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Theory of modulation instability in Kerr Fabry-Perot resonators beyond the mean-field limit
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We analyze the nonlinear dynamics of Fabry-Perot cavities of arbitrary finesse filled by a dispersive Kerr
medium, pumped by a continuous-wave laser or a synchronous train of flat-top pulses. The combined action
of feedback, group velocity dispersion, and Kerr nonlinearity leads to temporal instability with respect to
perturbations at specified frequencies. We characterize the generation of new spectral bands by deriving the
exact dispersion relation, and we find approximate analytical expressions for the instability threshold and gain
spectrum of modulation instability (MI). We show that, in contrast to ring resonators, both the stationary solutions
and the gain spectrum are significantly affected by the duration of the pump pulse. We derive the extended
Lugiato-Lefever equation for the Fabry-Perot resonator (FP-LLE) starting from coupled nonlinear Schrödinger
equations, and we compare the outcome of the stability analysis of the two models. While FP-LLE gives overall
good results, we show regimes that are not captured by the mean-field limit, namely, the period-two modulation
instability, which may appear in highly detuned or nonlinear regimes. We report numerical simulations of the
generation of MI-induced Kerr combs by solving FP-LLE and the coupled Schrödinger equations.
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I. INTRODUCTION

Optical cavities have been a valuable tool for studying
various nonlinear effects since the invention of lasers in the
1960s. Bistability, self-pulsing, and modulation instability are
some examples of these effects that have been observed ex-
perimentally and analyzed theoretically [1]. Most of the early
theoretical studies were focused on ring cavities, where the
light propagates only in one direction, simplifying consider-
ably the analysis [2].

Nonetheless, Fabry-Perot (FP) cavities, where two distinct
fields propagate simultaneously in the forward and back-
ward directions, are exploited in many applications. Nonlinear
interaction of counterpropagating fields can lead to very
complex dynamics, even in the absence of a cavity. For
instance, it has been demonstrated that counterpropagation
and nonlinearity can cause transverse spatial [3–7] and tem-
poral instabilities [8,9]. In resonators, temporal instabilities
may appear even in the absence of group velocity disper-
sion (GVD), and they were first studied in a ring cavity
(the well-known Ikeda instability) [2] and later in FP sys-
tems [10–12]. Despite several attempts, dispersive instabilities
[or temporal modulation instability (MI)] in FP cavities are
not completely characterized yet [13–15]. A complete theo-
retical analysis has been developed only in the good-cavity
(also called mean-field) approximation. A version of the
Lugiato-Lefever equation (also known as the driven-damped
nonlinear Schrödinger equation [16]) generalized to FP res-
onators (FP-LLE) has been derived, which permits to identify
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the peculiarity of the FP case in an additional detuning term
depending on the average field power [17]. Beyond the mean-
field limit, analytical expressions of the MI threshold have
been obtained for a specific resonator where one of the mirrors
has reflectivity equal to one [15].

The pioneering work on optical frequency combs (OFCs)
by Braje et al. [18] and subsequent research by Obrzud et al.
[19] in fiber-based FP cavities have opened up a new field
of research focused on the generation and manipulation of
OFCs [20–26]. They offer a high degree of flexibility in terms
of comb bandwidth and mode spacing. However, despite the
advantages of using FP cavities to produce OFCs, the exper-
imental results are often poorly understood due to the lack
of available analytical treatments. The ongoing efforts in this
field aim at improving the understanding of the physics of
OFCs and pave the way for their broader use in a variety of
applications.

The goal of this paper is to describe MI in a nonlinear FP
cavity with an instantaneous Kerr nonlinearity, second-order
GVD, arbitrary mirror reflectivity, and arbitrary detuning. We
derive the full complex dispersion relation for the perturba-
tions, which permits to calculate the exact MI gain spectrum.
We provide simpler but extremely accurate formulas of the
MI gain, which extend the recent results reported in Ref. [15].
We compare the outcomes of our analysis with the prediction
of the mean-field approximation, and report numerical sim-
ulations of MI comb generation in fiber FP resonators. The
paper is organized as follows. In Sec. II, we review the basic
equations that describe FP cavities and derive the expression
for the stationary solutions. Then, in Sec. III, we perform a
linear stability analysis and obtain the exact dispersion re-
lation. Using appropriate approximations, we determine the
gain spectrum that characterizes the modulation instability of
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FIG. 1. Schematic diagram of a nonlinear FP cavity of arbitrary
finesse located in the interval 0 � z � L.

homogeneous solutions. In Sec. IV, we study the effect of the
pulsed pump on the system response. Finally, in Sec. V, we
show some typical examples where mean-field approximation
breaks down. Conclusions are drawn in Sec. VI.

II. FABRY-PEROT CAVITY DESCRIPTION

We consider a FP cavity of length L, filled with a non-
linear Kerr medium (see Fig. 1). A pump field Ein enters at
z = 0 through a mirror of reflectivity ρ1 and drives forward
F (z, t ) and backward B(z, t ) fields in the cavity. A transmit-
ted field Eout exits the cavity through the second mirror of
reflectivity ρ2 at z = L. The evolution of the two counterprop-
agating waves is described by a set of two coupled nonlinear
Schrödinger equations (NLSEs) [10,15]:

∂F

∂z
+ β1

∂F

∂t
+ i

β2

2

∂2F

∂t2
= iγ (|F |2 + G|B|2)F, (1a)

−∂B

∂z
+ β1

∂B

∂t
+ i

β2

2

∂2B

∂t2
= iγ (|B|2 + G|F |2)B, (1b)

where β−1
1 = vg is the group velocity, β2 is the group-velocity

dispersion coefficient, γ is the nonlinear parameter, and G =
2 is the grating parameter which describes cross-phase modu-
lation (XPM). We neglected the transverse spatial dependence
of the envelopes, which applies for (i) plane waves or (ii)
single-mode guides, like optical fibers. The governing equa-
tions are supplemented with appropriate boundary conditions
at the left and right mirrors:

F (0, t ) = θ1Ein(t ) + ρ1B(0, t ), (2a)

B(L, t ) = ρ2eiφ0 F (L, t ), (2b)

where the linear cavity phase φ0 accounts for the phase ac-
quired during the propagation 2β0L (β0 is the propagation
constant) and any possible contribution from the mirrors,
modulo 2π . Thus −π � φ0 � π , and we can introduce the
cavity detuning as δ = −φ0. The transmitted field Eout may
be expressed as

Eout (t ) = θ2F (L, t ). (3)

Thereafter, we assume that the reflectivity and the transmis-
sivity of the mirrors are real and verify θ2

1,2 + ρ2
1,2 = 1. By

taking G = 0 and ρ2 = 1, Eqs. (1) and (2) model a ring cavity
of length 2L.

Equations (1a)–(2b) have continuous-wave (time-
independent) solutions which are obtained by setting the

time derivatives in Eqs. (1) equal to zero and Ein(t ) constant
[10,14,15,27]. They are of the form

F (z) = F0e+iγ (|F0|2+G|B0|2 )z ≡ F0eiφF z, (4a)

B(z) = B0e−iγ (|B0|2+G|F0|2 )z ≡ B0eiφBz. (4b)

Using Eqs. (2) we find

F0 = θ1Ein

1 − ρ1ρ2 exp [i(φ0 + φNL )]
, (5a)

B0 = ρ2 exp [i(φ0 + φNL )]F0, (5b)

where the nonlinear phase is given by

φNL = γ
(
1 + ρ2

2

)
(1 + G)L|F0|2. (6)

From Eqs. (5) we obtain the input power Pin = |Ein|2 as a
function of the intracavity forward power PF = |F0|2:

Pin = PF

θ2
1

(1 + (ρ1ρ2)2 − 2ρ1ρ2 cos(φ0 + φNL )). (7)

From Eq. (7) we find that the cavity finesse, i.e., the ratio
between the linewidth and the free spectral range (FSR), is
given by F = π

√
ρ1ρ2

1−ρ1ρ2
.

III. LINEAR STABILITY ANALYSIS

A. General dispersion relation

The stability of the steady state is examined assuming a
time-dependent solution of the form

F (z, t ) = F0(1 + f (z, t ))eiφF z, (8a)

B(z, t ) = B0(1 + b(z, t ))eiφBz, (8b)

where f and b are small perturbations. The linearized prop-
agation equations for the perturbations read as

∂ f

∂z
+ β1

∂ f

∂t
+ i

β2

2

∂2 f

∂t2
= 2iγ PF Re

(
f + ρ2

2 Gb
)
, (9a)

−∂b

∂z
+ β1

∂b

∂t
+ i

β2

2

∂2b

∂t2
= 2iγ PF Re

(
G f + ρ2

2 b
)
, (9b)

where Re stands for the real part. From Eqs. (2), we find the
following boundary conditions for f and b:

f (0, t ) = ρ1ρ2eiφb(0, t ), (10a)

f (L, t ) = b(L, t ), (10b)

where φ = φ0 + φNL is the total (linear plus nonlinear)
phase shift. We write the perturbation in the following form:

f (z, t ) = f+(z)eλt + f ∗
−(z)eλ∗t , (11a)

b(z, t ) = b+(z)eλt + b∗
−(z)eλ∗t . (11b)

The real and imaginary parts of λ = σ + iω define the tem-
poral growth rate and the frequency of the perturbations. By
inserting Eqs. (11) in Eqs. (9), we find that the four complex
amplitudes f±, b± of the perturbations obey the following
system of ordinary differential equations:

d

dz

⎛
⎜⎜⎝

f+(z)
f−(z)
b+(z)
b−(z)

⎞
⎟⎟⎠ = M

⎛
⎜⎜⎝

f+(z)
f−(z)
b+(z)
b−(z)

⎞
⎟⎟⎠, (12)
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where

M

= iγ PF

⎛
⎜⎜⎜⎜⎝

1 + i ψ+
γ PF

1 Gρ2
2 Gρ2

2

−1 −1 + i ψ−
γ PF

−Gρ2
2 −Gρ2

2

−G −G −ρ2
2 − i ψ+

γ PF
−ρ2

2

G G ρ2
2 ρ2

2 − i ψ−
γ PF

⎞
⎟⎟⎟⎟⎠,

with ψ± = β1λ ± i β2

2 λ2. The growth rate σ and the frequency
ω of the perturbations are found by imposing the following
boundary conditions:

f±(L) = b±(L), (13a)

f±(0) = ρ1ρ2e±iφb±(0). (13b)

The matrix differential equation (12) is linear and homo-
geneous, so it can be solved by standard methods (e.g.,
matrix exponential). However, the analytic expressions are
very cumbersome since they depend on the roots of a general
fourth-order polynomial. We report here the main passages,
while theory derivation is reported in Appendix A. The solu-
tion of Eqs. (12) can be expressed in terms of eigenvalues and
eigenvectors of M:

( f+, f−, b+, b−)T =
4∑

j=1

c je
η j zu j, (14)

where u j = (u j,1, u j,2, u j,3, u j,4)T are the eigenvectors of M.
The four arbitrary constants c j are determined by the bound-
ary conditions. Indeed, by inserting Eq. (14) in Eq. (13), we
obtain a system of algebraic equations N (c1, c2, c3, c4)T = 0,
where N is defined in Eq. (A3). In order to have a nontrivial
solution, we must impose det N = 0, which yields Eq. (A4).
The dispersion relation det N = 0 is a complicated nonlinear
equation in the complex variable λ = σ + iω. Even if we are
not able to solve it analytically, it can be solved numerically
[28]. Its solutions in the complex λ plane give the growth rate
and the frequency of the possibly unstable perturbations.

B. Approximate solutions

The solution of Eqs. (12) is greatly simplified if β2 = 0
or if G = 0. For the dispersionless case, we obtain the same
results of Firth [10] (calculation not reported here). For the
dispersive case, in order to achieve reasonably simple an-
alytical expressions, we assume G = 0 in Eqs. (12) only.
It amounts to suppressing the linear coupling between the
perturbation components in the propagation equations. The
reason for that is that the walk-off arising from counterprop-
agation weakens the XPM terms. Nonetheless, the coupling
is maintained in the boundary conditions via the total phase
φ. This approximation is physically sound: the main coupling
between forward and backward perturbations takes place at
the mirrors. We also maintain G �= 0 in the steady state,
meaning that the perturbations propagate on top of the correct
steady state. Following similar arguments, the same approxi-
mation was used in Refs. [13–15]. Indeed, it has been shown
that XPM is negligible if the mirrors provide the dominant
coupling between forward and backward waves, which is
generally the case in FP resonators [13].

Solving Eqs. (12) with G = 0 and using the same approach
as before, we find the following characteristic equation:

e2λtR − �(λ)eλtR + (ρ1ρ2)2 = 0, (15)

where tR = 2β1L is the round-trip time and

�(λ) = ρ1ρ2[a(λ) cos φ + b(λ) sin φ]

with

a(λ) = 2 cos(kL) cos(kρL) − k2 + k2
ρ

kkρ

sin(kL) sin(kρL),

b(λ) = 4k2 + β2
2λ4

2β2λ2k
cos(kρL) sin(kL)

+ 4k2
ρ + β2

2λ4

2β2λ2kρ

cos(kL) sin(kρL),

and

k2 = β2λ
2

2

(
β2λ

2

2
− 2γ PF

)
,

k2
ρ = β2λ

2

2

(
β2λ

2

2
− 2γ PF ρ2

2

)
. (16)

Even if the structure of Eq. (15) appears to be quite simple,
it may admit an infinite number of solutions, since the dis-
criminant depends on λ. We may also remark that Eq. (15) is
equivalent to the following two equations:

eλtR = �(λ)

2
±

√
�2(λ)

4
− (ρ1ρ2)2. (17)

From the analysis of the dispersionless case [10], we have
learned that ωtR = mπ at threshold (σ = 0). It is worth
noting that the frequencies of the perturbations at thresh-
old correspond either to cavity resonances (m even) or they
are in between (m odd, antiresonance). For σ = 0, Eq. (15)
reads as

1 − (−1)m� + (ρ1ρ2)2 = 0, (18)

which gives the analytic threshold expression

ã(ω) cos φ + b̃(ω) sin φ = (−1)m 1 + (ρ1ρ2)2

ρ1ρ2
, (19)

where ã(ω) = a(λ = iω) and b̃(ω) = b(λ = iω). By taking
ρ2 = 1, we recover the main result of Ref. [15] in which
the authors used the gain-circle method to find the threshold
formula for the zero-transmission case.

Numerical solution of Eq. (15) shows that ωtR ≈ mπ ap-
proximately holds even when σ �= 0 with great precision.
Moreover, we may assume that the frequency of the pertur-
bation is much greater than its growth rate, i.e., ω � σ . We
thus write Eq. (15) in the form

e2σ tR − (−1)m�̃(ω)eσ tR + (ρ1ρ2)2 = 0, (20)

with �̃(ω) = �(λ = 0 + iω).
It is now straightforward to calculate the growth rate of the

perturbations as a function of the frequency, i.e., σ (ω):

eσ tR = (−1)m �̃(ω)

2
±

√
�̃2(ω)

4
− (ρ1ρ2)2. (21)
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FIG. 2. The Fabry-Perot cavity of Fig. 1 in the limit G = 0 is
equivalent to a ring cavity composed of two identical pieces of fibers
of length L connected by two couplers (θ1, ρ1) and (θ2, ρ2).

In order to observe MI, we must have σ > 0, so we have the
following conditions:

(−1)m�̃(ω) > 1 + (ρ1ρ2)2 (22)

and

σ tR = ln

⎛
⎝(−1)m �̃

2
+

√
�̃2

4
− (ρ1ρ2)2

⎞
⎠. (23)

We can define the MI gain g(ω) as the spatial growth rate:

g(ω) = σ tR
2L

= 1

2L
ln max

∣∣∣∣∣∣
�̃

2
±

√
�̃2

4
− (ρ1ρ2)2

∣∣∣∣∣∣. (24)

We recognize in Eq. (24) the MI gain of a ring cavity of
length 2L composed of two identical pieces of fiber of length L
[29] connected by an input coupler (θ1, ρ1), and a tap coupler
(θ2, ρ2) as illustrated in Fig. 2 (see Appendix B for details).

We verified that the approximation in Eq. (24) is extremely
precise. As an example, we report in Fig. 3 the comparison
between the exact and the approximated MI gain for a fiber
FP resonator with an anomalous dispersion fiber and oper-
ating in the monostable regime (parameters are reported in
the figure caption). Figure 3(a) shows the steady-state curve
of Eq. (7), the working point being denoted with a red star.
Figure 3(b) shows the approximated MI gain from Eq. (24)
(blue curve) and the exact gain from numerical solution of
Eq. (A4) (black circles). The circles are perfectly superposed
to the continuous line: there is no visible difference between
the two models. Indeed, we have found that for all our tests the
exact and the approximated models give essentially identical
results. Of course, the approximated model does not predict
the frequencies of the perturbations, because here ω is a con-
tinuous, independent variable.

Two examples of the graphical solution of Eq. (A4) are
shown in Figs. 3(c) and 3(d). Blue and red curves represent
Re(det N ) = 0 and Im(det N ) = 0 in the complex λ plane.
As a general feature, the curve Im(det N ) = 0 is essentially
composed of a horizontal line with σ < 0 and a set of vertical
lines at ωtR ≈ mπ . The solutions are marked by solid black
dots. Figure 3(c) shows two solutions with σ < 0, meaning
that the perturbations at the corresponding frequency ω are
stable, whereas Fig. 3(d) shows two solutions which share
almost the same frequency (they are slightly different and very
close to a cavity resonance ωtR = 2mπ ) but opposite σ . The

FIG. 3. (a) Intracavity forward power as a function of pump
power from Eq. (7). (b) Approximated MI gain g(ω) from Eq. (24)
(blue curve) and exact gain from numerical solution of Eq. (A4)
(black circles). (c) Real (blue curve) and imaginary (red dashed
curve) part of Eq. (A4) outside the MI gain band. The intersections
between the two curves (black circles) are the solutions of Eq. (A4).
(d) Same as (c) but inside the MI gain band. Parameters: ρ2

1 = ρ2
2 =

0.99 (F = 312), θ2
1 = θ2

2 = 0.01, γ = 2 W−1/km, β1 = c/1.5, β2 =
−20 ps2/km, L = 0.01 m, φ0 = 0, Pin = 94 W, and PF = 400 W.

fact that one solution has σ > 0 implies that the perturbation
at this frequency is unstable.

C. The good-cavity limit: FP-LLE

When the mirror reflectivities are high and the cavity
detuning is small, it is possible to obtain a mean-field de-
scription of the dynamics, which generalizes the celebrated
Lugiato-Lefever equation (LLE) originally derived for the
ring resonators [30,31] to FP cavities. Cole et al. [17] derived
this FP-LLE starting from Maxwell-Bloch equations, while
Xiao et al. [24] also arrived at the same equation from cou-
pled mode theory. In Appendix C, we report an alternative
derivation of the FP-LLE, which uses the coupled NLSEs (1)
as the starting point. Besides being more suited to fiber-based
FP resonators, our derivation is more general as it considers
unequal mirror reflectivities and pulsed pumping. The FP-
LLE reads as

tR
∂ψ

∂τ
= (−α + iφ0)ψ + θ1Ein(t )

+ 2L

[
−i

β2

2

∂2

∂t2
+ iγ |ψ |2 + iγ

G

tR

∫ tR/2

−tR/2
|ψ |2dt

]
ψ,

(25)

where ψ (τ, t ) is the field envelope inside the cavity, α = 1 −
ρ1ρ2 is the cavity loss, t ∈ [−tR/2, tR/2] denotes the fast time
in one cavity round trip, and τ is a slow time.

The homogeneous solutions ψs are found by setting the
derivatives in Eq. (25) equal to zero. We obtain that the power
of the stationary solutions is given by the solutions of the
cubic following equation:

θ2
1 Pin = Ps(α

2 + (φ0 + 2γ L(1 + G)Ps)2), (26)
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where Ps = |ψs|2 and Pin = |Ein|2. We can assume ψs real
without loss of generality, which implies that the input field
must be complex and can be written as

θ1Ein = ψs(α − i(φ0 + 2γ L(1 + G)Ps)). (27)

To study the stability of these solutions, we perform a
linear stability by considering a perturbed solution of the form
ψ (t, τ ) = ψs + ξ (τ, t ). Assuming ξ 	 ψs small, we obtain

tR
∂ξ

∂τ
= (−α + iφ0)ξ − iLβ2

∂2ξ

∂t2

+ 2iγ LPs

(
(2 + G)ξ + ξ ∗ + G

tR

∫ tR/2

−tR/2
(ξ + ξ ∗)dt

)
.

(28)

We now expand the perturbation over the cavity modes with
time-varying amplitudes:

ξ (τ, t ) = εn(τ )eiωnt + ε−n(τ )e−iωnt , (29)

with ωn = n2π/tR. The amplitudes of the modal perturbations
obey

tR
dεn

dτ
= (−α + iφ0)εn + iLβ2ω

2
nεn

+ 2iγ LPs((2 + G)εn + ε∗
−n)

+ 2iγ LPsG(εn + ε∗
−n)δn0, (30a)

tR
dε∗

−n

dτ
= (−α − iφ0)ε∗

−n + iLβ2ω
2
nε

∗
−n

− 2iγ LPs((2 + G)ε∗
−n + εn)

− 2iγ LPsG(εn + ε∗
−n)δn0, (30b)

where δn0 is the Kronecker delta. The last terms in Eqs. (30),
which appear only for the zero mode, stem from the integral
term which does not average to zero as in the case n �= 0.
This contribution is not present for the ring cavity, for which
G = 0. The system (30) can be written as d/dτ (εn, ε

∗
−n)T =

Mn(εn, ε
∗
−n)T , and the eigenvalues of the matrix Mn determine

the stability of the solution. The temporal growth rate of the
perturbations for n �= 0 reads

σ (ωn) = 1

tR

(−α +
√

(2γ LPs)2 − μ2
n

)
, (31)

where μn = φ0 + Lβ2ω
2
n + 2(2 + G)γ LPs. The temporal

growth can be written as a spatial gain as g(ωn) = β1σ (ωn).
The most unstable mode, obtained for μn = 0, and its growth
rate are

ω2
n̄ = −φ0 + 2(2 + G)γ LPs

β2L
and gmax = −α + 2γ LPs

2L
,

(32)
where we considered ωn as a continuous variable. We can thus
interpret the condition μn = 0 as a phase-matching relation
that maximizes the energy transfer from the pump to the
perturbations.

For the zero mode we have

σ (0) = −α +
√

(2γ LPs(1 + G))2 − (φ0 + 4(1 + G)γ LPs)2

tR
.

(33)

(a)

(b) (d)(d)
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FIG. 4. (a) Steady states as a function of pump power at φ0 =
−0.09 rad. (b) Steady states as a function of linear phase at Pin =
1.7 W. (c) Color level plot of gain g(ω) in the plane (ω, PF ) of
frequency and forward intracavity power, calculated from Eq. (24).
The dashed horizontal lines in (a) and (c) delimit the region of bista-
bility, while dash-dotted horizontal lines delimit MI when ωn ∼ 0.
(d) Gain spectrum obtained from Eq. (A4) (black dots), Eq. (24) (red
curve), and Eq. (31) (blue curve) for an intracavity power PF = 80 W
and φ0 = −0.09 rad; see red star in (a) and (b). Parameters: ρ2

1 =
ρ2

2 = 0.98 (F = 156), θ2
1 = θ2

2 = 0.02, γ = 2 W−1/km, β1 = c/1.5,
β2 = −20 ps2/km, and L = 0.1 m.

The condition for reality of Eq. (33) coincides with the
negative-slope branch of Eq. (26); i.e., the homogeneous so-
lution is unstable if P− < Ps < P+, where

P± =
−2φ0 ±

√
φ2

0 − 3α2

6(1 + G)γ L
. (34)

The unstable region obtained by letting ωn → 0 in Eq. (31) is
different and the limits are given by

P̃± =
−(2 + G)φ0 ±

√
φ2

0 − ((2 + G)2 − 1)α2

2((2 + G)2 − 1)γ L
. (35)

Equations (35) and (34) coincide for G = 0, i.e., the ring cav-
ity, where the instability of the homogeneous state coincides
with the low-frequency limit of the modulationally unstable
branch. This peculiarity of FP resonator was first pointed out
in Ref. [17].

In order to illustrate the results of linear stability analysis
of models in Eqs. (1) and (25), we consider for definiteness
a fiber FP resonator, whose parameters are reported in Fig. 4.
Figures 4(a) and 4(b) demonstrate examples of the intracavity
steady-state power obtained from Eq. (7) as a function of
pump power and linear phase cavity, respectively. The cor-
responding FP-LLE curves obtained from Eq. (26) are almost
superimposed and they are not shown in order to make the
figures more readable. As usual, the nonlinear phase shift
acquired by the intracavity field does not impact the resonance
width, but it does tilt the resonance [see Fig. 4(b)]. If input
power and cavity finesse are high enough, the resonances
become increasingly tilted, resulting in a multivalued cavity
response. At certain values of φ0, the cavity can operate in a
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bistable regime, as shown in Fig. 4(a). Figure 4(c) displays
the gain of MI calculated from Eq. (24) for the anomalous
GVD regime, as a function of the mode frequencies and the
intracavity forward field power PF . Also in this case the results
obtained from FP-LLE [Eq. (26)] are practically identical
(figure not shown). Modulationally unstable steady states are
represented by a dashed curve in Figs. 4(a) and 4(b). Steady
states which are unstable with respect to perturbations at zero
frequency, corresponding to the negative-slope branch of the
bistable response, are displayed in dotted curves. One note-
worthy characteristic of the FP case is that the MI does not
fully cover the cw unstable region, as it is the case for the ring
cavity. Figure 4(d) exhibits an example of gain spectrum ob-
tained from Eqs. (A4), (24), and (31). The agreement between
the different methods is perfect, even if the cavity’s finesse is
not very high. This example shows that FP-LLE is a valuable
tool for the description of MI in FP resonators. However, the
mean-field model fails to describe some particular regimes, as
it will be shown later.

IV. PULSED PUMP

A. Stationary periodic solutions

In this section we consider a pulsed pump with a repetition
rate that matches the round-trip time, meaning that Ein(t +
tR) = Ein(t ) is a periodic function. Equations (1) and (2) can
be analytically solved if dispersion is neglected (β2 = 0) [10].
The solution can be written in implicit form as

F (z, t ) = F (0, t − β1z) exp

[
iγ |F (0, t − β1z)|2z

+ iγ G
∫ z

0
|B(s, t − β1z + β1s)|2ds

]
,

B(z, t ) = B(0, t + β1z) exp

[
− iγ |B(0, t + β1z)|2z

− iγ G
∫ z

0
|F (s, t + β1z − β1s)|2ds

]
. (36)

In the following we restrict our attention to a piecewise-
constant (or quasi-cw) pump. We thus consider a train of
rectangular-shaped pump pulses of duration �t = frtR < tR
and constant amplitude Ein0:

Ein(t ) =
{

Ein0 if n tR < t < n tR + frtR

0 elsewhere.
(37)

Here, fr = �t/tR is the ratio between the pump pulse duration
and the cavity round-trip time (i.e., the duty cycle), and we
search for time-periodic (steady-state) solutions. In this case,
Eqs. (36) can be calculated explicitly:

F (z, t ) = F0 exp[iγ (|F0|2z + GXF (z, t ))]

if β1z + n tR < t < β1z + n tR + �t,

B(z, t ) = B0 exp[−iγ (|B0|2z + GXB(z, t ))]

if − β1z + n tR < t < −β1z + n tR + �t, (38)

where F0 and B0 are complex constants to be determined, and

XF (z, t ) =
∫ z

0
|B(s, t − β1z + β1s)|2ds,

XB(z, t ) =
∫ z

0
|F (s, t + β1z − β1s)|2ds. (39)

The XPM terms XF,B are piecewise-linear functions in (z, t ).
Their expressions are rather cumbersome, and reported in
Appendix D (Table I or II depending whether fr < 0.5 or
fr > 0.5). The complex constants of F0 and B0 are found by
imposing boundary conditions (2). We find that F0 and B0 are
still given by Eqs. (5), but with a different nonlinear phase
shift:

φNL = γ (1 + frG)
(
1 + ρ2

2

)|F0|2L. (40)

We see that the effect of periodic pumping is to reduce the
XPM by a factor fr . This is a peculiarity of the FP case:
pumping the cavity with quasi-cw pulses does change the
stationary states. For a ring resonator this effect is absent
because G = 0. If the pulse duration is much shorter than the
round-trip time ( fr 	 1), the stationary states tend to the ones
of a ring cavity.

B. Stability of quasi-cw solutions

We now consider the stability of the periodic solutions in
Eqs. (38) with respect to dispersive perturbations (β2 �= 0).
We assume that the forward and backward fields have the
following form:

F (z, t ) = Fp(z, t )(1 + f (z, t )), (41a)

B(z, t ) = Bp(z, t )(1 + b(z, t )), (41b)

where Fp, Bp are the periodic solutions in Eqs. (38), f , b small
perturbations, and we insert this ansatz in Eqs. (1). The inclu-
sion of dispersion is not compatible with the discontinuous
solutions in Eqs. (38), so we approximate the square pulse
with a smooth flat-top pulse with a rise time which is much
shorter than the pulse duration �t , but long enough to ne-
glect the dispersive effect on the stationary periodic solution.
In practice, we neglect the terms β2

∂Fp

∂t and β2
∂Bp

∂t in the
equations for the perturbations. Moreover, in the spirit of
the approximation made in Sec. III B, we assume G = 0 in
the equations for the perturbations. By expanding the pertur-
bations as in Eqs. (11), we obtain again Eqs. (12), with the
steady state given by Eqs. (5) and (40). Eventually, the MI
gain can be still calculated with Eq. (24), which depends on
the pulse duration through Eqs. (5) and (40).

Mean field

A similar analysis can be done also for the mean-field
model. The steady periodic solution ψp(t ) of Eq. (25) with
β2 = 0 with square pulse pumping, Eq. (37), has the same
temporal shape of the pump, with peak power Pp and constant
phase. The power Pp is given by the following cubic equation:

θ2
1 Pin = Pp(α2 + (φ0 + 2γ LPp(1 + frG))2). (42)

Again, we see that the effect of the pulsed pumping is to
reduce the XPM coefficient G by a factor fr . For a cw pump
fr = 1 and we recover Eq. (26).
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FIG. 5. (a) Steady states as a function of φ0 for Pin = 4 W and
different values of fr from 0% to 100% (the arrow points to increas-
ing values). (b) Gain spectrum obtained from Eq. (24) (solid curves)
and FP-LLE (dashed curves) for an intracavity power PF = 90 W
and φ0 = −0.04 rad for different values of fr . Cavity parameters:
see Fig. 4.

We perform a linear stability by considering a per-
turbed solution of the form ψ (t, τ ) = ψp(t ) + εn(τ )eiωnt +
ε−n(τ )e−iωnt and include dispersion. As done in the previous
section, we approximate the square pulse with a smooth flat-
top pulse with a rise time much shorter than the pulse duration
�t , but long enough to minimize the dispersive effects on the
stationary periodic solution. This way, we can neglect the term

β2
∂2ψp

∂t2 in the equations for the perturbations. By following the

procedure described in Sec. III C, and assuming
∫ �t

0 eiωnt dt ≈
0 (n �= 0), we find that the perturbations are ruled again by
Eqs. (30) with the substitution G → frG. At the end, the
results of the stability analysis given by Eqs. (31)–(35) are
still valid with G replaced by frG.

To illustrate the effect of the duration of the pump pulses,
we consider the FP cavity used in Fig. 4 with pulsed pumping.
Figure 5(a) presents the cavity response plotted as a function
of linear phase for various pulse durations. It can be observed
that, as the pulse duration increases, the resonance shape be-
comes more tilted. This phenomenon is not observed in ring
cavities since the XPM effect is absent, which results in an un-
changed resonance shape. This observation indicates that the
pulse duration is a significant control parameter in FP cavities.
To further emphasize this relationship, Fig. 5(b) shows the MI
gain spectrum for different pulse durations while maintaining
the intracavity power constant. Interestingly, it is noticed that
the maximum gain remains constant regardless of pulse dura-
tion, but the corresponding frequency is dependent on it.

The results of linear stability analysis permit to predict
the position of the unstable spectral bands even in the fully
nonlinear regime, where an almost periodic train of pulses,
i.e., a frequency comb, is generated. Figure 6 shows the results
of the numerical solution of FP-LLE with a standard Fourier
split-step method. The initial condition is a cw [Figs. 6(a) and
6(b)] or a periodic steady state [Figs. 6(c) and 6(d)] perturbed
by a small random noise and it is propagated over 1000 round
trips in order to reach a stable state. For a cw pump, we see
in Fig. 6(a) that the field fills all the cavity (the time window
extends from −tR/2 to tR/2) and is composed of a quasiperi-
odic sequence of short pulses (see inset). The spectrum is
composed of several lines generated by cascaded four-wave
mixing (FWM), and the position of the first sideband is per-
fectly predicted by the linear stability analysis (LSA; black
dashed line). For a pulsed pump, we see in Fig. 6(c) that

FIG. 6. Numerical simulations of MI-induced frequency comb
generation for [(a), (b)] cw and [(c), (d)] pulsed pumping with
fr = 0.2. [(a), (c)] Intracavity power and [(b), (d)] spectrum after
1000 round trips. Orange curves correspond to FP-LLE, while blue
curves correspond to the full model. The horizontal cyan line in the
insets represents the input field. Black vertical dashed lines indicate
the peak MI gain from Eq. (32): 1148 GHz in (b) and 759 GHz in (d).
Initial intracavity power PF = 90 W and φ0 = −0.04 rad; the rest of
parameters are as in Fig. 4.

the cavity is partially empty. The field is composed of bursts
of short pulses, as highlighted in the inset. The spectrum is
still composed of several lines, but the spacing is different as
predicted by the LSA (black dashed line). The experimental
demonstration of these phenomena was recently published
[32]. In Figs. 6(a)–(d) orange curves are the temporal and
spectral traces obtained from the numerical solution of FP-
LLE, while blue curves are obtained from coupled NLSEs.
For the numerical solution of coupled NLSEs (1) and (2)
we used a split-step, predictor-corrector method evolved in
time [33]. We can see a very good agreement of the spectra
in Figs. 6(b) and 6(d). The slight discrepancies are mainly
due to the fact that the initial seed is random noise, which
is not identical in the two simulations. The overall agreement
of temporal traces in Figs. 6(a) and 6(c) is also good. The
insets show a zoom on a limited temporal span, showing a
remarkable quantitative agreement. The numerical simulation
of FP-LLE took only 0.5 min on a standard workstation, while
the full model took 9 h (1000 times slower) for the same
number of round trips and the same frequency span. The long
computation time for the coupled NLSEs is mainly caused
by the counterpropagation, which imposes to solve two equa-
tions with two different group velocities. More specifically,
the spatial and temporal grids are linked to each other by the
Courant-Friedrichs-Lewy condition, which in our case gives
�t = β1�z because we integrate along the characteristics
[33]. That means that once the spatial grid is fixed, the size
of the numerical time step is also fixed and is typically a tiny
fraction of the round-trip time. Conversely, for the FP-LLE
the two grids are independent and, more importantly, the field
evolves slowly, making it possible to massively reduce the
number of time steps. The maximal size of the time step is
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FIG. 7. Instability chart, obtained using [(a), (b)] the FP-LLE
model and [(c), (d)] the full model in the (φ0, PF ) plane for [(a),
(c)] anomalous and [(b), (d)] normal GVD regimes. Modulationally
unstable domains are shaded in blue and continuous-wave unstable
domains are hatched. Solid curves correspond to P±, which delimits
the bistable region. Dash-dotted curves delimit the low-frequency
limit of the MI unstable domains from Eqs. (35). Vertical dotted
lines separate mono- and bistable regimes and the horizontal dotted
lines show the threshold power Pth. Panels (c) and (d) show the
two-dimensional map of the maximum gain for the full model from
Eq. (24). Parameters as in Fig. 4.

typically imposed to avoid sideband instabilities typical of
split-step methods [34].

V. LIMITATIONS OF THE MEAN-FIELD MODEL

The examples presented in the previous sections showed
that FP-LLE permits to accurately reproduce the results of
the full model. However, the derivation of FP-LLE involves
approximations that result in inherent limitations. In order to
identify the regions in the parameter space where the mean-
field model breaks down, we draw a chart of instability from
the results of LSA.

We start by considering FP-LLE. Modulation instability
occurs when gmax > 0, and using Eq. (32), we can derive
the intracavity power threshold Pth = α/(2γ L), which is in-
dependent of φ0 and the sign of the GVD parameter. Figure 7
illustrates the bistability and MI regions as a function of the
cavity linear phase φ0, with hatched areas corresponding to
the negative-slope branch of the bistable curve between P−
and P+ from Eq. (34), blue area corresponding to the MI
region, and white areas to the stable region. For β2 < 0, MI
arises in both bistable and monostable regimes when PF >

Pth, whereas for β2 > 0, MI arises only in the bistable regime
and is confined to a relatively small domain. The dash-dotted
curve delimits the low-frequency limit of the MI unstable
domains from Eqs. (35). It is worth noting that for certain
values of (φ0, PF ) in the bistable region, only the mode ω = 0
is unstable, which is a distinguishing feature of FP cavities.

For the full model, the boundary between the stable and
unstable regions is given by Eq. (19), which is the solution
of the equation g(ω) = 0 from Eq. (24). Figures 7(c) and
7(d) show the MI gain calculated from Eq. (24), over the
full range of cavity linear phase (−π, π ). Differently than
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FIG. 8. Color level plot of gain g(ω) in the plane (ω, φ0)
of frequency and cavity linear phase (detuning), calculated from
(a) Eq. (24) and (b) FP-LLE [Eq. (31)], with intracavity power
PF = 500 W. The dashed horizontal lines delimit an estimate of the
region of validity of the LLE. Parameters as in Fig. 4.

FP-LLE, the MI power threshold does depend on φ0. In par-
ticular, both in the normal and the anomalous regimes, we can
see two unstable tongues, one centered around zero detuning
and the other around φ0 = π . The unstable region centered at
φ = 0 corresponds to even values of m in Eq. (23), meaning
that the unstable frequencies correspond to cavity resonances
ωtR = 2nπ . However, the unstable region centered at φ = π

corresponds to odd values of m in Eq. (23), meaning that the
unstable frequencies ωtR = (2n + 1)π are in between two res-
onances (antiresonance). We may identify in this second case
the period-doubling (P2) MI, which has been described before
for ring cavities [29,35–37]. The difference between standard
(i.e., period one, P1) MI and P2 MI is that the modulations
developing from the instability are in phase (P1) or shifted
by half a temporal period (P2) at each round trip. It is worth
noting that previous theoretical studies on P2 MI were based
on the Ikeda map, which does not permit to resolve the cavity
modes. As happens in ring resonators, the FP-LLE fails to
predict P2 instabilities. To highlight this feature, we report in
Fig. 8(a) the gain in (ω, φ0) obtained from Eq. (24). The two
instability branches are labeled P1 and P2 in the figure. The
P1 instability is captured by FP-LLE, as shown in Fig. 8(b).
On the other hand, the P2 instability is not visible in the gain
calculated from FP-LLE.

In the following we complement the results of the linear
stability analysis with numerical solution of the governing
equations in the fully developed nonlinear regime. Figure 9
reports the generation of a P1 MI comb from numerical
simulations of Eqs. (1) and (2) (blue curves) and FP-LLE in
Eq. (25) (red curves). Figure 9(a) shows the output spectrum
after 10 000 round trips, where a steady state is reached.
The position of the unstable bands is well predicted by LSA
( fmax = 1050 GHz). Figure 9(b) shows a zoom of the temporal
behavior of the intracavity field at the output mirror at round
trip 10 000. The field is composed of an almost periodic train
of short pulses, which reproduces itself at each round trip.
Figures 9(a) and 9(b) show a good agreement between the
full and mean-field models (blue and red curves). For this
simulation, the computation time for the mean-field model
was divided by around 1500 times with respect to the full
model. Figure 9(c) shows a zoom of the spectrum around the
maximum of the first band: only frequencies corresponding to
the the cavity resonances are excited, as predicted by LSA and
shown in Fig. 9(d).
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FIG. 9. (a) Output spectrum after 10 000 round trips. Blue
dashed and red solid curves correspond to the full model and FP-
LLE. (b) Intracavity power at the output mirror as a function of
normalized time t − ntR, n = 10 000. Blue dashed and red solid
curves correspond to the full model and FP-LLE. (c) Zoom on the
spectrum around the 1038th resonance (FSR = 1 GHz). Blue curve
and red dots correspond to the full model and FP-LLE. (d) Graphical
solution of Eq. (A4). PF = 50 W, φ0 = 0. Rest of parameters as in
Fig. 4. Simulation time around 23 h for the full model, 50 s for
FP-LLE.

Figure 10 reports the generation of a P2 MI comb from
numerical simulations of Eqs. (1) and (2). Figure 10(a) shows
the output spectrum after 10 000 round trips, where a steady
state is reached. The position of the unstable bands is well pre-
dicted by LSA ( fmax = 555 GHz). Quite surprisingly, the first
FWM band around 2 fmax is not generated, whereas the second
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FIG. 10. (a) Output spectrum after 10 000 round trips. Verti-
cal dashed line is the maximally unstable frequency obtained from
LSA. (b) Intracavity power at the output mirror as a function of
normalized time (t − ntR )/tR, n = 9999, 10 000. Blue dashed and
red solid curves correspond to the round trips 9999 and 10 000.
(c) Zoom on the spectrum around the 600th resonance (FSR =
1 GHz). (d) Graphical solution of Eq. (A4). PF = 50 W, φ0 = 0.98π .
Rest of parameters as in Fig. 4. Simulation time around 20 h.

FWM band is clearly visible around 3 fmax. Figure 10(c) shows
a zoom of the spectrum around the maximum of the first
band: the modes have frequencies which fall in between two
adjacent cavity resonances, as predicted by LSA shown in
Fig. 10(d).

This observation may explain why first-order FWM is
not present. Indeed, the spectrum of the field is composed
of lines at antiresonance. Frequency doubling of the first
sideband will lead to lines at cavity resonances, which
are inhibited in this configuration. The analysis of the
features of the fully developed P2 MI pattern is still under
investigation. Figure 10(b) shows the the temporal behavior
of the intracavity field at the output mirror at two consecutive
round trips. We clearly see that the two traces are out of
phase, the typical signature of P2 MI.

VI. CONCLUSION

We have studied modulation instability in Kerr Fabry-Perot
cavities. Starting from a coupled NLSE description of the
cavity dynamics, we have derived the exact dispersion relation
for the perturbations and we found approximate analytical
expressions for the instabilities threshold and gain spectrum
of modulation instability. We showed that, in contrast to ring
resonators, both the stationary solutions and the gain spectrum
depend on the pump-pulse duration. We derived the extended
Lugiato-Lefever equation for the Fabry-Perot resonator (FP-
LLE) starting from coupled nonlinear Schrödinger equations
and we compared the results of the stability analysis of the
two models. While FP-LLE gives overall good results, we
showed regimes that are not captured by the mean-field limit,
namely, the period-two modulation instability, which may ap-
pear in highly detuned or nonlinear regimes. In the limit of
vanishing dispersion, period doubling (Ikeda) instability may
occur for homogeneous solutions [10], which leads to self-
pulsing and the generation of square waves. This behavior,
which is not captured by the mean-field approach, was studied
recently in a particular Fabry-Perot resonator (Gires-Tournois
interferometer) [38,39]. We reported numerical simulations
of the generation of MI-induced Kerr combs by solving
FP-LLE and the coupled NLSE. Overall, our study aims at
gaining a deeper understanding of the nonlinear dynamics of
Fabry-Perot cavities, which could have important implications
for the development of new technologies and applications
in fields such as telecommunications, optical sensing, and
metrology. Our theory is a valuable support for the interpre-
tation of some recent experiments in fiber resonators [20,32].
The findings of our study could potentially assist the design
of more efficient and robust cavity-based systems.
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APPENDIX A: EXACT DISPERSION RELATION

The matrix differential equation (12) is linear and ho-
mogeneous, so it can be solved by standard methods (e.g.,
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matrix exponential). However, the analytic expressions are
very cumbersome since they depend on the roots of a general
fourth-order polynomial. The eigenvalues η j ( j = 1 − 4) of
M are given by the roots of the characteristic polynomial

η4
j + a2η

2
j + a1η j + a0 = 0, (A1)

where

a2 = β2
2

2
λ4 − 2β2

1λ2 − γ PF
(
1 + ρ2

2

)
β2λ

2,

a1 = 2γ PF β1β2
(
1 − ρ2

2

)
λ3,

a0 = β4
2

16
λ8 + β2

2

4
(2β2

1 − γ PF
(
1 + ρ2

2

)
β2)λ6

+(
β4

1 − γ PF β2
1β2

(
1 + ρ2

2

) − γ 2P2
F ρ2

2 (G2 − 1)β2
2

)
λ4.

The solution of Eqs. (12) can be expressed in terms of eigen-
values and eigenvectors of M:

( f+, f−, b+, b−)T =
4∑

j=1

c je
η j zu j, (A2)

where u j = (u j,1, u j,2, u j,3, u j,4)T are the eigenvectors of M.
The four arbitrary constants c j are determined by the bound-
ary conditions.

Indeed, by inserting Eq. (A2) [identical to Eq. (14), re-
ported here for clarity] in Eq. (13), we obtain a system of
algebraic equations N (c1, c2, c3, c4)T = 0, where

N =

⎛
⎜⎜⎜⎜⎝

(u1,1 − u1,3)eη1L (u2,1 − u2,3)eη2L (u3,1 − u3,3)eη3L (u4,1 − u4,3)eη4L

(u1,2 − u1,4)eη1L (u2,2 − u2,4)eη2L (u3,2 − u3,4)eη3L (u4,2 − u4,4)eη4L

u1,1 − ρ1ρ2e+iφu1,3 u2,1 − ρ1ρ2e+iφu2,3 u3,1 − ρ1ρ2e+iφu3,3 u4,1 − ρ1ρ2e+iφu4,3

u1,2 − ρ1ρ2e−iφu1,4 u2,2 − ρ1ρ2e−iφu2,4 u3,2 − ρ1ρ2e−iφu3,4 u4,2 − ρ1ρ2e−iφu4,4

⎞
⎟⎟⎟⎟⎠. (A3)

In order to have a nontrivial solution, we must impose the determinant of N to be zero, which yields

det N = C1,2e(η1+η2 )L + C1,3e(η1+η3 )L + C1,4e(η1+η4 )L + C2,3e(η2+η3 )L + C2,4e(η2+η4 )L + C3,4e(η3+η4 )L = 0, (A4)

where

C1,2 = +[
u3,1u4,2 − u3,2u4,1 + ρ2

1ρ2
2 (u3,3u4,4 − u3,4u4,3) − ρ1ρ2((u3,1u4,4 − u3,4u4,1)e−iφ − (u3,2u4,3 − u3,3u4,2)e+iφ )

]
σ1,2,

C1,3 = −[
u2,1u4,2 − u2,2u4,1 + ρ2

1ρ2
2 (u2,3u4,4 − u2,4u4,3) − ρ1ρ2((u2,1u4,4 − u2,4u4,1)e−iφ − (u2,2u4,3 − u2,3u4,2)e+iφ )

]
σ1,3,

C1,4 = +[
u2,1u3,2 − u2,2u3,1 + ρ2

1ρ2
2 (u2,3u3,4 − u2,4u3,3) − ρ1ρ2((u2,1u3,4 − u2,4u3,1)e−iφ − (u2,2u3,3 − u2,3u3,2)e+iφ )

]
σ1,4,

C2,3 = +[
u1,1u4,2 − u1,2u4,1 + ρ2

1ρ2
2 (u1,3u4,4 − u1,4u4,3) − ρ1ρ2((u1,1u4,4 − u1,4u4,1)e−iφ − (u1,2u4,3 − u1,3u4,2)e+iφ )

]
σ2,3,

C2,4 = −[
u1,1u3,2 − u1,2u3,1 + ρ2

1ρ2
2 (u1,3u3,4 − u1,4u3,3) − ρ1ρ2((u1,1u3,4 − u1,4u3,1)e−iφ − (u1,2u3,3 − u1,3u3,2)e+iφ )

]
σ2,4,

C3,4 = +[
u1,1u2,2 − u1,2u2,1 + ρ2

1ρ2
2 (u1,3u2,4 − u1,4u2,3) − ρ1ρ2((u1,1u2,4 − u1,4u2,1)e−iφ − (u1,2u2,3 − u1,3u2,2)e+iφ )

]
σ3,4,

and

σi, j = (ui,1 − ui,3)(u j,2 − u j,4) − (u j,1 − u j,3)(ui,2 − ui,4).

APPENDIX B: MODULATION INSTABILITY IN A RING
CAVITY WITH A TAP COUPLER

We consider a ring resonator composed of two spans of
identical fiber connected to an input coupler 1 and a tap cou-
pler 2, as illustrated in Fig. 2. If there is no coupling between
forward and backward fields, it is easy to obtain a map that
describes the behavior of the system at each round trip [40].
The fields propagating in the two spans satisfy NLSEs

i
∂Fn

∂z
− β2

2

∂2Fn

∂t2
+ γ |Fn|2Fn = 0, 0 < z < L, (B1)

i
∂Bn

∂z
− β2

2

∂2Bn

∂t2
+ γ |Bn|2Bn = 0, L < z < 2L, (B2)

and they are coupled by the following boundary conditions at
couplers:

Fn+1(0, t ) = θ1Ein + ρ1eiφ0 Bn(2L, t ), (B3)

Bn(L, t ) = ρ2Fn(L, t ). (B4)

The total linear phase φ0 accounts for propagation and phase
from the couplers and the index n counts the number of round
trips.

1. Steady states

Steady-state solutions of Eqs. (B1) and (B2) read as

Fn(z, t ) = F0eiγ PF z, PF = |F0|2, (B5)

Bn(z, t ) = B0eiγ PBz, PB = |B0|2. (B6)

By using the boundary conditions, we find the cavity transfer
function,

F0 = θ1Ein

1 − ρ1ρ2 exp[i(φ0 + φNL )]
, (B7)

which permits to write the input power Pin = |Ein|2 as a func-
tion of intracavity forward power PF = |F0|2 as

Pin = PF

θ2
1

(1 + (ρ1ρ2)2 − 2ρ1ρ2 cos(θ0)), (B8)

with θ0 = φ0 + φNL = φ0 + γ PF L(1 + ρ2
2 ).
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It is worth noting that Eq. (B7) is equivalent to the steady
state of a FP resonator with G = 0 and it is also equivalent to
the steady state of a ring resonator of length 2L if ρ2 = 1.

2. Linear stability analysis

We consider a perturbation of the steady state in the fol-
lowing form:

Fn(z, t ) = (
√

PF + η)eiγ PF z, (B9)

Bn(z, t ) = (ρ2
√

PF + ε)eiγ ρ2
2 PF zeiγφB , (B10)

where we have assumed without loss of generality F0 real,
which fixes the phase φB = γ LPF (1 − ρ2

2 ) through boundary
condition (B4). Linearization around steady solutions gives
the equations for the perturbations:

iηz − β2

2
ηtt + γ PF (η + η∗) = 0, (B11)

iεz − β2

2
εtt + γ ρ2

2 PF (ε + ε∗) = 0. (B12)

We split perturbations into real and imaginary parts, η =
a + ib and ε = c + id , and we substitute into Eqs. (B11) and
(B12) and Fourier transform to get

(
â

b̂

)
z

=
⎛
⎝ 0 − β2ω

2

2

β2ω
2

2 + 2γ PF 0

⎞
⎠(

â

b̂

)
,

(
ĉ

d̂

)
z

=
⎛
⎝ 0 − β2ω

2

2

β2ω
2

2 + 2γ ρ2
2 PF 0

⎞
⎠(

ĉ

d̂

)
. (B13)

The fundamental matrix solutions of systems (B13) are

M(z) =
(

cos kz − β2ω
2

2k sin kz
2k

β2ω2 sin kz cos kz

)
, (B14)

N (z) =
(

cos kρz − β2ω
2

2kρ
sin kρz

2kρ

β2ω2 sin kρz cos kρz

)
, (B15)

with k, kρ defined in Eqs. (16) with P = PF and λ = iω. The
boundary conditions give the following relations:(

ĉn(L)

d̂n(L)

)
= ρ2

(
ân(L)

b̂n(L)

)
,

(
ân+1(0)

b̂n+1(0)

)
= ρ1

(
cos θ0 − sin θ0

sin θ0 cos θ0

)(
ĉn(2L)

d̂n(2L)

)
. (B16)

By combining propagation and boundary conditions, we
get the following difference equation:(

ân+1(0)

b̂n+1(0)

)
= S

(
ân(0)

b̂n(0)

)
, S = ρ1ρ2RN (L)M(L), (B17)

and R is the rotation matrix defined in Eq. (B16).

The eigenvalues λ1,2 of matrix S determine the stability of
the steady solution. We find

λ1,2 = �̃

2
±

√
�̃2

4
− |ρ1ρ2|2, (B18)

with �̃ as defined in Eq. (20). Instability takes places if
|λ1,2| > 1 and the MI gain is

g(ω) = 1

2L
ln max

∣∣∣∣∣∣
�̃

2
±

√
�̃2

4
− |ρ1ρ2|2

∣∣∣∣∣∣, (B19)

which coincides with the gain for the FP resonator found
before in Eq. (24).

APPENDIX C: FP-LLE DERIVATION

We derive a mean-field model, which generalizes the
Lugiato-Lefever equation, for the description of a passive
driven fiber Fabry-Perot cavity. We follow an approach sim-
ilar to the one developed in Ref. [17] but with a different
starting point, namely, coupled NLSEs [Eqs. (1) and (2)]
rather than Maxwell-Bloch equations. While Maxwell-Bloch
equations are more general, they are not routinely used in
the nonlinear fiber-optics community, where the characteristic
parameters of the fibers (group velocity dispersion, nonlinear
coefficient, etc.) can be directly plugged into NLSEs. The
main steps are (i) changing variables to make the bound-
ary conditions periodic and to include the pump term in the
propagation equation, (ii) taking the good-cavity (or mean-
field) approximation, and (iii) deriving a partial differential
equation using the modal equations. We start by defining the
following change of variables [1,41]:

F̃ (z, t ) = exp

[
z − L

L

(
ln ρ1 + i

φ0

2

)
− νz

]
F (z, t )

+ θ1

ρ1
exp

(
−i

φ0

2

)
z − L

2L
Ein(t − β1z), (C1a)

B̃(z, t ) = exp

[
− z

L

(
ln ρ2 + i

φ0

2

)
− νz − i

φ0

2

]
B(z, t )

− θ1

ρ1
exp

(
−i

φ0

2

)
z − L

2L
Ein(t + β1z), (C1b)

with ν = 1
2L ln(ρ1/ρ2). This transformation is more general

than the one proposed in Refs. [1,41] because we allow the
two mirrors to be different and the pump may vary in time.
The boundary conditions given by Eqs. (2) for the new vari-
ables are simplified to

F̃ (0, t ) = B̃(0, t ),

F̃ (L, t ) = B̃(L, t ). (C2)

The simplification of the boundary conditions is paid for
by an increase in complexity of the propagation equations.
We thus restrict our analysis to good cavities (ρ1,2 → 1 and
φ0 → 0), for which we can obtain a mean-field description.
From Eqs. (C1) we calculate ∂zF , ∂t F , ∂zB, ∂t B as a func-
tion of F̃ , B̃ and their derivatives. We truncate the obtained
expressions at first order in ρ1,2 and φ0 and insert them into
Eqs. (1). By considering that dispersion and nonlinearity are
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weak (assumptions already used to derive NLSEs), we can
use zero-order expansion (F̃ = F , B̃ = B) in the dispersive
and nonlinear terms. These approximations permit to greatly
simplify the propagation equations as follows:

∂F̃

∂z
+ β1

∂F̃

∂t
+ i

β2

2

∂2F̃

∂t2
− 1

L

(
ln ρ1ρ2

2
+ i

φ0

2

)
F̃

− θ1

2L
Ein(t − β1z) = iγ

(|F̃ |2 + G|B̃|2)F̃ , (C3a)

−∂B̃

∂z
+ β1

∂B̃

∂t
+ i

β2

2

∂2B̃

∂t2
− 1

L

(
ln ρ1ρ2

2
+ i

φ0

2

)
B̃

− θ1

2L
Ein(t + β1z) = iγ

(|B̃|2 + G|F̃ |2)B̃. (C3b)

1. Modal equations

We start by finding the modes of the empty and undriven
(cold) cavity; then we expand the fields of the hot cavity
in terms of the modes of the cold cavity and derive the
equations ruling the slow evolution of the modal amplitudes.
By taking β2 = φ0 = Ein = γ = 0, we solve Eqs. (C3) with
boundary conditions (C2), to find

F̃ (z, t ) = A exp

[(
β1λ + ln ρ1ρ2

2L

)
z

]
e−λt , (C4a)

B̃(z, t ) = A exp

[
−

(
β1λ + ln ρ1ρ2

2L

)
z

]
e−λt , (C4b)

with

exp[2β1λL + ln(ρ1ρ2)] = 1, (C5)

where A and λ are constants. By defining λ = κ + iω, we get
from Eq. (C5)

ωm = mπ

β1L
and κ = − ln(ρ1ρ2)

2β1L
, (C6)

which are the frequencies and the decay rate of the cavity
modes. We may write the modes of the cold cavity as

F̃m(z, t ) = e−κt e−iωm (t−β1z), (C7a)

B̃m(z, t ) = e−κt e−iωm (t+β1z). (C7b)

The fields in the full model can now be written as the
sum of the lossless cold cavity modes, allowing for a slow
temporal variation of the modal amplitudes, which is induced
by pumping, nonlinear, and dispersive effects. Note that the
small damping κ is also accounted for in the slowly varying
modal amplitudes. We thus may write

F̃ (z, t ) =
∑

m

am(t )e−iωm (t−β1z), (C8a)

B̃(z, t ) =
∑

m

am(t )e−iωm (t+β1z). (C8b)

We consider a periodic input, synchronized with the cavity
repetition rate, which can be expanded in Fourier series as
follows:

Ein(t ) =
∑

m

Sme−iωmt . (C9)

We insert Eqs. (C8) and (C9) in Eq. (C3 a), multiply by
eiωn (t−β1z), and integrate in z ∈ [−L, L] to obtain

β1ȧn −
(

ln(ρ1ρ2)

2L
+ i

φ0

2L

)
an

+ i
β2

2

(
än − 2iωnȧn − ω2

nan
) − θ1

2L
Sn

= iγ
∑
n′,n′′

an′a∗
n′′ (an−n′+n′′ + Gan+n′−n′′e−2i(ωn′ −ωn′′ )t ).

(C10)

We assume that the modal amplitudes change slowly over
a round trip, i.e., |ȧn| 	 |ωnan|. This assumption permits to
simplify the dispersive contribution, by neglecting the time
derivatives of the modal amplitudes in the third term of
Eq. (C10). Moreover, by integrating Eq. (C10) in time over
one round trip, and considering an(t ) constant in this range,
the fast oscillations in the second nonlinear term are averaged
out. We eventually obtain

ȧn +
(

κ − i
φ0

2β1L
− i

β2

2β1
ω2

n

)
an − θ1

2β1L
Sn

= i
γ

β1

( ∑
n′,n′′

an′a∗
n′′an−n′+n′′ + Gan

∑
n′

|an′ |2
)

. (C11)

The same equation is also obtained by following a similar
procedure starting from Eq. (C3 b).

2. Mean-field FP-LLE

We may now define the slowly varying envelope of the
forward and backward fields in the laboratory frame as

ψ (z, t ) =
∑

m

am(t )e−iωmt eiβ1ωmz, (C12a)

ψB(z, t ) =
∑

m

am(t )e−iωmt e−iβ1ωmz. (C12b)

It is apparent that the fields are periodic in space of pe-
riod 2L and they satisfy ψ (z, t ) = ψB(−z, t ). Thanks to this
relation we can relate the fields in the “nonphysical” cavity
−L < z < 0 to the real cavity 0 < z < L to their counterprop-
agating counterparts [17]. By using

∂ψ

∂t
=

∑
m

(ȧm(t ) − iωmam)e−iωmt eiβ1ωmz,

∂nψ

∂zn
=

∑
m

(iβ1ωm)nam(t )e−iωmt eiβ1ωmz,

we easily get

∂ψ

∂t
+ 1

β1

∂ψ

∂z
+

(
κ − i

φ0

2β1L

)
ψ

+ i
β2

2β3
1

∂2ψ

∂z2
− θ1

2β1L
Ein(t − β1z)

= i
γ

β1

(
|ψ |2 + G

2L

∫ L

−L
|ψ (z′, t )|2dz′

)
ψ. (C13)

By means of the change of variable z → −z + t/β1 (mod
2L) and multiplying by the round-trip time tR = 2β1L
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TABLE I. Cross-phase terms for fr < 0.5.

fr < 0.5

Time interval Space interval XF (z, t ) XB(z, t )

0 < t <
tR
2 fr 0 < z < t

β1
|B0|2z |F0|2z

t
β1

< z < 2 frL − t
β1

0 |F0|2( z
2 + t

2β1
)

2 frL − t
β1

< z < L 0 0
tR
2 fr < t < tR fr 0 < z < 2 frL − t

β1
|B0|2z |F0|2z

2 frL − t
β1

< z < t
β1

|B0|2( z
2 − t

2β1
+ frL) 0

t
β1

< z < L 0 0
tR fr < t <

tR
2 0 < z < t

β1
− 2 frL 0 0

t
β1

− 2 frL < z < t
β1

|B0|2( z
2 − t

2β1
+ frL) 0

t
β1

< z < L 0 0
tR
2 < t <

tR
2 (1 + fr ) 0 < z < t

β1
− 2 frL 0 0

t
β1

− 2 frL < z < 2L − t
β1

|B0|2( z
2 − t

2β1
+ frL) 0

2L − t
β1

< z < L |B0|2(z − L(1 − fr )) |F0|2(z − L(1 − fr ))
tR
2 (1 + fr ) < t < tR( 1

2 + fr ) 0 < z < 2L − t
β1

0 0
2L − t

β1
< z < t

β1
− 2 frL 0 |F0|2( z

2 + t
2β1

− L)
t
β1

− 2 frL < z < L |B0|2(z − L(1 − fr )) |F0|2(z − L(1 − fr ))
tR( 1

2 + fr ) < t < tR 0 < z < 2L − t
β1

0 0
2L − t

β1
< z < 2L(1 + fr ) − t

β1
0 |F0|2( z

2 + t
2β1

− L)
2L(1 + fr ) − t

β1
< z < L 0 0

we get

tR
∂ψ

∂t
= − (α − iφ0)ψ − 2iL

β2

2β2
1

∂2ψ

∂z2
+ θ1Ein(β1z)

+ 2iLγ

(
|ψ |2 + G

2L

∫ L

−L
|ψ (z′, t )|2dz′

)
ψ, (C14)

where α = κtR = − ln(ρ1ρ2) ≈ 1 − ρ1ρ2. This form of FP-
LLE reduces to the one obtained by Cole et al. [17] for the
case of cw pumping and identical mirrors. Its structure is usual
in the context of microresonators [42]. More precisely, the
evolution is in time and the transverse dimension is the space
with periodic boundary conditions.

In fiber ring resonators it is customary to have evolution
in space (also called slow time) and a temporal transverse
coordinate [31,43]. The role of time and space can be swapped
at first order if we consider that the most important effect is the
translation at the group velocity [44,45]. Indeed, in Eq. (C13)
the first two terms are of order one, while the remaining ones
are first-order corrections. This means that, at the lowest order,
we have

∂ψ

∂z
≈ −β1

∂ψ

∂t
and

∂2ψ

∂z2
≈ β2

1
∂ψ

∂t2
. (C15)

By using the second of the relations above in Eq. (C13) and
making the change of variable t → t − β1z, we get the space-
propagated version of the FP-LLE,

2L
∂ψ

∂z
= − (α − iφ0)ψ − iLβ2

∂2ψ

∂t2
+ θ1Ein(t )

+ 2iγ L

(
|ψ |2 + G

tR

∫ tR/2

−tR/2
|ψ (z, t ′)|2dt ′

)
ψ,

(C16)

where z > 0 and −tR/2 < t < tR/2. Even if Eq. (C16) and
Eq. (C13) have the same degree of approximation, only the
time-propagated version has the correct boundary conditions.
Indeed, in Eq. (C16) we have assumed that the field is pe-
riodic in time, which is not strictly true. This also implies
that the modes have a constant frequency spacing (FSR),
while in reality the FSR changes slightly because of dis-
persion. Conversely, in Eq. (C14) the modes have equally
spaced wave numbers, but their frequencies are fixed by
the dispersion relation. These facts are almost irrelevant in
standard (i.e., “long,” tens of meters) fiber ring resonators,
because the round-trip time is usually much longer than the
pulse circulating in the resonator. This usually allows one to
consider an infinite round-trip time with constant boundary
conditions. The field is no longer considered periodic and its
spectrum, which is now continuous, gives the envelope of the
discrete spectrum of the full optical field circulating in the
cavity.

APPENDIX D: EXACT SOLUTION FOR SQUARE
PULSE PUMPING

In this section we report the explicit expressions of
the cross-phase modulation terms in Eqs. (39), for t ∈
[0, tR], given the periodicity of the functions. The expres-
sions are different depending if the duty cycle fr of the
square pulse is greater or lesser than 0.5. The funda-
mental period [0, tR] is divided into six intervals, where
functions (39) have different forms. For each time in-
terval, there exist three different spatial intervals where
functions (39) are different in general. Tables I and II re-
port the explicit expressions of Eqs. (39) for fr < 0.5 and
fr > 0.5.
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TABLE II. Cross-phase terms for fr > 0.5.

fr > 0.5

Time interval Space interval XF (z, t ) XB(z, t )

0 < t < tR( fr − 1
2 ) 0 < z < t

β1
|B0|2z |F0|2z

t
β1

< z < t
β1

+ 2L(1 − fr ) 0 |F0|2( z
2 + t

2β1
)

t
β1

+ 2L(1 − fr ) < z < L |B0|2(z − L(1 − fr )) |F0|2(z − L(1 − fr ))
tR( fr − 1

2 ) < t <
tR
2 fr 0 < z < t

β1
|B0|2z |F0|2z

t
β1

< z < 2 frL − t
β1

0 |F0|2( z
2 + t

2β1
)

2 frL − t
β1

< z < L 0 0
tR
2 fr < t <

tR
2 0 < z < 2 frL − t

β1
|B0|2z |F0|2z

2 frL − t
β1

< z < t
β1

|B0|2( z
2 − t

2β1
+ frL) 0

t
β1

< z < L 0 0
tR
2 < t < tR fr 0 < z < 2 frL − t

β1
|B0|2z |F0|2z

2 frL − t
β1

< z < 2L − t
β1

|B0|2( z
2 − t

2β1
+ frL) 0

2 frL − t
β1

< z < L |B0|2(z − L(1 − fr )) |F0|2(z − L(1 − fr ))
tR fr < t <

tR
2 (1 + fr ) 0 < z < t

β1
− 2 frL 0 0

t
β1

− 2 frL < z < 2L − t
β1

|B0|2( z
2 − t

2β1
+ frL) 0

2L − t
β1

< z < L |B0|2(z − L(1 − fr )) |F0|2(z − L(1 − fr ))
tR
2 (1 + fr ) < t < tR 0 < z < 2L − t

β1
0 0

2L − t
β1

< z < t
β1

− 2 frL 0 |F0|2( z
2 + t

2β1
− L)

t
β1

− 2 frL < z < L |B0|2(z − L(1 − fr )) |F0|2(z − L(1 − fr ))
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