Im(r, ω)|b̂†(r, ω) is the

gain-induced noise operator. Consequently, the fluctuation-
dissipation theorem in the form of Eq. (7) gives an addi-
tional spatial gain contribution from the operator product
Ê†(r0, ω)Ê(r0, ω). This results in a nonlocal gain correction
to the SE decay rate:

�SE
quant (r0, ω) = �LDOS(r0, ω) + �gain(r0, ω), (10)

where

�gain(r0, ω) = 2

h̄ε0
d · K(r0, r0, ω) · d (11)

and

K(r, r0, ω) =
∫

VG

ds
∣∣εG

Im(s, ω)
∣∣G(r, s, ω) · G∗(s, r0, ω),

(12)

which ensures that �SE
quant > 0, and εG

Im = Im[εG] is the imag-
inary part of the permittivity for the gain medium. In addition
to the gain modified SE rate, in a quantum derivation, �gain

leads to excitation from the ground state to excited state,
namely |g, 0〉 to |e, 1〉. We use |εG

Im| to keep positive defi-
nite quantities, and for ease of notation. However, we also
highlight that the absolute value appears in the quantum
derivation because of the operator ordering associated with
gain.

Related microscopic derivations of gain-modified SE have
also been presented recently [33]. Note that Eq. (12) in-
volves a nonlocal contribution from the entire gain medium;
in origin, a similar term was added to the LDOS calculation
to exploit the fluctuation-dissipation theorem, so it must be
subtracted back off; because of the sign of the imaginary
part of the permittivity for the gain region, this yields a net
positive quantity. The corresponding quantum Purcell factor is
defined as

F quant
P (r0, ωa ) = 1 + �SE

quant (r0, ωa )

�0(ωa )
, (13)

which can be used as a benchmark and a reference result for
the “fixed” classical results that we will introduce below.

Although these results are quite general, and can also be
described from a quantized mode perspective (using quantized
quasinormal modes (QNMs) [34]), they cannot be checked
for a classical correspondence using simple Maxwell equation
solvers with power flow arguments. Also, without a few-mode
description for the Green’s function, the numerical evaluation
of Eq. (12) is very difficult and computationally demanding.
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FIG. 1. (a) Schematic diagram of the coupled loss-gain microdisks in free space (εB = 1) and the various surfaces (
d , 
L, 
G, 
far) and
the volume regions (VL,VG) for the integrations. Both microdisks have a diameter D = 10 µm, and the permittivities are εL = (2 + i10−5)2

(loss) and εG = (2 − i5 × 10−6)2 (gain). The gap distance dgap = dL + dG between the microdisks will be chosen as 1155 and 1160 nm (close
to an exceptional point region), where dL (dG) is the minimal distance between the potential point dipole and the lossy (gain) microdisk. 
d is
a surface that surrounds only the point dipole. 
L (
G) is a surface that surrounds only the lossy (gain) part of the cavity. 
far is a surface that
surrounds the whole coupled-cavity dipole system. VL (VG) is the volume for the lossy region and the gain region. Note that when converting
the three-dimensional structure to a 2D case, the surface integration will be line integration, and the volume integration will become surface
integration. (b, c) Coupled QNM distribution | f̃ z

±|2 (see text) with dgap = 1160 nm, where the coupled modes are delocalized around both
resonators with a different intensity.

It is also not known if these results have any classical corre-
spondence.

In this paper, we present a theory to fix the classical Purcell
factor for media containing linear gain amplifiers, where
the same quantum-corrected SE rate can be obtained from
purely classical power flow arguments, thus generalizing the
usual approach for the nanophotonics (Maxwell) community,
to allow use for media with linear gain. We also give several
different viewpoints for this fix, and present simple prescrip-
tions for obtaining this classical correspondence. In addition,
we show how one can account for local field effects using
a real cavity model, for finite-size dipole emitters inside the
loss and gain materials. Finally, using a QNM approach, we
also show how the classical results are fully obtained from the
viewpoint of quantized QNMs in the bad cavity limit. Thus
we establish a classical to quantum picture of SE emission, as
well as a quantum to classical picture, in the appropriate limit
where this correspondence makes sense (weak coupling).

II. CLASSICAL THEORY OF SPONTANEOUS EMISSION
WITH LINEAR GAIN MEDIA

The calculation of the classical SE rate can be obtained
from the numerical power flow of a classical dipole, or from
the projected LDOS [Eq. (1)], both of which fail when the
medium contains a linear gain amplifier. In this section, we
start from the classical power flow from a dipole, and then
propose two forms of fixed classical SE rates and Purcell
factors with the presence of a linear gain medium. One of
these forms is shown to be fully consistent with the quantum
results obtained in Ref. [32].

A. Classical power flow from a polarization dipole

In a standard Maxwell equation solver, one can obtain
various classical power flows numerically. For example, the
power dissipated from a point dipole at r0 can be com-
puted from a surface integral over the Poynting vector
Spoyn(r, ω) = 1

2 Re[E(r, ω) × H∗(r, ω)] with magnetic field
H(r, ω) = 1

iωμ0
∇ × E(r, ω) [12], using

P (r0, ω) =
∫




n̂ · Spoyn(r, ω)dr, (14)

where the selected surface 
 determines the power flow con-
tribution of interest, and the unit vectors, n̂, are normal to the
selected surface, and point outwards.

Let us consider the example of a dipole emitter located
within or near some finite-size inhomogeneous cavity, as
shown in Fig. 1 (the red dot shows the emitter). In general,
there are four kinds of surfaces of interest for electromag-
netic power flow from the dipole: (i) the surface that only
encloses the dipole, 
d , which yields the local total power
flow PLDOS(r0) from the dipole at some location r0 with the
presence of the cavity; (ii) the surface that only encloses the
lossy part of the cavity system, 
L, which yields the net
positive power Pnloss(r0) flowing into the lossy region and
dissipated within the lossy region, which leads to nonradia-
tive power loss; (iii) the surface that only encloses the gain
part of the cavity, 
G, which gives the net positive power
Pgain(r0) flowing out from the gain region; and (iv) the sur-
face that encloses both the dipole and the entire cavity, 
far,
which yields the outgoing radiative power Prloss(r0) emitted
to the far-field region. For clarity, we distinguish radiative
and nonradiative loss with the labels “rloss” and “nloss,”
respectively.

These four power flow contributions are defined from

PLDOS(r0, ω) =
∫


d

n̂ · Spoyn(r, ω)dr, (15)

Pnloss/gain(r0, ω) = −sgn
(
ε

L/G
Im (ω)

) ∫

L/G

n̂ · Spoyn(r, ω)dr,

(16)

Prloss(r0, ω) =
∫


far

n̂ · Spoyn(r, ω)dr, (17)

where the sign function in Eq. (16) (sgn[εL/G
Im ] =

sgn[Im(εL/G)] = ±1) is used to ensure net positive powers
for Pnloss/gain(r0, ω).

The geometry of these surfaces does not have any specific
shape requirement, as long as they surround the corresponding
sections. The two loss and gain regions can also be related to
the energy dissipation and amplification in that lossy and gain
region, which can also be defined in terms of a volume integral
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[12]:

Pnloss/gain(r0, ω)

= sgn
(
ε

L/G
Im (ω)

)1

2

∫
VL/G

Re{J∗
L/G(r, ω) · EL/G(r, ω)}dr,

(18)

with the current source within the lossy and gain region
[EL/G(r, ω) is the electric field within the lossy and gain
region]

JL/G(r, ω) = −iωε0(εL/G(r, ω) − 1)EL/G(r, ω), (19)

where we note only the imaginary part εIm of the permittivity
contributes to power loss and gain.

In linear media [12], the net energy flow into (out of) a
lossy (gain) region is equal to the energy dissipation (amplifi-
cation) within this region, which can be obtained from

P = −
∫

∂V
Spoyn(r, ω) · n̂dr

= 1

2

∫
V

Re{J∗(r, ω) · E(r, ω)}dr. (20)

Thus we can evaluate Pnloss/gain(r0, ω) using either the surface
integral [Eq. (16)] or the volume integral formalism [Eq. (18)].

The four power contributions satisfy a power conservation
rule:

PLDOS(r0, ω) + Pgain(r0, ω) = Prloss(r0, ω) + Pnloss(r0, ω),
(21)

where either a surface or volume formula can be used for
Pnloss/gain. We can now define a power flow, PSE, that is related
to the total SE rate, as a sum of the far-field radiation (radiative
loss) and the lossy material nonradiative part:

PSE(r0, ω) ≡ Prloss(r0, ω) + Pnloss(r0, ω). (22)

Alternatively, using Eq. (21), we can also define this as

PSE(r0, ω) = PLDOS(r0, ω) + Pgain(r0, ω). (23)

We immediately recognize that the second form of PSE

[Eq. (23)], which is in terms of an LDOS term and a gain term,
is completely analogous to the quantum-mechanical contri-
butions shown in Eq. (10). Moreover, in a simple dielectric
structure (one without material loss or gain), then we obtain
the usual PSE = PLDOS = Prloss, with all photons emitted ra-
diatively to the far field. Below, we will connect these various
power flow terms, in a gain-loss medium, with classical decay
rates and show a clear classical-quantum correspondence.

B. Classical Purcell factors and decay rates with linear gain
based on power flow

From a practical and simple Maxwell equation viewpoint,
one is interested in the classical dipole-induced power flow
that best connects to the SE rates and Purcell factors. The
classical SE decay rate is simply

�SE
class(r0, ω) = �0(ω)F class

P (r0, ω), (24)

where �0(ω) is the rate from the point dipole in the
background medium, i.e., without the resonator(s) or inhomo-
geneous scattering structure.

We define the classical Purcell factors, F class
P (r0, ω), in two

different ways, first from

F class
P (r0, ω) = PSE(r0, ω)

P0(ω)
= Prloss(r0, ω) + Pnloss(r0, ω)

P0(ω)
,

(25)

or, alternatively, from

F class
P (r0, ω) = PSE(r0, ω)

P0(ω)
= PLDOS(r0, ω) + Pgain(r0, ω)

P0(ω)
,

(26)

where P0(ω) is the power flow from the point dipole in the
background medium, i.e., without the resonator(s) or inhomo-
geneous scattering structure. In contrast, when using only the
contribution from the LDOS, then

F LDOS
P (r0, ω) = PLDOS(r0, ω)

P0(ω)
. (27)

Thus from Eq. (26), we find the following relationship for
the SE decay rate:

�SE
class(r0, ω) = �LDOS(r0, ω) + �

gain
class(r0, ω), (28)

with

�LDOS(r0, ω) = �0(ω)
PLDOS(r0, ω)

P0(ω)
(29)

and

�
gain
class(r0, ω) = �0(ω)

Pgain(r0, ω)

P0(ω)
, (30)

where the rates are obtained from the normalized classical
power flows. Equation (28) is in an identical form to the
quantum derivation, Eq. (10). Similarly, we can define the
total SE decay rates in terms of the radiative decay (far-field
emission), and nonradiation decay within the lossy region,
using

�SE
class(r0, ω) = �rloss

class(r0, ω) + �nloss
class (r0, ω), (31)

where

�rloss
class(r0, ω) = �0(ω)

Prloss(r0, ω)

P0(ω)
(32)

and

�nloss
class (r0, ω) = �0(ω)

Pnloss(r0, ω)

P0(ω)
. (33)

Equations (31) and (28) demonstrate that one can associate
SE decay from the far-field radiative decay plus the nonradia-
tive decay from the lossy region or, as in the quantum result,
from the usual LDOS contribution (which may be negative)
plus a nonlocal correction from the gain region. The former is
perhaps more appealing, and is valid with or without a linear
gain media; it avoids the LDOS picture and does not require a
nonlocal gain calculation.

C. Green’s-function solution

Next, we focus on the first expression for the classical
decay rate �SE

class shown in Eq. (28), which has a similar form to
the quantum result �SE

quant, Eq. (10). To compare the classical
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result with the quantum result, one needs to make a clearer
connection between �

gain
class [Eq. (30)] and �gain [Eq. (11)],

where the latter is expressed in terms of the Green’s functions.
So here we will rewrite �

gain
class in terms of the Green’s functions

as well.
The gain-induced power Pgain(r0, ω) in �

gain
class can be ob-

tained from a volume integration [Eq. (18)]. At any spatial
point, the dipole-induced field is

E(r, ω) = G(r, r0, ω) · d
ε0

= G(r, r0, ω) · nd
|d|
ε0

, (34)

where d = nd |d| with unit vector nd . Therefore, we can
rewrite the gain contribution to the power flow as

PG
res(r0, ω) = −1

2

∫
VG

Re{J∗
G(r, ω) · EG(r, ω)}dr

= 1

2

∫
VG

ωε0

∣∣εG
Im(r, ω)

∣∣|EG(r, ω)|2dr

= ω|d|2
2ε0

∫
VG

∣∣εG
Im(r, ω)

∣∣|G(r, r0, ω) · nd |2dr,

(35)

which is the same as Pgain defined in Eq. (18), but now evalu-
ated with a Green’s-function solution.

Next, we can write the gain contribution to the classical
decay rate [12,35,36] as

�
gain
class(r0, ω) = �0(ω)

PG
res(r0, ω)

P0(ω)
= PG

res(r0, ω)

(h̄ω)/4

= 2|d|2
h̄ε0

∫
VG

∣∣εG
Im(r, ω)

∣∣|G(r, r0, ω) · nd |2dr,

(36)

which can easily be shown to be identical to �gain(r0, ωa )
[Eq. (11)] derived in the quantum theory, when ω = ωa. Note
that the quantum result is at the resonance frequency ωa of the
atom, and the classical result is at the linear frequency ω of
interest, but it is clear that ω = ωa when comparing the two.
Thus, we conclude that the classical result for the total SE
decay rate shown in Eq. (28) is identical to the quantum result,
defined in Eq. (10), so there is indeed a classical-quantum cor-
respondence for the Purcell factors as well: F class

P (ω = ωa ) =
F quant

P (ωa ) [Eqs. (26) and (13)]. In both cases, one cannot use
the usual LDOS formula for SE when any gain is included
in the medium description, and there is a nonlocal correction
from the gain medium.

Note that a factor of 4 is needed when converting dipole-
induced power to a SE rate with a classical dipole simulation
[8]. However, we highlight that such a factor is not needed in
a self-consistent semiclassical Maxwell-Bloch solver [37,38];
thus radiation reaction, without any noise, does yield the cor-
rect SE decay rate when seeded with classical coherence.

Similarly, one also has the nonradiative loss rate

�nloss
class (r0, ω) = 2|d|2

h̄ε0

∫
VL

εL
Im(r, ω)|G(r, r0, ω) · nd |2dr,

(37)

with an explicit volume integration, in terms of the material
Green’s function.

D. Quasinormal mode expansions

In the previous subsection, the gain contribution �
gain
class to

the SE rates was written in terms of the Green’s function.
However, the two-space-point Green’s function is not easy
to compute in general, and it is better to obtain these semi-
analytically from an accurate mode theory. Moreover, often
with SE studies, one is interested in practical cavity structures,
where enhancements are mainly caused by resonant modes.
Indeed, this is precisely the spirit of Purcell’s formula, in that
it is defined in terms of modal quantities. Thus it is desirable
to connect the above general results to structures that can be
described in terms of the underlying cavity modes.

Quasinormal modes, f̃μ [28,39–47], are the natural modes
of open cavities, which are the solutions to the vector
Helmholtz equation

∇ × ∇ × f̃μ(r) −
(

ω̃μ

c

)2

ε(r, ω̃μ) f̃μ(r) = 0, (38)

with the Silver-Müller radiation condition [48]. The cor-
responding eigenfrequencies ω̃μ = ωμ − iγμ are complex,
which also yields the modal quality factor Qμ = ωμ/(2γμ).
To numerically obtain the QNM eigenfunctions and eigenfre-
quencies, we employ an efficient dipole technique in complex
frequency space [49]. We emphasize that using this technique
results in properly normalized QNMs.

For coupled resonator systems, one can directly find the
coupled QNMs by setting ε(r, ω̃μ) to be the permittivity for
the whole systems. However, one could also use an accurate
coupled QNM theory [27,32,34,50–53] to get the properties
of the hybrid QNMs based on the QNMs of individual res-
onators, which are also well defined with gain media [27,32].
If one considers two separate cavities described by permittiv-
ity ε1(2) in a background medium with εB (as we will show
later), each with one QNM of interest f̃1/2 and corresponding
eigenfrequencies ω̃1/2, the eigenfrequencies for the coupled
system will be

ω̃± = ω̃1 + ω̃2

2
±

√
4κ̃12κ̃21 + (ω̃1 − ω̃2)2

2
, (39)

with the coupling coefficients κ̃12/21 (i, j = 1, 2):

κ̃i j = ω̃ j

2

∫
Vi

dr[εi(r) − εB]f̃i(r)f̃ j (r). (40)

The coupled QNMs are

|f̃±〉 = ω̃± − ω̃2√
(ω̃± − ω̃2)2 + κ̃2

21

|f̃1〉

+ −κ̃21√
(ω̃± − ω̃2)2 + κ̃2

21

|f̃2〉 . (41)

For the example shown later, the notation 1 and 2 here will be
replaced by L and G.

Once the two hybrid QNMs f̃± are obtained, in the fre-
quency regime of interest (a total of two QNMs dominate,
which we have checked to be accurate for the studies below),
the photon Green’s function near or within the resonators can
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be obtained from a QNM expansion [29,40]:

G(r, r0, ω) =
∑

μ

Aμ(ω)f̃μ(r)f̃μ(r0)

≈ A+(ω)f̃+(r)f̃+(r0) + A−(ω)f̃−(r)f̃−(r0),
(42)

where A±(ω) = ω/[2(ω̃± − ω)].
Next, one can rewrite the gain contribution �

gain
class to the SE

rates with the volume integration form, in terms of the QNMs:

�
gain
QNM(r0, ω) = 2|d|2

h̄ε0

∫
VG

|εG
Im(r, ω)|

×
∣∣∣∣∣∣
⎛
⎝∑

μ

Aμ(ω) f̃μ(r)f̃μ(r0)

⎞
⎠ · nd

∣∣∣∣∣∣
2

dr,

(43)

which we stress again is identical to the quantum result,
Eq. (11), when applying the same QNM expansion and ω =
ωa. Note that two QNMs f̃± are included in

∑
μ, though one

can increase this if required, so we keep this more general
form.

Similarly, one can also write �nloss
class in terms of QNMs,

through

�nloss
QNM(r0, ω) = 2|d|2

h̄ε0

∫
VL

εL
Im(r, ω)

×
∣∣∣∣∣∣
⎛
⎝∑

μ

Aμ(ω) f̃μ(r)f̃μ(r0)

⎞
⎠ · nd

∣∣∣∣∣∣
2

dr.

(44)

Note that one could also rewrite the gain (and loss) contri-
butions to the SE rates with the surface integration form, in
terms of QNMs. However, since the QNMs are obtained out-
side the resonator, this is not as accurate as using the QNMs
within a volume integral [29,54], so we keep the volume
integral form above.

Using Eqs. (26) and (28), we now define the corrected
classical Purcell factors in terms of the QNMs, as

F class
P,QNM(r0, ω) = F LDOS

P,QNM(r0, ω) + �
gain
QNM(r0, ω)

�0(ω)
, (45)

where the LDOS contribution is the usual Purcell formula:

F LDOS
P,QNM(r0, ω) = 1 + d · Im[GQNM(r0, r0, ω)] · d

d · Im[Ghom(ω)] · d
, (46)

with

GQNM(r0, r0, ω)

= A+(ω)f̃+(r0)f̃+(r0) + A−(ω)f̃−(r0)f̃−(r0). (47)

In the limit of a few QNMs, these LDOS and gain factors are
trivial to compute, and in our numerical example below we
will show excellent agreement (versus full-dipole numerical
simulations) using just two QNMs.

For the numerical example we consider later, the far-field
radiative contribution is negligible, thus by using Eqs. (25)

and (31) we can define the corrected classical Purcell factors
in terms of the QNMs, with

F class
P,QNM(r0, ω) ≈ 1 + �nloss

QNM(r0, ω)

�0(ω)
, (48)

where �nloss
QNM(r0, ω) is given from Eq. (44).

To summarize the key classical equations: we have pre-
sented fixed classical Purcell formulas that can easily be
applied to completely arbitrary loss-gain systems with no
mode approximations, by using Eqs. (25) and (26), or one
can exploit QNMs for cavities using Eq. (45). The latter is
also appealing as it can connect to more rigorous approaches
using quantized QNMs, which can then be checked in the
bad cavity limit [34,55], namely when one can adiabatically
eliminate the cavity modes and derive the modified SE rate in
a semiclassical Purcell regime.

E. Full-dipole numerical solutions

Naturally, one also desires to compute the SE rates without
requiring insight from a Green’s-function solution. Since the
dipole power flow can in principle be obtained from any clas-
sical Maxwell equation solver, one can compute the numerical
classical Purcell factors F num,1/2

P , from

F num,1
P (r0, ω) = Prloss(r0, ω) + Pnloss(r0, ω)

P0(r0, ω)
, (49)

or

F num,2
P (r0, ω) = PLDOS(r0, ω) + Pgain(r0, ω)

P0(r0, ω)
, (50)

with the numerical power

P0(r0, ω) =
∫


d

n̂ · Sbackground(r, ω)dr, (51)

from the point dipole in the background medium. The term,
F num,1/2

P , can be compared with the quantum Purcell factors
F quant

P [Eq. (13)] from the corrected Fermi’s “golden rule”,
and F class

P,QNM [Eq. (45)] from QNMs. Note that we simply use
the labels “1” and “2” for the purpose of showing numerical
results later, but mathematically these should yield identical
results. So one can use either form.

Note for the specific example we will consider below,
we could use the approximated form F num,1

P (r0, ω) ≈ 1 +
Pnloss/P0, as the nonradiative part dominates.

In contrast, without using any mode expansions, the nu-
merically exact Purcell factor contribution from the LDOS can
be obtained from

F LDOS
P,num (r0, ω) = PLDOS(r0, ω)

P0(r0, ω)
. (52)

III. NUMERICAL RESULTS FOR COUPLED
GAIN-LOSS RESONATORS

We next present numerical examples, using a coupled
loss-gain resonator system, similar to those previously
studied in Refs. [27,32]. The system consists of two 2D
microdisks with permittivities εL = (2 + i10−5)2 (loss)
and εG = (2 − i5 × 10−6)2 (gain), inside a homogeneous
medium with εB = 1 as shown in Fig. 1(a). Each microdisk
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has a diameter D = 10 µm. The dipole is placed within the
gap, which is dL(dG) away from the lossy (gain) resonator,
and dL + dG = dgap is satisfied, where the gap distance
dgap = 1160 or 1155 nm (close to the exceptional point
region [27], where the two resonances approach each
other) and either dL = 10 nm (close to the loss cavity) or
dG = 10 nm (close to the gain cavity) is selected.

We first calculate the dominant single QNM f̃L for the loss
microdisk in the frequency regime of interest (single-mode
approximation), which is a TM mode (h̃x, h̃y, f̃z ) (the mag-
netic QNM h̃ is polarized in the xy plane, and the electric
QNM f̃ only has a z component) with radial mode number
q = 1, and azimuthal mode number m = 37. The mode eigen-
frequency is ω̃L = ωL − iγL = 1.266 666 × 1015 − i6.26 ×
109 (rad/s) (h̄ω̃L = h̄ωL − ih̄γL ≈ 0.83 eV − i4 µeV) with a
quality factor around QL = ωL/(2γL) ≈ 105 (resonant wave-
length around λL = 2πc/ωL ≈ 1487 nm). We also obtain the
QNM f̃G for the gain microdisk in the same frequency regime
of interest. The corresponding eigenfrequency is ω̃G = ωG −
iγG ∼ ωL + i0.5γL.

Then we use coupled QNM theory [27,32,34,50], to ef-
ficiently obtain the eigenfrequencies ω̃± [Eq. (39)] and the
QNMs f̃± [Eq. (41)] for the hybridized QNMs in an analytical
form. For example, when the gap distance dgap = 1160 nm,
the distributions for the z components of the coupled QNMs
are shown in Figs. 1(b) and 1(c), which are located in both
cavities with different intensities. After checking the valid-
ity of using the QNMs to model the resonator response, the
Green’s functions can be obtained from a QNM expansion, as
described in Eq. (42).

We will consider four test cases with the following gap
distances and dipole locations: dgap = 1155 or 1160 nm and
dL = 10 nm or dG = 10 nm. First, for comparison, we show
the results with the LDOS contribution only in Fig. 2, where
the gray circles show the full numerical dipole results F LDOS

P,num
[Eq. (52)] and the solid magenta curve shows the QNMs
results F LDOS

P,QNM [Eq. (46)], which agree quantitatively well
with each other. However, with the contribution from the
LDOS only, the SE rates are greatly underestimated and can
also be negative.

As shown in Ref. [32] and in Eqs. (10), (11), and (13), the
corrected Fermi’s “golden rule” with the linear gain will yield
a net-positive Purcell factor when adding a gain contribution
to the LDOS contribution. On the other hand, in this paper,
starting from the classical power flow, we have also derived
the same results [see Eqs. (28), (36), and (43) with a volume
integration form] as the corrected Fermi’s “golden rule”, i.e.,
F class

P,QNM(ω = ωa ) = F quant
P (ωa ) [Eqs. (13) and (45) are identi-

cal analytically] when using the same QNM expansion of the
Green’s function. For all four cases, the (corrected) classical
Purcell factors are net positive (see solid blue curves). In
addition, especially for the examples studied here (where the
far-field decay is negligible), the alternative approximate form
Eq. (48) gives basically the same results (not shown) as the
solid blue curves.

Importantly, these fixed Purcell factors (F quant
P = F class

P,QNM =
F QNM

P ) show excellent agreement with full dipole solutions
F num,1/2

P [Eqs. (49) and (50), red squares and green asterisks],
as seen from Fig. 2. This indicates the validity of the clas-

FIG. 2. Corrected numerical Purcell factors F num,1/2
P [Eqs. (49)

and (50), red squares and green asterisks], showing excellent agree-
ment with the Purcell factors using a two-QNM expansion F QNM

P =
F class

P,QNM = F quant
P (solid blue curves); the same answer is obtained

classically [Eqs. (45) or (48)] and quantum mechanically [Eq. (13)].
For comparison, the usual results from just the LDOS are shown,
using the numerical solution F LDOS

P,num [Eq. (52), gray circles] and the
QNM solution F LDOS

P,QNM [Eq. (46), magenta curve]. The dotted gray
curve indicates the value of zero. Note that h̄ωL ≈ 0.83 eV and
h̄γL ≈ 4 µeV, which are related to the real part and imaginary part
of the eigenfrequency, ω̃L = ωL − iγL, for the single QNM f̃L of the
lossy cavity only. In (a) and (b), the rates are evaluated for the gap
distance dgap = 1155 nm, with the dipole at (a) dL = 10 nm (close to
the lossy resonator) and (b) dG = 10 nm (close to the gain resonator).
(c, d) Same as in (a) and (b), but with dgap = 1160 nm. In all cases,
we stress there are no fitting parameters, and we obtain negative
values for the LDOS rates in a certain frequency range.

sical Purcell factors and SE rates defined in Eqs. (26), (28),
(25), and (31), where the first two tell us that an additional
net-positive gain contribution should be added to the general
LDOS contribution to account for the total SE rates in the
case with linear gain; this agrees with the quantum corrected
Fermi’s “golden rule” [32], and was verified to have the
same analytical expression when using the Green’s-function
solution and a volume integration form. Moreover, in this
paper, the alternative forms Eqs. (25) and (31) show that the
far-field radiative and the nonradiative part within the lossy
region also account for the total SE rates as well, without
having to use the LDOS contribution at all. This alternative
form is possibly more appealing, as it works in linear media
with both gain and lossy parts; in addition, this latter form is
more convenient for also defining the radiative β factors, from
βrad = Prloss/(Prloss + Pnloss). This quantity is always less than
1, as expected in a linear medium. In contrast, clearly, one can-
not use βrad = Prloss/PLDOS, unless the medium is lossy only.
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FIG. 3. (a) Schematic of a single lossy microdisk [with diameter D = 10 µm and permittivity εL = (2 + i10−5)2] in free space (εB = 1).
Within the lossy disk is a small cavity region (labeled by a dashed circle, much smaller compared with the size of the disk, not to scale) which
has a radius, rc, and a real permittivity εc. The smallest distance between the center of this dashed circle and the surface of the disk is 330 nm.
Various surfaces (
d , 
L, 
far) and the volume region (VL) for the integration are shown. [Note that now the surface 
L encloses both the
lossy region and the point dipole, so when calculating Pnloss, for simplicity, we will only use the volume form as shown in Eq. (18).] (b) An
example dominant single QNM distribution | f̃ z

c |2 (and zoom-in) is shown, in the case of rc = 5 nm and εc = 1.0. The zoom-in plots show
the field distribution in the vicinity of the dashed circle region (real cavity). (c) Classical Purcell factors of a dipole placed at the center [see
the red dot in (a)] of the dashed circle with various sizes (black, red, blue: rc = 10, 5, and 3 nm, respectively) while the permittivity is fixed
at εc = 1.0. We see very good agreements for all three cases between classical QNMs [F LDOS

P,QNM(r0, ω), curves, Eq. (53)] and full numerical
dipole results [F LDOS

P,num (r0, ω), markers, Eq. (52)]. In addition, the redshift of the resonance is found with the decrease in the radius of the dashed
circle. (d) Similar to (c), but with fixed permittivity εc = 2.25. Once again, we see excellent agreement between classical QNMs and full dipole
results, and a redshift of the resonance when decreasing rc is found. Moreover, with the same rc, a redshift of the resonance is also found when
permittivity εc is increased, by comparing (c) and (d).

IV. ACCOUNTING FOR LOCAL-FIELD EFFECTS FOR
QUANTUM EMITTERS EMBEDDED INSIDE THE LOSS OR

GAIN MATERIALS

In many real situations, the emitter is embedded within
the loss or gain resonator material [56]. This leads to a well-
known local-field problem of a finite-size emitter, since the
LDOS is divergent for a point dipole [57–60]. For high-index
structures, the real cavity model is the most appropriate, where
one models the finite-size emitter as a small cavity with real
permittivity εc, with a resonant point dipole in the center.

For resonant nanophotonic structures, it is still possible to
extract the dominant QNM contribution to the local-field SE
rate, which may also contain background contributions that
stem simply from the small cavity in a background medium
[60]. In this section, we will show that our QNM theory above
works also with local-field corrections, without any change in
formalism, if one computes the QNMs in the presence of the
local-field cavity. We will show examples when the dipole is
embedded within a lossy disk or gain disk resonator.

A. Single lossy resonator microdisk

First, we focus on the case with a single lossy microdisk,
since this alone is a nontrivial and an important problem. As

shown in Fig. 3(a), we consider a circle region, with a radius
of rc (labeled by the dashed circle, not to scale), where the
permittivity is εc (real). This circle represents the surface of
the real cavity, namely the finite size emitter. The line formed
by the center of this circle and the center of the lossy disk
is parallel to the x axis. The shortest distance between the
center of the circle and the surface of the disk is 330 nm.
The point dipole (labeled by the red dot) is placed within this
circle region (the solid black circle surrounding the dipole is

d , which is used to calculate LDOS power in the full dipole
numerical method).

In the presence of this small circle (cavity) with permittiv-
ity εc, a dominant single QNM is found in the frequency range
of interest. For example, with εc = 1.0 and rc = 5 nm, the
dominant single QNM distribution | f̃ z

c |2 is shown in Fig. 3(b),
where the zoom-in region close to the small circle is also
shown.

The LDOS Purcell factors with no gain materials (i.e., the
LDOS Purcell factors are identical to the total Purcell factors)
are given by

F LDOS
P,QNM(r0, ω) = 1 + d · Im[GQNM(r0, r0, ω)] · d

d · Im[Ghom(ω)] · d
(53)
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FIG. 4. (a) Schematic of the coupled loss-gain microdisks, which is similar to the one shown in Fig. 3(a), but (i) the gain disk is added
back with gap distance dgap = 1155 nm and (ii) the permittivity of the gain disk is εG = (2 − i1 × 10−6)2 [or εG = (2 − i2 × 10−6)2], which
is different from εG = (2 − i5 × 10−6)2 that we used in previous sections (Figs. 1 and 2). Note that the surface 
L encloses both the lossy
region and the point dipole, so when calculating Pnloss, for simplicity, we will only use the volume form as shown in Eq. (18). We decrease
the amount of gain to make sure the coupled QNMs are having positive γA/B (with ω̃A/B = ωA/B − iγA/B). (b, c) The field distribution of two
dominant QNMs | f̃ z

A/B|2, with zoom-in plots, when the small dashed circle is located within the lossy disk [Fig. 4(a)], where rc = 5 nm and
εc = 1.0. The permittivity of the gain disk is set as εG = (2 − i1 × 10−6)2. (d) Similar to (a), but now a point dipole is placed within the small
dashed circle (real cavity), that is inside the gain disk. Here again, for simplicity, we only use the volume form Eq. (18) to get Pgain since the
surface 
G encloses both the gain region and the point dipole.

where

GQNM(r0, r0, ω) ≈ Ac(ω)f̃c(r0)f̃c(r0), (54)

and f̃c and ω̃c are the dominant single QNM and the corre-
sponding eigenfrequency. The QNM expansion coefficient is
defined similar to before, i.e., Ac(ω) = ω/[2(ω̃c − ω)].

For the point dipole within the small cavity circle, the
results are shown in Figs. 3(c) and 3(d), where we con-
firm the excellent agreement between the QNM results
F LDOS

P,QNM(r0, ω) [curves, Eq. (53)] and full numerical dipole
methods F LDOS

P,num (r0, ω) [markers, Eq. (52)]. Note the power
PLDOS(r0, ω) is obtained via surface 
d shown in Fig. 3(a).
Moreover, as shown Fig. 3(c), a redshift of the resonance is
found when one decreases the size of the real cavity while
keeping a fixed permittivity εc = 1.0. A similar phenomenon
is found when the permittivity is fixed at εc = 2.25 as shown
in Fig. 3(d). Furthermore, a redshift of the resonance is also
obtained when one increases permittivity from εc = 1.0 to
2.25, while keeping the same size of the circular region, by
comparing Figs. 3(c) and 3(d).

Although we have modeled the dipoles and disks in two
dimensions, the general expressions will also work for three-
dimensional geometries as well. In three-dimensional models,
there may also be a more significant impact from non-QNM
contributions, which can typically be also included analyt-
ically [60]. However, in our examples, this contribution is
clearly negligible and not needed, so that everything can be
accurately captured from only the QNM scattering contribu-
tion. Having all quantities in terms of a QNM, including the
real cavity, is extremely convenient and numerically efficient,
which also applies in the case with QNM quantization.

B. Coupled loss-gain disks

Next, we will again consider our main system of interest
using coupled loss-gain disks, where the small real cavity (cir-

cular region) is now within the lossy disk [Fig. 4(a)] or within
the gain disk [Fig. 4(d)]. Similar to the above subsection (loss
resonator only), the line formed by the center of the circle and
the center of the loss and gain disks is parallel to the x axis.
The smallest distance between the center of the circle and the
surface of the disk is 330 nm. The radius of the real-cavity
circle is fixed at rc = 5 nm, and the permittivity is fixed at
εc = 1.0 in this subsection.

The diameter of the two disks and the permittivity of the
lossy disks are again D = 10 µm and εL = (2 + i10−5)2, as in
Figs. 1 and 2. The gap distance is fixed at dgap = 1155 nm.
However, we will use εG = (2 − i1 × 10−6)2 or (2 − i2 ×
10−6)2 [which is different from εG = (2 − i5 × 10−6)2 that
we used in Sec. III], in order to ensure the Green’s functions
have poles in the lower complex half plane (as required for a
linear medium).

With the dipole excitation technique [49], two coupled
QNMs (QNM A and QNM B) are found directly in the fre-
quency region of interest, now including the real cavity of
interest. To keep things clear, we do not employ the coupled
QNM theory to obtain the hybrid QNMs for the examples in
this subsection. As an example, when the circular region is
within the lossy disk [Fig. 4(a)] and the permittivity of the
gain disk is εG = (2 − i1 × 10−6)2, the distributions of two
QNMs | f̃ z

A/B|2 are shown in Figs. 4(b) and 4(c), which live
in both disks. The zoom-in region close to the circle is also
shown, where the field is distributed smoothly.

The corresponding Purcell factors for this case, with the
real cavity (circle) in the lossy disk and εG = (2 − i1 ×
10−6)2, are shown in Figs. 5(a) and 5(b).

With local-field effects included with the calculation of the
QNMs, the LDOS Purcell factors are obtained through

GQNM(r0, r0, ω) ≈ GQNM
A (r0, r0, ω) + GQNM

B (r0, r0, ω),
(55)

GQNM
A (r0, r0, ω) = AA(ω)f̃A(r0)f̃A(r0), (56)
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FIG. 5. (a) LDOS Purcell factor for a dipole placed inside the small dashed circle within the lossy disk [Fig. 4(a)]. rc = 5 nm and εc = 1.0.
The gap distance is dgap = 1155 nm and the permittivity of the gain disk is set as εG = (2 − i1 × 10−6)2. There are two dominant QNMs [see
Figs. 4(b) and 4(c) for mode distributions], whose contributions to the LDOS Purcell factors are described by the green and orange curves.
There are very good agreements between the classical QNM results F LDOS

P,QNM [Eq. (46), magenta curve] and numerical LDOS results F LDOS
P,num

[Eq. (52), gray circles]. The dotted gray horizontal line indicates the value of zero. However, negative LDOS Purcell factors are found in a
certain frequency range. (b) Corresponding total net-positive Purcell factors for the case shown in (a), where the corrected numerical Purcell
factors F num,1/2

P [Eqs. (49) and (50), red squares and green asterisks] agree very well with the Purcell factors F QNM
P [= F class

P,QNM = F quant
P , solid

blue curves, Eqs. (45) and (13)]. (c) Similar to (a), but with εG = (2 − i2 × 10−6)2. (d) Corresponding corrected Purcell factors for the case
shown in (c).

GQNM
B (r0, r0, ω) = AB(ω)f̃B(r0)f̃B(r0), (57)

F LDOS
P,QNM(r0, ω) = 1 + d · Im[GQNM(r0, r0, ω)] · d

d · Im[Ghom(ω)] · d
, (58)

F LDOS
P,QNMA(r0, ω) = d · Im[GQNM

A (r0, r0, ω)] · d
d · Im[Ghom(ω)] · d

, (59)

F LDOS
P,QNMB(r0, ω) = d · Im[GQNM

B (r0, r0, ω)] · d
d · Im[Ghom(ω)] · d

, (60)

where AA/B(ω) = ω/[2(ω̃A/B − ω)], and f̃A/B and ω̃A/B are
the two dominant coupled QNMs and the corresponding an-
gular eigenfrequencies.

In Fig. 5(a), we show F LDOS
P,QNMA/B(r0, ω) [Eqs. (59) and (60)]

from the two coupled QNMs, with the solid green curve and

orange curve. The total contribution F LDOS
P,QNMr0, ω) [magenta

curve, Eq. (58)] shows very good agreement with the numer-
ical full-dipole LDOS results F LDOS

P,num [gray circles, Eq. (52)],
which verifies that the approximation of two QNMs model
works well in the frequency region that we are considering,
even including local-field effects. In the presence of gain,
similar to before, one can clearly notice that the LDOS Pur-
cell factors are negative in a certain frequency range, which
required one to employ the fixes discussed previously (classi-
cally and/or quantum mechanically).

The corresponding corrected Purcell factors are shown in
Fig. 5(b). The blue curve represent Purcell factors F QNM

P =
F class

P,QNM = F quant
P , which are now net positive (the LDOS re-

sults are also shown for comparison; see dotted magenta curve
and gray circles). Note, as mentioned before, the form of
F class

P,QNM shown in Eq. (45) is identical to F quant
P [Eq. (13)] (we
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FIG. 6. (a) Similar to Fig. 5(a), but for a dipole placed in the dashed circle within the gain disk [see Fig. 4(d)]. Note that the LDOS Purcell
factors are negative in a certain frequency range (not the range we are showing here). (b) Corresponding corrected net-positive Purcell factors
for the case shown in (a). (c) Similar to (a), but with εG = (2 − i2 × 10−6)2. The result F LDOS

P,QNMA from QNM A is multiplied by 5 for better
display. (d) Corresponding corrected Purcell factors for the case shown in (c).

are showing this as the solid blue curve). The approximation
of the second form of F class

P,QNM shown in Eq. (48) also works for
our examples (not shown) as the nonradiative contributions
dominate. Moreover, based on power flow computations, the
full dipole results F num,1/2

P [Eqs. (49) and (50), red squares and
green asterisks] agree very well with F QNM

P , which verifies
that our general prescription (LDOS + gain = nloss + rloss)
also works in the case where the emitter is placed within lossy
resonators.

To show this more generality, we also investigated some
additional cases. Working again with the circular region in the
lossy disk, the permittivity of the gain disk is now changed to
εG = (2 − i2 × 10−6)2. The LDOS Purcell factors are shown
in Fig. 5(c), and the corrected Purcell factors are shown in
Fig. 5(d). Once again, the underestimated LDOS Purcell fac-
tors can be negative in a certain frequency range, but the
corrected Purcell factors are net positive. The fixed classical
results based on power flow or QNMs not only matched very
well with the quantum-mechanical results, but also provide us
with an alternative way to picture the process of spontaneous

emission, namely, the sum of contributions from nonradiative
loss and radiative loss will give us exactly the same answer
(rate) as the LDOS contribution plus the addition gain contri-
bution. Moreover, we find that this conclusion still holds when
the dipole is placed within the gain disk [Fig. 4(d)] as shown in
Fig. 6, where the cases with εG = (2 − i1 × 10−6)2 [see Figs.
6(a) and 6(b)] and εG = (2 − i2 × 10−6)2 [see Figs. 6(c) and
6(d)] are studied.

V. DISCUSSION AND CONNECTION TO QUANTIZED
QUASINORMAL MODE RESULTS IN

THE BAD CAVITY LIMIT

We have shown that the contributions to the SE rate can
be obtained from an LDOS term plus a nonlocal gain term,
or alternatively from a nonlocal loss term plus the radiative
decay to the far field, i.e., �SE

class = �LDOS + �
gain
class or �SE

class =
�rloss

class + �nloss
class from Eqs. (28) and (31). Next, we will connect

these classical results with the ones from a rigorous quantized
QNM theory in the bad cavity limit.
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Note in the coupled resonator example discussed above,
the contribution to the far-field decay is negligible, and thus,
Eq. (31) could be approximated as �SE

class ≈ �nloss
class , as verified

above. However, to be general in our theory, below we will
formulate the quantum theory with the general radiative (far
field) and nonradiative (within the lossy region) contributions.

In a quantized QNM picture, one starts by computing
the quantum S parameters (defined below), which enter the
relevant quantum master equations. The matrix Sμη is a semi-
positive definite Hermitian overlap matrix between different
QNMs, and is not a Kronecker delta as in the case of simple
normal modes, e.g., for a closed cavity. These factors are
necessary to construct a meaningful Fock space with modal
losses and gain (QNMs) [34,55,61]. Using the QNM master
equation, a quantum-classical correspondence can be derived
by taking a bad cavity limit.

The QNM master equation was originally derived for lossy
media only [55]. Later, in Ref. [34], two forms of quantization
were presented when including gain: (i) using separated oper-
ators for loss (which includes both radiative and nonradiative
contributions in general) and gain or (ii) using combined
QNM operators. Since both approaches yield the same bad
cavity limit rates, below we will focus on the first approach.
Furthermore, below, for ease of notation, we will drop the
operator hat on the QNM and emitter operators (except for the
electric-field operator) and assume their operator character is
implicit.

Using separated operators for loss and gain, there are two
QNM contributions to the electric-field operator:

Ê(r) = ÊL
QNM(r) + ÊG

QNM(r), (61)

where the lossy and gain (L and G) parts are

ÊL
QNM(r) = i

∑
μ

√
h̄ωμ

2ε0
f̃ s,L
μ (r)aLμ + H.a., (62)

ÊG
QNM(r) = i

∑
μ

√
h̄ωμ

2ε0
f̃ s,G
μ (r)a†

Gμ + H.a., (63)

and H.a. represents the Hermitian adjoint. The constructed
annihilation and creation operators for both loss Fock space
(aLμ and a†

Lμ) and gain Fock space (aGμ and a†
Gμ) are closely

related to the loss- and gain-assisted QNM operators ãL and
ãG through a symmetrization transformation:

aLμ =
∑

η

[(SL)1/2]μηãLη, (64)

aGμ =
∑

η

[(SG)1/2]μηãGη, (65)

where QNM operators ãL(G) satisfy

[ãLμ, ã†
Lη] ≡ SL

μη = Srloss
μη + Snloss

μη , (66)

[ãGμ, ã†
Gη] ≡ SG

μη. (67)

The required quantum S parameters are defined from

Srloss
μη =

∫ ∞

0
dω

2Aμ(ω)A∗
η(ω)

π
√

ωμωη

[
I rloss
μη (ω) + I rloss∗

ημ (ω)
]
, (68)

Snloss
μη =

∫ ∞

0
dω

2Aμ(ω)A∗
η(ω)

π
√

ωμωη

Inloss
μη (ω), (69)

SG
μη =

∫ ∞

0
dω

2A∗
μ(ω)Aη(ω)

π
√

ωμωη

IG
μη(ω), (70)

with

I rloss
μη (ω) = 1

2ε0ω

∮
S

dr
[
H̃μ(r, ω) × n̂

] · F̃∗
η(r, ω), (71)

Inloss
μη (ω) =

∫
VL

drεL
Im(r, ω)f̃μ(r) · f̃∗

η (r), (72)

IG
μη(ω) =

∫
VG

dr
∣∣εG

Im(r, ω)
∣∣f̃∗

μ(r) · f̃η(r), (73)

where F̃μ(r, ω) (H̃μ(r, ω) = 1
iωμ0

∇ × F̃μ(r, ω)) is the regu-
larized electric (magnetic) QNM [62,63], and n̂ denotes the
unit vector normal to surface S (a far-field closed surface),
pointing outward. The term VL(G) represents the region with
material loss (gain); Srloss

μη represents the radiative loss part
to the far-field region; and Snloss

μη represents the nonradiative
absorption within lossy region VL; finally, SG

μη represents the
amplification contribution within the gain region VG.

The symmetrized QNM functions in Eqs. (62) and (63) are
defined as

f̃ s,L
μ (r) =

∑
η

[(SL)1/2]ημ f̃η(r)
√

ωη

ωμ

, (74)

f̃ s,G
μ (r) =

∑
η

[(SG)1/2]μη f̃η(r)
√

ωη

ωμ

. (75)

For the SE problem of interest, the full Lindblad QNM
master equation can be written as

∂tρ = − i

h̄
[Hem + Ha + HI , ρa] + Lemρ (76)

where Ha = h̄ωaσ
†σ− (raising and lowering operators σ±) is

the energy of the TLS and HI is the dipole-field interaction
Hamiltonian using the loss and gain QNM fields, defined in
Eqs. (62) and (63), respectively. Furthermore, Hem is the QNM
photon energy, and Lem is the QNM Lindblad dissipator. For
more details on the derivation of the QNM master equation in
the presence of gain and loss, we refer to Ref. [34]. From
this point on, we concentrate on the weak-coupling limit,
where the QNM decay rates are much larger compared to the
dipole-field coupling energy. Applying the bad cavity limit of
Eq. (76), we arrive at the TLS master equation for the atomic
density operator ρa = tremρ within the quantized QNM mod-
els, which is obtained as [34]

∂tρa = − i

h̄
[Ha, ρa] + �B

2
D[σ−]ρa

+ �SE
bad

2
D[σ−]ρa + �

gain
bad

2
D[σ+]ρa, (77)

where we use the Lindblad dissipator:

D[A]ρa = 2AρaA† − ρaA†A − A†Aρa. (78)

The medium-dependent SE rate is �SE
bad = �rloss

bad + �nloss
bad , sim-

ilar to the the classical separation shown in Eq. (31). In the
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quantum derivation, the radiative and nonradiative contribu-
tions are

�rloss
bad (r0, ωa ) =

∑
μ,η

g̃μSrloss
μη g̃∗

η

i(ωμ − ωη ) + (γμ + γη )

(�μa − iγμ)(�ηa + iγη )
,

(79)

�nloss
bad (r0, ωa ) =

∑
μ,η

g̃μSnloss
μη g̃∗

η

i(ωμ − ωη ) + (γμ + γη )

(�μa − iγμ)(�ηa + iγη )
,

(80)

where Srloss
μη and Snloss

μη are defined from Eqs. (68) and (69),
�μa/ηa = ωμ/η − ωa gives the frequency detuning between
the QNM and the emitter, and the emitter-QNM coupling

strength is given by g̃μ/η =
√

ωμ/η

2ε0 h̄ d · f̃μ/η(r0).

For the specific resonator example considered above, the
nonradiative part dominates, so we only have to consider Snloss

μη

and �nloss
bad , as the far-field radiative contribution can be safely

neglected (i.e., Srloss
μη and �rloss

bad are negligible). Then, in the
bad cavity limit, the quantum result for our resonator ex-
ample can be approximated as �SE

bad(r0, ωa ) ≈ �nloss
bad (r0, ωa );

this can be compared with the same classical approximation
�SE

class(r0, ω) ≈ �nloss
class (r0, ω). Note again here that the quantum

result is at the frequency ωa of the emitter, and the classical
result is at the linear frequency ω of interest, but it is clear that
ω = ωa when comparing the two.

Moreover, the gain-induced pump rate in Eq. (77) is given
as

�
gain
bad (r0, ωa ) =

∑
μ,η

g̃μSG
ημg̃∗

η

i(ωμ − ωη ) + (γμ + γη )

(�μa − iγμ)(�ηa + iγη )
, (81)

where the S parameters are shown in Eq. (70). Note that, as
shown in Ref. [34], the difference between �SE

bad(r0, ωa ) and
�

gain
bad (r0, ωa ) is directly related to the projected LDOS SE rate,

through

�SE
bad(r0, ωa ) − �

gain
bad (r0, ωa ) = �LDOS(r0, ωa ), (82)

with an analogous separation also shown in the classical re-
sults, from Eq. (28).

Next, in order to show a clearer quantum-classical cor-
respondence, we wish to connect the quantum result, �

gain
bad

shown in Eq. (81), with the classical result, �
gain
class described in

Eq. (36). By substituting SG
μη [Eq. (70)] into �

gain
bad [Eq. (81)],

we have

�
gain
bad (r0, ωa ) = 1

2ε0 h̄

∑
μ,η

d ·
[∫

VG

dr
∫ ∞

0
dω

2Aμ(ω)A∗
η(ω)

π

∣∣εG
Im(r, ω)

∣∣f̃μ(r0)f̃μ(r) · f̃∗
η (r)f̃∗

η (r0)

]
· d

i(ωμ − ωη ) + (γμ + γη )

(�μa − iγμ)(�ηa + iγη )
.

(83)

Using the definition of Aμ(ω), i.e., Aμ(ω) = ω/[2(ω̃μ − ω)], then we obtain

�
gain
bad (r0, ωa ) = 2

ε0h̄

∑
μ,η

d ·
[∫

VG

dr
i

2π

∫ ∞

0
dω

ω2

ω2
a

ω̃μ − ω̃∗
η

(ω̃μ − ω)(ω̃∗
η − ω)

∣∣εG
Im(r, ω)

∣∣Aμ(ωa)A∗
η(ωa)f̃μ(r0)f̃μ(r) · f̃∗

η (r)f̃∗
η (r0)

]
· d,

(84)
which can be written as [Gμ(r0, r, ωa) = Aμ(ωa )f̃μ(r0)f̃μ(r), G(r0, r, ωa) = ∑

μ Gμ(r0, r, ωa)]

�
gain
bad (r0, ωa ) = 2

h̄ε0

∑
μ,η

d ·
[∫

VG

drKμη(r)|εG
Im(r, ωa)|Gμ(r0, r, ωa) · G∗

η(r, r0, ωa)

]
· d, (85)

with

Kμη = i

2π

∫ ∞

0
dω

ω2|εG
Im(r, ω)|

ω2
a|εG

Im(r, ωa)|
ω̃μ − ω̃∗

η

(ω̃μ − ω)(ω̃∗
η − ω)

. (86)

Within a pole approximation, we can extend the integral boundaries to (−∞,∞) and set ω2|εG
Im(r, ω)| ≈ ω2

a|εG
Im(r, ωa )|, so

that Kμη = 1. Finally, this leads to

�
gain
bad (r0, ωa ) = 2

h̄ε0
d ·

[∫
VG

dr|εG
Im(r, ωa)|G(r0, r, ωa) · G∗(r, r0, ωa)

]
· d, (87)

where we sum over the QNM Green’s-function expansions to
get the total Green’s functions. This is precisely the result we
obtain from the classical derivations [�gain

class, Eq. (36)]. A sim-
ilar connection can be directly made between �rloss

bad [Eq. (80)]
and �rloss

class [Eq. (37)]. Moreover, the same arguments can also
be made using a pole approximation for the quantum S pa-
rameters, as used in Refs. [34,63]. Thus, we have shown how
a quantized QNM approach is completely consistent with our
classical theory of SE decay in a general loss-gain medium.

VI. CONCLUSIONS

We have presented a corrected form for the classical SE
rate and classical Purcell factor for a dipole emitter in a
medium containing a linear amplifier. We have shown how
this form recovers a recently presented quantum-mechanical
form, argued from the viewpoint of new amplifier field oper-
ator terms in Fermi’s “golden rule”. This classical corrected
form complements the traditional LDOS formula with a
nonlocal gain correction. Our paper yields a fundamental
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correction to the meaning of “radiation reaction” and extends
it to account for additional reaction terms from the gain am-
plifying part of the medium, which are nonlocal.

We have also presented an alternative form for the total
SE rate with gain media, which is shown to yield equivalent
results, in terms of the total material nonradiative loss and
the far-field radiative loss, which is valid with and without
gain. In such a picture, there is no need to invoke a po-
tentially ill-defined LDOS contribution which may also be
negative in such gain media. Our paper complements the
formal quantum theory by offering simpler forms that can
easily be checked in a classical Maxwell equation solver, also
yielding classical-quantum correspondence. Specific exam-
ples were shown for coupled loss-gain resonators at various
dipole locations and with different gap separations. Excellent
agreement was shown between the various analytical and nu-
merical decay forms, which were also supported by a QNM
analysis for the Green’s-function expansions.

We have also shown how our general approach can model a
practical real cavity model, which describes finite-size dipole
emitters inside the loss or gain materials, while also including
local-field effects. By computing the QNMs in the presence of
the real cavities, we have shown an excellent agreement with
full dipole scattering simulations, with just one or two QNMs,
and also shown how to fix the LDOS SE rates and Purcell
factors to account for gain modifications.

Finally, we also showed how a fully quantized QNM the-
ory, which was recently introduced for gain media [34], can be
used to make a formal connection back to our modified clas-
sical results, in a bad cavity limit. Direct quantum-classical
correspondence was confirmed. Outside the bad cavity limits,
then one can adopt the full quantized QNM theory using some
of the same classical QNM parameters that we present here.
Obviously in such a regime, there is no longer a classical cor-
respondence, and one can explore uniquely quantum optical
interactions (such as multiphoton correlation functions). How-
ever, clearly one must first recover a classical correspondence
in the bad cavity limit, to have confidence that the quantum
theory beyond such a limit is accurate and appropriate. In the
presence of linear gain, this is precisely the main goal and
accomplishment of this paper.
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