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It is now well understood that a Lorentz boost of a spatially coherent monochromatic optical beam yields
a so-called space-time wave packet (STWP): A propagation-invariant pulsed beam whose group velocity is
determined by the relative velocity between the source and observer. Moreover, the Lorentz boost of an STWP is
another STWP, whose group velocities are related by the relativistic law for addition of velocities typically
associated with massive particles. We present an experimental procedure for testing this prediction in both
the subluminal and superluminal regimes that makes use of spatiotemporal Fourier synthesis via a spatial
light modulator. Our approach enables realizing the change in temporal bandwidth, invariance of the spatial
bandwidth, concomitant change in the spatiotemporal wave-packet envelope, and change in group velocity that
all accompany a Lorentz boost of a monochromatic optical beam. The only consequence of the Lorentz boost
not captured by this methodology is the Doppler shift in the optical carrier. This work may provide an avenue
for further table-top demonstration of relativistic transformations of optical fields.
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I. INTRODUCTION

The discovery of a propagation-invariant pulsed-beam
solution to Maxwell’s equations by Brittingham in 1983
[1], known as the focus-wave mode (FWM), was quickly
followed by the realization by Bélanger [2] that such un-
usual field configurations can be obtained by applying a
Lorentz boost to conventional optical fields. Since then, more
propagation-invariant pulsed beams have been discovered, in-
cluding X-wave [3-7] and, more recently, space-time wave
packets (STWPs) [8-21]. Underpinning the propagation in-
variance of any such pulsed beam (or wave packet) is a
specific spatiotemporal spectral constraint that is intrinsic
to Lorentz boosts [22-26]. In other words, all propagation-
invariant wave packets in free space—classified within the
general rubric of STWPs [27]—can be viewed as the result
of applying a Lorentz boost to a preexisting optical field. For
example, so-called “baseband” STWPs [21,27] follow from
a Lorentz boost of a focused monochromatic beam [26]; i.e.,
when an observer is in relative motion with respect to a source
producing a monochromatic beam, this observer records a
finite-bandwidth, propagation-invariant pulsed beam—rather
than a monochromatic beam—that takes the form of a base-
band STWP [22-24,26].

Despite substantial theoretical studies of propagation-
invariant wave packets since the initial discovery of
Brittingham, only limited experimental progress was
made in the optical domain [5,7,28-31]. In contrast, recent
developments in spatiotemporal spectral synthesis have
led to rapid progress in preparing STWPs, whether in the
form of light sheets [10,32] or wave packets localized in all
dimensions [18,33]. These STWPs have led to a variety of
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new optical discoveries, including tunable group velocity
[12,13,34-37], tunable group-velocity dispersion [38—42],
anomalous refraction [43,44], extended propagation distances
[45,46], self-healing [47], and reduced speckle in biological
samples [48]. Moreover, progress in producing a wide
variety of spatiotemporally structured optical fields has
recently surged, including flying-focus wave packets [49-51],
spatiotemporal vortices endowed with transverse orbital
angular momentum [52-56], and toroidal pulses [57-59]. This
recent resurgence in the study of STWPs has led to a revival
of theoretical interest in the connection between propagation
invariance and special relativity. These include elucidating
the impact of the finite line width of a quasimonochromatic
beam on the propagation distance of the STWP after a
Lorentz boost [26], obtaining closed-form expressions for
a variety of propagation-invariant wave packets [60], and
examining Lorentz transformations [25] of X-wave [5] and
MacKinnon wave packets [61]. In addition, recent work has
shown further utility of examining Lorentz transformations
of optical fields in the presence of orbital angular momentum
[62-65]. Moreover, examining Lorentz boosts of evanescent
fields has shown that the helicity is not invariant, in contrast
to the helicity of plane waves under a Lorentz boost [66].

In this paper we present an experimental procedure anal-
ogous to Lorentz boosts implemented on optical fields by
spatiotemporal Fourier synthesis using a spatial light modu-
lator (SLM). We first present a theoretical formulation of the
transformation of monochromatic plane waves, monochro-
matic paraxial beams, and STWPs under Lorentz boosts. In
particular, we emphasize the change in group velocity and
bandwidth of the optical fields in these scenarios. We find that
the Lorentz boost of an STWP is another STWP. Crucially,
the group velocity of the STWP changes in different refer-
ence frames via the relativistic law of velocities for massive
particles. We then describe our experimental approach that
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captures all the features introduced into a coherent optical
field via a Lorentz boost, namely, (1) the change in the tem-
poral spectrum (or pulse width in time), (2) the change in
the group velocity, (3) the invariance of the spatial bandwidth
(constant beam spatial width), and (4) the consequent change
in the spatiotemporal envelope of the wave packet. The only
feature of the Lorentz boost that is not captured by this exper-
imental approach is the Doppler shift in the carrier frequency
of the wave packet (which does not impact the spatiotemporal
envelope). In our experiments we confirm qualitatively and
quantitatively the theoretical predictions regarding the impact
of Lorentz boosts on paraxial optical beams and STWPs in
both the subluminal and superluminal group-velocity regimes.
This is an experimental investigation of the connection be-
tween STWPs and special relativity and suggests a general
methodology for demonstrations of relativistic transforma-
tions of optical beams.

II. SPACE-TIME WAVE PACKETS

STWPs are propagation-invariant wave packets whose
unique propagation characteristics stem from their under-
lying spatiotemporal spectral structure [21] in which each
spatial frequency k, (the wave number along x) is tightly
associated with a single temporal frequency w. We assume,
without loss of generality, that the field is uniform along the
second transverse spatial dimension y (k, = 0). Particularly,
diffraction-free and dispersion-free propagation of a pulsed
beam in free space requires a linear relationship between w
and the axial wave number k,:

Q = (k, — ko)ctan, )

where Q = w — w,, w, is a carrier frequency, k, = 2 is the
associated wave number, c is the speed of light in vacuum, and
6 is an angle whose significance will become clear shortly.
Under this condition the envelope of the field E(x, z;t) =
e/koi=@o) 4y (x 7:1) can be expressed in terms of an angular
spectrum as follows:

w(x’ Z,t) — /dQ{bv(Q)eik*xefiQ(tfzﬁ) — w(x’ O,t _ Z/:D’),

2

where 1/7(9) is the Fourier transform of ¥ (0, 0;¢). The en-
velope travels rigidly in free space without diffraction or
dispersion at a group velocity v = ctan6. In the paraxial
regime, the linear relationship between 2 and k, enforces a
quadratic dependence between 2 and k,:

Q k}

wo  2kX(1 —coth)’
which can be obtained from Eq. (1) after making use of the

k2

3)

paraxial approximation ¢ ~ k, — T

The linear relationship in Eq. (1) corresponds geometri-
cally to a plane in (k,, k;, #) space that is parallel to the
k, axis and makes an angle 6 (which we call the spectral
tilt angle) with the k, axis. The spatiotemporal spectrum of
an STWP lies on the conic section at the intersection of the
free-space light cone k? + kZ = (2)? with this spectral plane
and passes through the point (k,, k,, %) = (0, ko, ko). When
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FIG. 1. (a) Representation of the spatiotemporal spectrum of a
propagation-invariant STWP at the intersection of the light cone with
a tilted spectral plane. The spectral tilt angle 6 < 45° corresponds
to a subluminal STWP. We also plot the spectral projections onto
the (k,, ) plane (left; portion of an ellipse), and onto the (k., %)
plane (right; a straight line). (b) Same as (a) for a superluminal
STWP. Here 6 > 45°, the spectral projection onto the (k,, #) plane
is a hyperbola. The dotted lines in (a) and (b) are the light lines
k; = £2. (c) Spatiotemporal intensity /(x, 0;¢) of the STWP at a
fixed axial plane z = 0. (d) Time-averaged intensity /(x, z) for an
STWP. In (c¢) and (d), we have 6§ = 50°, AL = 1 nm, A, = 800 nm,
Ak, = 0.16 rad/um, and Ax = 20 um. The white rectangle repre-
sents the Rayleigh length of a Gaussian beam with the same spatial
width Ax of the STWP.

0° < 6 < 45° or 135° < 0 < 180°, the conic section is an
ellipse and the group velocity [U] < ¢ is subluminal. When
45° < 0 < 135°, the conic section is a hyperbola, and the
group velocity |U| > ¢ is superluminal. When 6 = 45° and
vV = ¢, the spatiotemporal spectrum is confined to the light
line k; = 2 (k. = 0), corresponding to a conventional lumi-
nal plane-wave pulse. When 6 = 135°, the conic section is
a parabola with 7 = —c. Finally, when 6 = 0°, the isofre-
quency (w = w,) conic section is a circle, corresponding to
a monochromatic beam (v — 0).

In Fig. 1(a) we depict the locus of the spatiotemporal spec-
trum for a subluminal STWP 6 < 45°, which is a portion of an
ellipse (in the vicinity of k, = 0) at the intersection of the light
cone and a tilted spectral plane. Because the spectral plane
is parallel to the k, axis, the projection of the spatiotemporal
spectrum onto the (k;, ¢) plane is a straight line, while that
onto the (k,, ) plane is an ellipse. The slope of the projected
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line onto the (k;, ?)-plane signifies the group velocity of the
STWP, and the absence of curvature implies no group-velocity
dispersion of any order [10,35]. The corresponding
configuration for a superluminal STWP (6 > 45°) is depicted
in Fig. 1(b). Finally, we plot an example of the spatiotemporal
intensity profile I(x, 0;¢) = |E(x, 0;2)|* at a fixed axial plane
z =0 [Fig. 1(c)]. In contrast to a conventional pulsed beam
which is typically separable with respect to the spatial and
temporal degrees of freedom, the STWP intensity profile
is nonseparable and has a characteristic X-shaped profile
[21]. Because such an STWP travels invariantly, its time-
averaged intensity /(x,z) = f dtl(x, z;t) is diffraction-free,
I(x,z) =1(x,0) [Fig. 1(d)]. These unique characteristics of
STWPs have now been verified experimentally in detail [21].

III. LORENTZ TRANSFORMATION
OF MONOCHROMATIC PLANE WAVES

To establish the connection between STWPs and Lorentz
boosts of conventional optical beams, we first summarize the
changes undergone by a monochromatic plane wave (MPW)
when recorded by a moving observer. The optical source emit-
ting the MPW is assumed to be in a reference frame O(x, z; 1),
referred to hereon as the rest frame, and the observer is in the
reference frame O'(x/, z';t') that moves at a velocity v = ¢
along the +z direction with respect to O, referred to hereon
as the moving frame [Fig. 2(a)]. The Lorentz transformation
relating the spectral parameters in the two frames is

k. = ki,
k. =y (k. — Bo/c),
o'fc=y(w/c = Bk), 4)

where y = 1/,/1 — 2. An MPW of the form ¢k +ki=eh) jg
represented geometrically by a point on the surface of the
spectral light cone k7 + k2 = (£)* (not to be confused with
the conventional space-time light cone). The structure of the
spectral light cone in Fig. 1 is preserved under a Lorentz boost:
kP4 k= (2 = K2+ k> = (% ")2. We therefore can rep-
resent the MPWs in both frames O and O’ on the same
light-cone surface. We consider three scenarios for an MPW
at a frequency w, [Figs. 2(b)-2(d)]. First, if the MPW in O
propagates along the common z axis (k, = 0, represented by
a point on the light line k; = ©), it also propagates along
the 7’ axis (k. = 0) in O'. The Doppler shift associated with
the Lorentz boost translates the point representing the MPW

1 +ﬁ [Fig. 2(b)]. In
the second scenario [Fig. 2(c)], we consider an off-axis MPW
in O traveling at an angle ¢ with the z axis (k, = ¢ sing). In
O’ the MPW undergoes an angle-dependent Doppler shift to
w, = woy (1 — Bcosg), and the propagation angle with the
7' axis changes from ¢ to ¢’ (also known as the relativistic
aberration), where cos ¢’ = lc";"iofw The off-axis MPW is
represented by a point on the line cone that does not lie on
the light line. The invariance of the transverse wave number
k. ensures that the Lorentz boost translates this point along
an iso-k, hyperbola [Fig. 2(c)]. A different scenario emerges
for an off-axis MPW when B > cos ¢, where the sign of k]
is opposite of that of k,, cos¢’ < 0, and the MPW in O’

along the light line k] = “’T to W) = w,
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FIG. 2. (a) We consider the field observed in the reference frame
O'(x', 7/;t"), referred to as the moving frame when emitted from a
source in the frame O(x, z; 1), referred to as the rest frame. The frame
(O’ moves at a velocity v = Bc relative to O along the common z axis.
(b) Depiction of the Lorentz boost of an on-axis MPW, along with
the change in its geometrical representation as a point on the light
line k; = 2 on the spectral light-cone surface. The frequency w, in
O is Doppler shifted to w/ in O, and the point is displaced along
the light line. (c) Same as (b) for an off-axis MPW. The frequency is
Doppler shifted and the propagation angle with the z axis changes in
O'. Here the point representing the MPW (whether in O or O") does
not lie on the light line. The angle-dependent Doppler shift associated
with the Lorentz boost translates this point along an iso-k, hyperbola.
(d) Same as (c) when the Lorentz boost results in a change in the sign
of axial wave number k..

travels backwards along the negative 7' axis, whereas the
MPW in O travels along the positive z axis. In this scenario,
the point representing the MPW in O travels along the iso-k;
hyperbola and crosses the origin point (k, = 0) towards k, < 0
[Fig. 2(d)]. Because this occurs at relativistic speeds § — 1 or
in the nonparaxial regime, we do not consider this special case
further.

IV. LORENTZ BOOST OF MONOCHROMATIC
PARAXIAL BEAMS

Now consider the impact of a Lorentz boost on a
monochromatic paraxial beam produced from a source in the
rest frame O. The field E (x, z; 1) can be factored into a slowly
varying spatial envelope v (x,z) and a carrier, E(x, z;1) =
e/kor=@Dyr (. 7), and the envelope can be expressed as an
angular spectrum:

W) = [k etet o, )

013509-3



YESSENOV, ROMER, ICHIJI, AND ABOURADDY PHYSICAL REVIEW A 109, 013509 (2024)

Rest frame Moving frame

(@ Monochromatic beam

Plane-wave decomposition
é /(XZ

(d) Doppler-shifted plane waves

ST wave packet

X

Fourier domain domam

w/c
w/c
wy/c

O kx /(X'/\.kz‘

FIG. 3. [(a)-(c)] A monochromatic beam at frequency w, in the rest frame O. (a) The monochromatic beam is a superposition of MPWs,
all of which have the same temporal frequency w,, but travel at different angles with the z axis. (b) The spatiotemporal spectrum of the
monochromatic beam in (a) lies on the circle at the intersection of the spectral light cone with a horizontal isofrequency plane w = w,. The
spectral projections onto the (k,, ¢) and (k;, ¢) planes are both horizontal straight lines. (c) The monochromatic beam is stationary in time
I(x,z;t) = I(x, z;0) at any fixed axial plane (here z = 0), but is spatially localized at all instants of time so that the time-averaged intensity
I(x, z) remains spatially localized along z. [(d)—(f)] STWP in the moving frame O’ resulting from a Lorentz boost to the monochromatic beam
in the rest frame O shown in [(a)—(c)]. (d) Each plane wave in (a) undergoes a different angle-dependent Doppler shift in O after the Lorentz
boost, so that the beam is no longer monochromatic, and is instead pulsed with a finite temporal bandwidth Aw'. (e) The spatiotemporal locus
of the resulting Lorentz-boosted field lies at the intersection of the light-cone with a filted spectral plane, which makes an angle 6 with the

k. axis, where tan 6 = —f. The spectral projection onto the (k,
projection onto the (k,

where @(kx) is the Fourier transform of i (x,0). In other
words, the monochromatic beam is a superposition of isofre-
quency MPWs, each traveling at a different angle ¢ with
the z axis [Fig. 3(a)], where k, = k, sin . Such a beam is
represented by a portion of the circle (in the vicinity of
k, = 0) at the intersection of the light cone with the hori-
zontal isofrequency plane w = w, [Fig. 3(b)]. The spectral
projections onto the (k,, ¢) and (k;, ¢) planes are there-
fore both horizontal lines. The field is stationary in time
E(x,7;t) = e "' E(x, z;0), so that the intensity I(x, z;t) =
|E(x, z;0)]* = I(x, z;,0) is independent of 7, whereas the in-
tensity profile is spatially localized along the z axis at any
time ¢ [Fig. 3(c)].

In the moving frame ', each MPW in the monochromatic
beam undergoes a different angle-dependent Doppler shift
o' (k) [Fig. 3(d)], as described in Sec. IIl. Therefore, after
a Lorentz boost the initially monochromatic beam at w = w,,
comprising different spatial frequencies k,, acquires a finite
temporal bandwidth Aw’ centered at the frequency o) =
woy (1 — B) associated with the on-axis MPW (k, = 0) [26].
The initially monochromatic beam in the rest frame is spa-
tially coherent (the underlying spatial frequencies represent
MPWs that are mutually coherent). After the Lorentz boost,
these MPWs remain mutually coherent while undergoing an
angle-dependent Doppler shift to frequencies w'(k,), thus
ensuring the mutual temporal coherence of these different-
frequency MPWs.

Therefore, the observer in (' records a pulsed
beam E'(x,7:t) = ¢ ®=2y/ (X', 7/;t') rather than a

“%)—plane is a straight line making an angle 6 with the k] axis. The spectral

w?/)-plane is a portion of an ellipse in the vicinity of k, = 0. (f) The STWP is no longer stationary in time, but the
time-averaged intensity profile is diffraction-free I'(x’, ') = I'(x’, 0).

monochromatic beam, where the space-time coordinates are
related through the usual formulas for the Lorentz boost:
X' =x, 7 =y(z— Bet), and ct’' = y(ct — Bz). In general,
the spatiotemporal field of this pulsed beam in O is related to
that in O via

E'X,7;t)=EX,y( + Bt ),y + BZ/c)].  (6)

For the case of a monochromatic beam in O, the field in O’
is E'(x, 7/51") = '®¥ =@y (x', 7/;¢'), which is a product of
a carrier and a spatiotemporal envelope that is related to the
purely spatial envelope ¥ (x, z) in O via

V' ) =YX,y (@ + Ber)], ()
which results in propagation invariance in O’:

Y ) =05 =2 /0), (8)
where 7 = —v.

The field in O’ has several intriguing characteristics:

(1) Ttis a pulse with finite temporal duration.

(2) It travels rigidly in space; i.e., it is propagation
invariant without experiencing diffraction or dispersion:
I'x,z;t)y=IX,0,t' — 7/ /v).

(3) Tttravels in O’ at a group velocity 7 = —uv.

(4) Because |8] < 1, the resulting wave packet in O is
subluminal, || < c.

(5) Its spatiotemporal profile I'(x’,0;¢") at a fixed ax-
ial location 7/ = 0 maps to the purely spatial profile of the
monochromatic beam /(x, z) in O [23,24].
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Here the change in the geometrical representation of
the spatiotemporal spectrum on the light-cone surface is
particularly instructive. In O, the monochromatic beam cor-
responds to a portion of a horizontal, isofrequency circle
[Fig. 2(b)]. Each point on this circle moves under the same
Lorentz boost along different iso-k, hyperbolas [Fig. 2(c)].
The linearity of the algebraic form of the Lorentz boost
guarantees that the spectral locus remains the intersection
of the light cone with a plane, which is now tilted by an
angle 6 (the spectral tilt angle) with the k, axis, where
tanf = —pB:

a)—a)o:0:}0)/—(1):):(](;—]((/))0';3119/. (9)

The spatiotemporal spectrum now lies on a conic sec-
tion (ellipse, hyperbola, or parabola), depending on the value
of 6. However, when |8| < 1, the conic section in this scenario
is always an ellipse because 0°<6<45° or 135°<6<180°
(Iv] < ¢). Whereas the spectral projection onto the (k;, %)
plane is still a straight line, albeit one that makes an angle
& with the k; axis, the spectral projection onto the (ky, ¢)
plane is no longer a straight line, but is instead a portion of a
conic section [Fig. 3(e)]. All the characteristics of the pulsed
beam in O are those of a baseband STWP. In other words,
the conventional continuous-wave monochromatic beam in
O is recorded as a propagation-invariant STWP in (O’. The
spatiotemporal intensity profile is localized in both space and
time at any fixed axial plane, and the time-averaged intensity
is diffraction free [Fig. 3(f)].

Because the spatial frequencies k, are invariant under
the Lorentz boost k. = k,, the spatial bandwidth of the
pulsed beam Ak, in O’ is the same as the spatial band-
width Ak, of the monochromatic beam in O, Ak, = Ak,.
Therefore, the spatial beam profile at t' = 0 at a fixed ax-
ial plane 77 =0 in O, I'(x’,0;0) is identical to that of
the monochromatic beam in O, I(x,0). In particular, the
spatial beam width in this plane remains the same Ax =
Ax' ~ ALkV. On the other hand, the temporal aspect of the
field is vastly changed after the Lorentz boost that intro-
duces a finite temporal spectrum Aw’ in O'. The acquired
spectral bandwidth in Aw’ is dictated by the spatial band-
width Ak,. By applying the Lorentz transformation in Eq. (4)
and the spatiotemporazl spectrum in Eq. (9) into the paraxial

equation w, ~ k, — 2](_1§’ we obtain the temporal bandwidth
Aw' in O
Ak
Aw = onlﬁl( > ’ (10)
2 ko
from which we can estimate the pulse width A¢" ~ ﬁ of the

temporal envelope I'(0, 0;¢") at the beam center x' = 0 and a
fixed axial plane 7’ = 0.

V. LORENTZ BOOST OF SPACE-TIME WAVE PACKETS

In this section we show that the Lorentz boost of an STWP
is another STWP. Therefore, the result that was demonstrated
in the previous section (that the isofrequency plane associated
with a monochromatic beam in O is tilted upon a Lorentz
boost in (0’) can be generalized: The tilted spectral plane asso-
ciated with an STWP in O is tilted upon a Lorentz boost in O'.

(b) x'

Superluminal iVlelSIaslisFll
regime
90° 135°
Spectral tilt angle 6

180°

FIG. 4. (a) We start with an STWP in the rest frame O character-
ized by a spectral tilt angle 6 and thus a group velocity ¥ = ctan 6.
(b) In the moving frame ', the Lorentz boost transforms the STWP
in O to another STWP characterized by the spectral tilt angle 6.
The spatial bandwidth Ak, = Ak is invariant, but the temporal
bandwidth Aw and the carrier frequency w, change. (c) The plot of
the spectral tilt angle 8’ in O as a function of the spectral tilt angle 6
in O and the Lorentz parameter 8. We use two different color palettes
to demarcate the subluminal and superluminal regimes. The dashed
white curves identify the locus of tan 6 = S.

However, by maintaining |8| < 1, there are restrictions on the
amount of tilt that can be introduced into the spectral plane.
This leads to a natural separation between the subluminal and
the superluminal regimes of STWPs.

By taking as our starting point an STWP in the rest frame O
that corresponds to a spectral tilt angle 6, it is straightforward
to show that a Lorentz boost [Eq. (4)] to the moving frame O’
changes the spectral tilt angle to 6’ [Figs. 4(a) and 4(b)], such
that

w—w, = (k; — ky)ctan 0 = o' — ), = (k, — k})ctan6’,
(11)

where ko = 2, 0 = woy (1 — B), k, = % and the new spec-
tral tilt angle 6’ is related to the initial angle 6 via

tan6 —
tang’ = A

We plot 6’ in Fig. 4(c) as a function of 6 and 8. Expressed in
terms of velocities, this transformation takes the form

¥ = 1”_—5 (13)

C2

where U = ctanf is the group velocity of the STWP in the
rest frame O, 7’ = ctan 6’ is the group velocity of the STWP
in the moving frame (', and v is the relative velocity between
O’ and O. Note that this formula is nothing but the usual rel-
ativistic formula for combining velocities typically associated
with massive particles. In other words, when implementing
Lorentz boosts to STWPs, these wave packets can be regarded
to act as massive particles with respect to their group velocity.
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FIG. 5. (a) The spatiotemporal intensity profile /(x, 0;¢) at the
axial plane z = 0 in the rest frame O for an STWP with 6 = 40°;
Ak, = 0.17 rad/um and Aw =27 x 0.5 THz. The white curves
correspond to the temporal profile at the beam center (0, 0;¢)
and the spatial beam profile at the pulse center /(x, 0;0). (b) The
time-averaged intensity /(x, z) for the STWP in (a). (c) Same as
(a) after implementing the Lorentz boost associated with the moving
frame O'. Note that the spatial beam profile at the pulse profile
has not changed. (d) The time-averaged intensity /(x,z) for the
STWP in (c).

Note that we retrieve the result for the monochromatic beam
presented in the previous section by setting 6 =0 in O,
thereby yielding 7' = —v (tan 9’ = —pB).

Although we assume that || < 1, we need not put any re-
strictions on . This result shows, in general, that the Lorentz
boost of an STWP is another STWP: The Lorentz boost of a
subluminal STWP in O is another subluminal STWP in @',
and the Lorentz boost of a superluminal STWP in O, on the
other hand, is another superluminal STWP in (0’ This is clear
from the plot of 6" in Fig. 4(c).

A. Subluminal regime for STWPs

The results described above, in particular, Eq. (12) and
Fig. 4(c), show that the Lorentz boost of a subluminal STWP
in O is another subluminal STWP in (O". The transformation
of the field from E(x, z;1) in O to E'(x’, Z/;¢") in O’ follows
Eq. (6). We plot in Fig. 5(a) the spatiotemporal intensity pro-
file I(x, z;t) for a subluminal STWP in O with § = 40°, and
plot in Fig. 5(c) the corresponding intensity profile I'(x’, 7’;1")
in O when B8 = 0.4, whereupon 6’ = 33.5°. Because the
spatial frequencies remain invariant upon the Lorentz boost
k, = ky, the spatial beam profile at the pulse center at any fixed
axial plane is therefore also invariant I (x, 0; 0) = I'(x, 0; 0), at
z =7 =0, for example.

On the other hand, the temporal bandwidth Aw; of a sub-
luminal STWP with group velocity v, = ctan 6 is related to
the temporal bandwidth Aw, of another subluminal STWP
with group velocity U, = ctan 6, that shares the same spatial
bandwidth (and therefore can be related via a Lorentz boost)
via

Ao _ p|t

= , (14
Aa)l )2

o2

assuming both STWPs are in the paraxial domain, and 6;#0°;

here y; = 1//1 — (¥1/c)?, and y, = 1//1 — (V2/c)?. If we

take the STWP with group velocity 77 to be in O and the
other in (', then the relative velocity between these two

: __ tanf,—tan6, : :
frames is g = = -2 7 and; - For the example in Fig. 5, because

) = 0.84¢ and v, = 0.66¢, the ratio between the temporal
bandwidths is ﬁ—fj ~ (0.57. This can be clearly seen in the
change in the temporal width of the pulse profile at the beam
center 1(0, 0;¢) in O [Fig. 5(a)] compared to that of I'(0, 0;¢")
[Fig. 5(c)]. The time-averaged intensity of either STWP is
independent of the temporal bandwidth and depends only
on their spatial bandwidth. Because the spatial bandwidth is
invariant under a Lorentz boost, the /(x, z) is identical for both
STWPs [Figs. 5(b) and 5(d)].

We can draw several general conclusions from the formula
in Eq. (14) for the change in temporal bandwidth upon a
Lorentz boost. First, when f = —tan 6, then 6, = 0°; that
is, the finite temporal bandwidth of the STWP is reduced to
zero, Aw, = 0, and the STWP reverts to a monochromatic
beam, corresponding to the white curves in Fig. 4(c). Second,
the temporal bandwidth remains invariant Aw; = Aw; in two
cases: The first is the trivial case when 8 = 0, whereupon
V1 = v, and y; = y,; and the second occurs when 7, = —7;

(1 = 2), whereupon = 2800 [25].

B. Superluminal group velocities

According to Eq. (12) and Eq. (13), a monochromatic
beam or a subluminal STWP in O is transformed into ei-
ther a monochromatic beam or a subluminal STWP in O’
when |B| < 1. However, it is by now well established that
superluminal STWPs exist, which simply implies varying the
association between spatial and temporal frequencies as de-
termined by Eq. (3) in the range when 45° < 6 < 135° for
the spectral tilt angle and does not imply any violation of
relativistic causality [21,67]. Indeed, Eq. (12) implies that
a superluminal STWP in O is transformed into another su-
perluminal STWP in O'. The change in the group velocity
for superluminal STWPs can be seen in the middle sec-
tion of Fig. 4(c). In this case, Eq. (14) still applies as long as
01,0, # 90°. Of course, there is no Lorentz boost that can
transform a superluminal STWP into a monochromatic beam.

VI. EXPERIMENTAL DEMONSTRATION

A Lorentz boost modifies an STWP as follows: (1)
the temporal bandwidth changes according to Eq. (14),
(2) the beam width at the pulse center Ax is invariant,
(3) the spatiotemporal intensity profile changes accordingly,
(4) the group velocity changes according to Eq. (12), and (5)
the carrier frequency is Doppler,shifted, without impacting the
spatiotemporal intensity profile in the narrowband paraxial
regime. In this section we present a table-top experimental
approach that emulates consequences (1) through (4) of a
Lorentz boost, but not the carrier Doppler shift in (5). We
first describe the overall optical setup utilized (Fig. 6) and
then explain the methodology for implementing a Lorentz
boost (Fig. 7), before presenting our experimental results in
the subluminal (Fig. 8) and superluminal (Fig. 9) regimes,
and measurements of group velocity change in these regimes
(Fig. 10).
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K,

FIG. 6. Overall setup for synthesizing STWPs and implementing Lorentz boosts. For clarity, the setup is shown unfolded with the SLM
depicted in transmission mode. In our experiment we made use of a reflective SLM, so that the retro-reflected field returns to the same initial
grating. The transverse width of the SLM phase pattern determines the value of the factor 8. Left inset: Spatiotemporal spectrum of the initial
plane-wave laser pulse projected onto the (k,, ¢) and (k,, %) planes. Right inset: Same as left inset for the synthesized STWP. The dashed lines

are the light lines k, = .

A. Methodology of the Lorentz transformation of STWPs

We make use of the optical system depicted in Fig. 6
for the synthesis of STWPs [10,21,68]. We start with
100 fs pulses from a mode-locked Ti:Sapphire laser (Tsunami,
Spectra physics; spectral bandwidth AA ~ 10 nm centered at
A =~ 800 nm). We expand the laser beam to approximate a
plane-wave pulse before directing it to a diffraction grating
(Newport 10HG1200-800-1, 1200 lines/mm), whereupon the
first diffraction order is selected and collimated via a cylin-
drical lens (f =50 cm) in a 2f configuration. The pulse
spectrum is spatially resolved at the focal plane of the lens,
where we place a 2D reflective, phase-only spatial light
modulator (SLM, Hamamatsu X10468-02), which imparts a
phase profile to the incident field. The temporal spectrum
is spread spatially along one dimension of the SLM active
area. With the given grating and lens, the SLM intercepts
only a bandwidth of AA ~ 2 nm of the incident spectrum.
The maximum temporal bandwidth of any synthesized STWP

(a) SLM pattern (b) controlling 8 on SLM

here is AA =~ 2 nm. After modulation by the SLM phase, the
field is retro-reflected back through the cylindrical lens to the
grating whereupon the spectrum is recombined and the STWP
constituted. We depict this configuration unfolded in Fig. 6 for
clarity, with the SLM in transmission rather than reflection
mode.

We characterize the STWPs in the spectral and physical
domains. We measure |/ (k,, 1)|* in the spectral domain by
implementing a spatiotemporal Fourier transform (the spatial
Fourier transform using a lens in a 2f configuration, and the
temporal Fourier transform using a grating). This spectrum
allows us to estimate the spectral tilt angle 6 and thus the
group velocity 7 = ctan 6. In the physical domain, the spa-
tiotemporal intensity profile /(x, z; ) at a fixed axial plane z
is obtained by placing the entire synthesis setup as depicted
in Fig. 6 in one arm of a Mach-Zehnder interferometer, with
an optical delay t in the other arm, which is thus traversed by
the initial 100 fs laser pulses as a reference. While sweeping

ampl.

ke

p=0

7

w
[Ferve———
*

\ /
w w
N’
3 3 3

FIG. 7. (a) Temporal spectrum of bandwidth Aw is intercepted by the SLM (top), and a 2D spatial phase distribution (bottom) is imparted
to the spectrally resolved wavefront. (b) Change in the phase distribution (top row), the concomitant change in the temporal bandwidth
transmitted through the optical system (middle row), and the concomitant change in the spatiotemporal spectrum projected onto the (k,, w)
plane associated with Lorentz boosts indexed by S. The scenario depicted is that of the transformation of a monochromatic optical beam
(center column, 8 = 0) into a subluminal STWP. Note the change in the sign of the curvature of the spatiotemporal spectrum for positive and
negative values of 8, which results in a change in the sign of the STWP group velocity.
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FIG. 8. Experimental realization of Lorentz boosts of subluminal STWPs. Rows from top to bottom: first row is the SLM phase pattern
® to produce the STWP; second row, the measured spatiotemporal spectrum projected onto the (k,, 1) plane; third row, the spatiotemporal
spectrum from the second row projected onto the (k,, 2) plane; and fourth row, measured spatiotemporal intensity profile /(x, z;t) at a
fixed axial plane z. The dark portions of the phase distributions correspond to spectral components that are not spatially modulated and are
subsequently eliminated by a Fourier plane spatial filter. The dashed line in the (k, §2) plane is the light line k; = 2. (a) Subluminal STWP
obtained by a Lorentz boost with 8 = —0.7, (b) 8 = —0.4, (d) 8 = 0.6, and (e) 8 = 1, starting from the STWP in the rest frame shown in (c).
Note the change in the sign of the curvature of the spatiotemporal spectrum in the (k,, A) plane for positive and negative values of S.

the delay t in the reference arm, we monitor the visibility of
the spatially resolved interference fringes resulting from the
interference of the STWP (of maximum temporal bandwidth
AA < 2 nm) with the 100 fs (AA ~ 10 nm) reference pulse.
To measure the group velocity of an STWP, we repeat the
measurement of the spatiotemporal intensity profile /(x, z; 7)
at a different axial plane z and from the relative change in the
delay line cAt and the camera position Az we calculate the
group velocity of the STWP in free space; see Refs. [35,69]
for details.

In our experiments, a fixed distribution of wavelengths is
delivered across the SLM and maintained in all the mea-
surements [Fig. 7(a)]. By changing the 2D spatial phase

distribution ® imparted, we can implement a Lorentz boost
with any prescribed value of 8 (within the limit of maximum
available bandwidth AX &~ 2 nm). Each wavelength occupies
a column of the SLM. The SLM phase distribution associated
with each frequency w is linear ®(x) = k,x, where x is the
coordinate perpendicular to the direction of the spread spec-
trum, and k,(w) is selected according to Eq. (3) [Fig. 7(a)].
When assigned to the temporal frequency w, this phase is
®(w, x) = (¢ sin p)x, where ¢ is the propagation angle of this
spatial frequency with the z axis.

We consider a spatial bandwidth Ak, that is invariant under
any Lorentz boost. The SLM thus implements spatial frequen-
cies extending from k, = 0 to k, = Ak,. We implement SLM

013509-8



EXPERIMENTAL REALIZATION OF LORENTZ BOOSTS OF ...

PHYSICAL REVIEW A 109, 013509 (2024)

(b) B=-0.5

(c) Rest Frame

A=Ay (nm)
/

S 1Pk AF 0=48° 6=62.8° 6=89° 6=116° 6=135°
-0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2
k, (rad/um) k, (rad/um) k, (rad/um) k, (rad/um) k, (rad/um)
[ul(HolE
4,
0 0.01  0.02

7 (ps)

k, - k, (rad/um)

il ey |, IRFLIIL S R

-0 0 10
7 (ps)

FIG. 9. Experimental realization of Lorentz boosts of superluminal STWPs. Rows from top to bottom are the same as in Fig. 8.
(a) Superluminal STWP obtained by a Lorentz boost with 8 = —0.9, (b) 8 = —0.5, (d) B = 0.5, and (e) B = 1, starting from the STWP
in the rest frame shown in (c). Note that the sign of the curvature of the spatiotemporal spectrum in the (k,, A) plane is the same for both

positive and negative values of S.

phase distributions with mirror symmetry along the vertical
x axis around its center to incorporate positive and negative
spatial frequencies %k, (w) with each frequency w (to produce
a beam that is spatially symmetric along x). As we vary g,
the arrangement of this fixed set of spatial frequencies is
modified across the SLM. When exploiting the full tempo-
ral bandwidth AXA = 2 nm, the spatial frequencies are spread
across the entire width of the SLM. Under a Lorentz boost, the
temporal bandwidth changes [Eq. (14)]. To capture this effect,
the fixed collection of spatial frequencies is either compressed
or stretched across the SLM active area. Consequently, some
wavelengths are not modulated by any spatial frequency. We
set the SLM phase for these frequencies to ®(w, x) = 0, and
then place in the path of the synthesized STWP a 4f imaging
system with a spatial beam block in its Fourier plane. This
beam block removes any part of the field in the vicinity of
k, = 0 and thus eliminates all wavelengths from the spectrum
that were not spatially modulated by the SLM.

Starting with a monochromatic beam, where all the spatial
frequencies are imparted to a single frequency w, [Fig. 7(b),
B = 0], positive- or negative-valued B produces subluminal
STWPs with negative (135° < 6 < 180°) or positive (0° <
6 < 45°) group velocity, respectively. This is captured by
changing the direction of ordering of the spatial frequencies
from k, = 0 to Ak, or from k, = Ak, down to O [Fig. 7(b)
to the left and right of 8 = 0]. The spatial frequency k, = 0
is associated with the frequency w,, so that the two different
orientations of the phase distribution is associated with the
frequencies w, (assigned to k, = 0) to w, — Aw (assigned
to k, = Ak,), or, in the opposite orientation, the frequencies
W, + Aw (assigned to k, = 0) to w, (assigned to k, = Ak,).
The spectral content that is not spatially modulated [the dark
area in Fig. 7(b)] is filtered out by the spatial filter. Imple-
menting a Lorentz boost with larger | 8| broadens the temporal
bandwidth, which is achieved by spreading the collection of
spatial frequencies over the SLM width. The spatially unmod-
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FIG. 10. Measured group velocities of STWPs after Lorentz
boost corresponding to the measurements in Fig. 8 and Fig. 9. Dots
indicate the measured data with error bars, dotted lines correspond
to the theoretical expectations from Eq. (13), and dashed lines show
the boundaries between the subluminal (red region) and superluminal
(blue region) regimes.

ulated spectral content drops and the temporal bandwidth of
the STWP increases.

B. Measurements for subluminal STWPs

To implement a monochromatic beam in the rest frame
O in our setup requires imparting all the spatial frequencies
from k, = 0 to Ak, to a single temporal frequency, which
corresponds to a single SLM column [8 = 0 in Fig. 7(b)].
Because this cannot be done in practice, we take as the starting
point in the subluminal regime a quasimonochromatic beam.
This is realized by compressing all the spatial frequencies over
a narrow extent AA along the direction of the spread spectrum
[Fig. 8(c)], such that the spectral projection onto the (k, A)
plane approaches a horizontal line. Here the pulse width at the
beam center /(0; t) is wide, and the beam width at the pulse
center /(x; 0) is proportional to the inverse of the spatial band-
width, Ax ~ Aka. The spatial frequencies are compressed over
a fraction of the SLM active area, with only AA ~ 0.14 nm
spatially modulated by the SLM. The rest of the AL ~ 2 nm
bandwidth incident on the SLM is not spatially modulated (as-
signed k, = 0). The Fourier spatial filter placed in the path of
the STWP eliminates the spatial frequencies in the vicinity of
k, = 0, thereby passing only the spatially modulated portion
of the spectrum.

Positive values of § result in negative group velocities of
the produced STWP, and the associated spectral tilt angles
are in the range 135° < 6 < 180°. The case of 8 = 0.6 is
shown in Fig. 8(d), corresponding to 6 = 154.6°. The pro-
jected spectrum in this case is a segment of an ellipse. Note
that 8 = 1 can be realized, whereupon 6 = 135° and v = —c
[Fig. 8(e)]. The corresponding conic section on the light cone
is a parabola.

Negative values of 8, on the other hand, result in positive
group velocities of the produced STWP, and the associated
spectral tilt angles are in the range 0° < 8 < 45°. This regime
requires flipping the orientation of the arrangement of spatial
frequencies. The case of § = —0.4 is shown in Fig. 8(b),
corresponding to 6 = 28.3°. The maximum value of § that
can be realized here is 8 = —0.7 as shown in Fig. 8(a). In

all cases [Figs. 8(a), 8(b), 8(d), 8(e)], the temporal bandwidth
Aw, 1is related to Aw; of the STWP in Fig. 8(c) through
Eq. (14).

C. Measurements for superluminal STWPs

We plot in Fig. 9 the measurement results of Lorentz boosts
in the superluminal regime. In this case we take as our starting
point in the rest frame O a superluminal STWP corresponding
to & = 89° [Fig. 9(c)]; i.e., U ~ 60c. We implement Lorentz
boosts to O corresponding to negative-valued [Figs. 9(a)
and 9(b)] and positive-valued [Figs. 9(d) and 9(e)] S. In this
superluminal scenario, the sign of the curvature of the spa-
tiotemporal spectrum projected onto the (k,, A) plane remains
the same for all values of 8 (Fig. 9, second row). Therefore,
the orientation of the arrangement of spatial frequencies re-
mains the same. The temporal bandwidth Aw, drops with
respect to Aw,; for 8 > 0, resulting in a broadening of the tem-
poral width of the pulse, whereas Aw, increases when 8 < 0
(Fig. 9, fourth row). Once again, the change in the temporal
bandwidth with 8 follows the relationship in Eq. (14).

D. Measurements of the group velocity change

We plot in Fig. 10 measured group velocities of subluminal
and superluminal STWPs characterized in Fig. 8 and Fig. 9.
Starting with the STWP in the rest frame (8 = 0) traveling at
vV = 0.18c in the subluminal regime [Fig. 8(c)] and 7 = 62c in
the superluminal regime [Fig. 9(c)], we confirm that the group
velocities of the STWPs in the moving frames follow the
relativistic velocity addition formula in Eq. (13) (dotted lines).
In addition, these measurements support that STWPs do not
cross the subluminal-superluminal barrier (dashed lines) after
a Lorentz boost.

VII. DISCUSSION AND CONCLUSIONS

We have couched our results in terms of coherent fields,
whether monochromatic plane waves, monochromatic parax-
ial coherent beams, or coherent STWPs. Nevertheless, our
experimental approach is capable of handling incoherent
fields, as demonstrated in [32,70]. This should motivate
extending the theoretical formulation of Lorentz boosts to par-
tially coherent and incoherent optical fields, where almost no
previous work has been done. Moreover, studying the impact
of Lorentz boosts on vector fields [17,33,71] would be of
interest.

Recent work has been devoted to the study of light-matter
interaction involving moving photonic devices [72-75], such
as gratings [76,77], Bragg mirrors, photonic crystals, and
waveguides [78]. The interaction of STWPs and their coupling
to waveguides [79—-85] and planar Fabry-Pérot cavities [86,87]
has recently made significant strides. The work presented here
regarding the Lorentz boost of STWPs can help connect these
new results with the theoretical work on the interaction of
light with moving devices. Our work may also benefit the
study of photonic time crystals [88,89], realizations of opti-
cal analogs of the Mackinnon wave packet [61] via moving
dipoles [90,91], and reflection and refraction of optical waves
from moving interfaces [78,92-96].
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In conclusion, we have presented a theoretical formulation
of the optical consequences of Lorentz boosts to monochro-
matic paraxial beams and STWPs. We have shown that
monochromatic paraxial beams emitted from a source in a
rest frame are converted to a subluminal STWP in a moving
frame. Furthermore, Lorentz boost of a subluminal STWP is
another subluminal STWP, and the Lorentz boost of a superlu-
minal STWP is another superluminal STWP. Any subluminal
STWP can be obtained by a Lorentz boost of a monochro-
matic beam, and any superluminal STWP can be obtained
from an STWP with formally infinite group velocity. We have
described an optical system based on spatiotemporal Fourier
synthesis that is capable of emulating most of these conse-
quences of Lorentz boost: the change in the group velocity, the
temporal bandwidth, the invariant spatial bandwidth, and the
concomitant change in the spatiotemporal envelope profile.
The only feature not captured by this approach is the Doppler
shift of the optical carrier, which does not affect any of the
above-listed features. This experimental approach may be of
use in emulating Lorentz boosts of optical fields in other
contexts, especially in the interaction with moving optical
devices.

APPENDIX: X-WAVES

X-waves are a class of STWPs in which w, — 0, so that
the spatiotemporal spectrum lies at the intersection of the light

cone with a spectral plane of the form

1)
— =k, tan 6. (A1)
C

This is a propagation-invariant pulsed field with the field
given by

E(x,z;t) = / doE (w)e e =0 = E(x, 0,1 — z/7),

(A2)

where the group velocity is ¥ = ctan#, and E (w) is the
Fourier transform of E (0, 0;7). Note that the entire field is
propagation invariant and not only the envelope of the X-
wave. A crucial difference between X-waves and baseband
STWPs is that the spectral tilt angle 6 is restricted to the range
45° < 0 < 135°, so that X-waves are always superluminal
] > c.
Starting with the spectral plane in Eq. (A1) for an X-wave
in the rest frame O is transformed into the moving frame O’
under a Lorentz boost to “C—’ = ktan6’, where 0’ is related to 0
and g with the same formula in Eq. (12) for STWPs. In other
words, the Lorentz boost of an X-wave is another X-wave, and
the group velocity is transformed as the velocity of a massive
particle. The bandwidth Aw of the X-wave in O is changed to
Aw' in O via
Ao
=Y

tanf — B
Aw '

A3
tan 0 (A3)
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