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Poincaré-sphere symmetries in four-wave mixing with orbital angular momentum
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We explore a degenerate four-wave mixing process induced by transversely structured light beams in a
rubidium vapor cell. In particular, we consider the nonlinear interaction driven by optical modes contained in
the orbital angular momentum Poincaré sphere, which can be parametrized in terms of a polar and an azimuthal
angle. In this context we investigate the transfer of spatial structure to two distinct four-wave mixing (FWM)
signals, possessing different propagation directions in space. We show that under usual assumptions, the output
fields can also be described by modes belonging to Poincaré spheres, and that the angles describing the input and
output modes are related according to well-defined rules. Our experimental results show good agreement with
the calculations, which predict intricate field structures and a transition of the FWM transverse profile between
the near- and far-field regions.
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I. INTRODUCTION

In recent years, the spatial structure of light has seen a
significant increase in research interest, both in fundamental
studies and in applications and technological developments
[1]. The understanding of effects attributed to the transverse
structure of light in optical phenomena and the ability to
control the spatial degrees of freedom of the light field have
allowed numerous advances in the optical sciences [2]. We
may highlight fundamental properties of electromagnetic radi-
ation [3,4], quantum optics [5,6], manipulation of matter [7,8],
holography [9], information multiplexing [10–12], quantum
communication [13,14], metrology [15], and nonlinear light-
matter interactions [16–21].

The starting point of these advances can be traced back
to 1992, when the seminal work of Allen et al. [22] estab-
lished the connection between the orbital angular momentum
(OAM) of a light beam and its spatial distribution. This break-
through originated the field of light OAM, which over the past
three decades has grown immensely and has transformed in
such a way as to be recognized today as the more general field
of structured light [1]. Shortly after these advancements, the
investigation of the role played by OAM in nonlinear optical
processes started in second-order harmonic generation (SHG)
[23–25]. Today, SHG and other second-order optical phenom-
ena offer a highly versatile platform to study the transverse
degrees of freedom of light.

Four-wave mixing, a third-order nonlinear optical pro-
cess, has also been extensively employed in the context
of structured light [21,26–32]. The parametric gain in
free space four-wave mixing is considerably higher than
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in three-wave processes. Moreover, four-wave mixing has
become an important method for generating quantum-
correlated beams [26]. These quantum correlations have been
used to produce OAM-multiplexed continuous-variable entan-
glement, allowing deterministic all-optical quantum telepor-
tation and quantum dense coding [33–35]. The achievements
in quantum-correlated OAM beams produced by four-wave
mixing includes the recent demonstration of tripartite entan-
glement [36].

Within the seemingly endless sea of structured light [2],
one finds the optical modes belonging to the so-called OAM
Poincaré sphere (PS) [37], named in analogy with the po-
larization Poincaré sphere. They are given by combinations
of Laguerre-Gaussian (LG) modes with topological charges
of equal magnitude and opposite handedness, and can be
parametrized in terms of polar and azimuthal angles on
the sphere. OAM PS modes have been widely employed
in three-wave mixing in nonlinear crystals [16–18,38,39].
The interplay between spin and orbital angular momen-
tum in second-order harmonic generation has also been
demonstrated [19,20,40]. The OAM mixing in second-order
nonlinear media has been shown to be constrained by several
selection rules, which involve OAM conservation [25,41],
radial-angular coupling [18,20,42,43], and Poincaré-sphere
symmetry [38,39,44]. The PS symmetry has also been in-
vestigated in the quantum domain of optical parametric
oscillation with OAM beams, where continuous-variable hy-
perentanglement has been predicted [45] and experimentally
demonstrated [46]. The connection between this symmetry
and phase conjugation in the parametric process [47] has been
discussed in Ref. [48].

In this work we explore the geometrical representation in
the Poincaré sphere to experimentally investigate the nonlin-
ear wave mixing induced by OAM PS beams in a heated
sample of rubidium atoms, and the underlying rules that
dictate the transfer of optical spatial structure. In particular,
we consider a degenerate forward four-wave mixing (FWM)
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process in a configuration where two distinct signals are gen-
erated [49,50], and extend previous studies by analyzing the
nonlinear response when the input beams can be described as
a combination of LG modes, and going beyond the OAM con-
servation selection rules. Moreover, we theoretically describe
both generated beams and show that, under the usual set of
assumptions, they can also be represented as optical modes
contained in Poincaré spheres. An interesting point is that, as
we demonstrate, the PS components of both four-wave mix-
ing outputs satisfy selection rules similar to those verified in
three-wave mixing processes, namely, (i) a specular reflection
symmetry in the Poincaré sphere, which is observed in the
down-conversion process [38,39,44], and (ii) the generation
of a radial mode spectrum which has been demonstrated in
second-order harmonic generation [18,42]. These results indi-
cate that most applications that make use of the OAM degree
of freedom of a light beam can be extended to a higher-order
nonlinear process. Furthermore, our two-channel FWM con-
figuration allows us to simultaneously detect two nonlinear
signals, each exhibiting a characteristic: the reflection sym-
metry in the Poincaré sphere and the appearance of a radial
mode spectrum in the spatial structure, both already explored
independently in three-wave mixing processes. The predicted
FWM intensity, as well as the consequences of the symme-
try properties, are in good agreement with our experimental
results.

II. THEORY

To describe the nonlinear light-matter interaction associ-
ated with the generation of two degenerate four-wave mixing
outputs, we consider two driving laser beams named Ea and
Eb, with the same frequency ωa = ωb, and wave vectors ka

and kb, separated by a small angle. The two beams propagate
inside the third-order nonlinear medium of length L, from
z = −L/2 to z = L/2, intersecting at the center, z = 0, the
position at which their waists are minimum. Two four-wave
mixing signals can be generated as a result of the interaction
of the input beams with the atomic medium. These fields are
E1, associated with the absorption of two photons from Ea

and the stimulated emission of one photon from Eb, and E2,
associated with the absorption of two photons from Eb and
the stimulated emission of one photon from Ea. Due to the
conservation of energy and linear momentum, the FWM fields
E1 and E2 are generated with frequencies ω1 = ω2 = ωa,b,
and in the directions given by (2ka − kb) and (2kb − kb),
respectively. Figure 1(a) shows the spatial orientation of the
incident and generated light beams. For linearly polarized
incident beams with orthogonal polarizations, the interaction
can be seen as taking place in a three-level atomic system,
constituted of two degenerate ground states |1〉 , |3〉, and an
excited state |2〉. Each generated signal can be seen as a
contribution from two pathways starting from different ground
states, as illustrated in Fig. 1(b) for the field E1.

The electric fields of the light beams participating in the
FWM processes are written as

Ei(r, t ) = 1
2εiEi(r)e−i(ki ·r−ωit ) + c.c., (1)

i ∈ {a, b, 1, 2}, where εi is the polarization direction, Ei is the
slowly varying field amplitude, ki is the wave vector, and

FIG. 1. (a) Spatial orientation of incident and generated signals
near the interaction region. (b) Two pathways associated with the
generation of the σ± components of the FWM signal E1 in a three-
level atomic system.

ωi = c|ki| is the frequency. The wave equations describing
evolution of the slowly varying FWM field envelopes E1 and
E2, as a result of the two independent FWM processes in
directions (2ka − kb) and (2kb − ka), are [49](
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where the couplings κ1 and κ2 are proportional to the
nonlinear susceptibilities associated with the two nonlinear
processes, χ1 and χ2, and �k1 and �k2 are the phase mis-
matches. Owing to the orthogonality and completeness of
paraxial modes, we can write the solutions to Eqs. (2) and
(3) as general superpositions of the form

E1(r) =
∑
�,p

α�,pu�,p(r), (4)

E2(r) =
∑
�,p

β�,pu�,p(r), (5)

where u�,p is the LG mode, denoted as
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where we write the position vector in cylindrical co-
ordinates as r = (r, γ , z), C�,p = √

2p!/π (p + |�|)! is a
normalization constant, L|�|

p (·) is the associated Laguerre

polynomial, w(z) = w0

√
1 + (z/zR)2 is the beam width,

R(z) = z[1 + (zR/z)2] is the curvature radius, and �G(z) =
(N�,p + 1) tan−1(z/zR) is the Gouy phase shift, with the total
mode order defined as N�,p = 2p + |�|. It is important to note
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that families of modes {u�,p} with different spot sizes w0 form
different bases.

We consider that the incident fields can be written as
Ea(r) = E0

a ua(r) and Eb(r) = E0
b ub(r), where E0

a,b gives the
total power content of each field, Pa,b = 1

2 cε0|E0
a,b|2, and

ua,b(r) carries their spatial structure. Taking into account that
the paraxial basis modes {u�,p} carry the information from the
transverse structure of the generated fields E1,2, the problem
becomes that of finding the expansion coefficients α�,p and
β�,p. They are called the full spatial overlap integrals, and can
be expressed as [51]

α�,p = κ1E0
1

∫ L/2

−L/2
A�,p(z)e−i�k1zdz, (7)

β�,p = κ2E0
2

∫ L/2

−L/2
B�,p(z)e−i�k2zdz, (8)

where E0
1 = (E0

a )2(E0
b )∗, E0

2 = (E0
b )2(E0

a )∗, and

A�,p(z) =
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u2
au∗

bu∗
�,pd2r⊥, (9)

B�,p(z) =
∫∫

u2
bu∗

au∗
�,pd2r⊥, (10)

are the transverse overlap integrals of the product of incident
beams on the mode basis with waist w0. In the thin-medium
regime, characterized by L/zR � 1, only the transverse over-
lap integrals evaluated at z = 0 are relevant for calculations
[49]. We may therefore write

α�,p 	 κ1E0
1 T1(L)A�,p(0), (11)

β�,p 	 κ2E0
2 T2(L)B�,p(0), (12)

where Tj (L) = ∫ L/2
−L/2 e−i�k j dz = L sinc(�k jL/2), j = 1, 2,

can be seen as efficiency measures of the wave-mixing pro-
cesses. Note that the factors κ jE0

j Tj (L) are common for all
(�, p), and therefore do not affect the mode superpositions
of the generated fields. We do not carry these factors further.
Now we can explore scenarios where the incident beams Ea

and Eb carry different structures.
We will focus on the situation where field ub is given by a

pure Gaussian mode, u0,0, and ua is given by the composition
of LG modes contained in the OAM Poincaré sphere O(l, 0)
(see Fig. 2):

ψl,0(θ, φ) = cos
θ

2
ul,0 + eiφ sin

θ

2
u−l,0. (13)

The Poincaré sphere construction applies to two-dimensional
complex vector spaces, but there is not a special restriction
to the modes used in either input field Ea or Eb. This is be-
cause even when several modes participate in either three- or
four-wave parametric interactions, the interacting modes can
be grouped in pairs with opposite OAM, plus the zero-OAM
modes, when they are present. Each pair of opposite-OAM
modes builds an independent Poincaré sphere. The geomet-
rical representation of the nonlinear interaction that we will
establish, and the associated symmetries, apply to each sphere
independently [39]. Of course, there is no room for these
symmetries in the zero-OAM manifold. Upon substitution in

FIG. 2. Representation of a spatial mode as a vector parametrized
by the polar θ and azimuthal φ angles on the OAM Poincaré sphere
O(�, 0), and intensity profile of different modes on the sphere equa-
tor, θ = π/2.

Eqs. (9) and (10), we can write the transverse overlap integrals
at z = 0 as

A�,p(0) = cos2 θ

2
�ll0�

000p + e2iφ sin2 θ

2
�−l,−l0�

000p

+ eiφ sin θ�l,−l0�
000p , (14)

B�,p(0) = cos
θ

2
�00l�

000p + e−iφ sin
θ

2
�00,−l�

000p , (15)

where

�ll ′m�
qq′np =

∫∫
ul,qul ′,q′u∗

m,nu∗
�,p

∣∣
z=0d2r⊥ (16)

is the transverse overlap integral of four LG modes with the
same waist w0. The conservation of OAM naturally emerges
from the azimuthal integral

∫ 2π

0
ei(l+l ′−m−�)γ dγ = 2πδ�,l+l ′−m, (17)

restricting the possible values for the topological charges
contained in the superpositions for E1 and E2. For signal E1,
we will have modes with � = ±2l [first and second terms
of Eq. (14)], yielding the contribution from a PS of order
N = 2l , and also from � = 0, while for signal E2, we only
have the � = ±l components [Eq. (15)], associated with a PS
of the same order N = l as the input. In principle, there is no
such restriction on the radial orders, and an infinite number
of p modes can contribute to the superpositions of the fields
E1 and E2. It is important to note that for the third-order
process studied here, the possible values for the topological
charges imposed by the azimuthal integral, Eq. (17), are the
same as those found in second-order processes, namely, in
SHG, where the process is driven by a structured pump, from
which two photons are absorbed to generate the up-converted
field, as in the case of signal E1, and in the down-conversion
process, where the medium is excited by a Gaussian pump,
and the down-converted fields are the ones carrying the spatial
structure, a situation analogous to that of signal E2.
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FIG. 3. Representation of the angle symmetries for the FWM
signals E1 and E2. The inset shows the dependence of the output angle
ϑ1 with θ .

By substituting Eqs. (14) and (15) into Eqs. (4) and (5), we
can express both generated fields on the w0 mode basis as

E1 =
∑

p

(
apψ2l,p(ϑ1, ϕ1) + eiφ sin θ cpu0,p

)
, (18)

E2 =
∑

p

bpψl,p(ϑ2, ϕ2), (19)

where ap = �ll0,2l
000p , bp = �00,−ll

000p , cp = �l,−l00
000p , and the output

sphere angles are related to the input angles via

ϑ1 = 2 tan−1

(
tan2 θ

2

)
, ϕ1 = 2φ, (20)

ϑ2 = π − θ, ϕ2 = φ. (21)

The relations given by Eqs. (20) and (21) are similar to those
satisfied in parametric amplification, a second-order nonlin-
ear process [38,39,44]. We note that similar results could be
obtained for a zero-OAM field with a nonzero radial index
ub = u0,n. However, for the simpler situation we study here,
regarding the spatial degrees of freedom, the Gaussian field
ub has a passive role in the wave-mixing process, and we
essentially have a single field, ua, dictating the transverse
mode dynamics.

The transformation represented by Eq. (21) is more intu-
itive, and can be seen as a reflection of the input vector on
the sphere with respect to the equatorial plane. On the other
hand, the visualization and interpretation of Eq. (20) is a bit
less straightforward. In Fig. 3 we illustrate how the mode
vectors are transformed in both FWM processes, according
to the rules given by Eqs. (20) and (21). The inset shows the
variation of ϑ1(θ ), making it evident that ϑ1 < θ (ϑ1 > θ ) for
θ < π/2 (θ > π/2), and ϑ = θ at θ = 0, π/2, π . Therefore,
when the mode vector on the input PS describes a path starting
from the north pole and ending on the south pole, the polar
angle of the mode vector on the output PS is delayed in the
section 0 → π/2, and advanced in the section π/2 → π .

The FWM fields are generated with a smaller overall size
as compared with the input beams, since the generated field
amplitudes are dictated by the spatial overlap of the incident
modes. This can be understood intuitively in the case of

Gaussian inputs, where we have E1,2 ∼ u2
0,0u∗

0,0 ∼
exp(− r2

w2
0/3

). By choosing a basis with the appropriate
(reduced) minimum waist w̃ = w0/ξ , the number of modes
required to represent the FWM fields is reduced. In fact,
for ξ = √

3, the following restriction on the p orders is
established: the sphere modes in E1 and E2 are limited to
p = 0 only, while the contribution from the nonvortex modes
in E1 is bound to 0 � p � |l|. We may then write the output
fields in the final form:

E1 = ã0ψ̃2l,0(ϑ1(θ ), 2φ) + eiφ sin θ

|l|∑
p=0

c̃pũ0,p, (22)

E2 = b̃0ψ̃l,0(π − θ, φ), (23)

where ũ and ψ̃ are the LG and OAM PS modes with the
modified waist w̃, ã0 = �̃ll0,2l

0000 (
√

3), b̃0 = �̃00,−ll
0000 (

√
3), and

c̃p = �̃l,−l00
000p (

√
3), where the transverse overlap integral on

the modified waist basis is

�̃ll ′m�
qq′np(ξ ) =

∫∫
ul,qul ′,q′u∗

m,nũ∗
�,p

∣∣
z=0 d2r⊥

=
∑

s

�ll ′m�
qq′nsλ

�
s,p(ξ ), (24)

where λ�
s,p(ξ ) are the coefficients for the change of basis

{u(w0)} → {u(w0/ξ )} [52],

λ�
s,p(ξ ) =

∫∫
u�,sũ

∗
�,p

∣∣
z=0d2r⊥. (25)

We can therefore calculate the mode superpositions E1 and
E2 on the input waist (w0) basis and modify the coefficients
using the second line of Eq. (24) together with Eq. (25), or
perform the calculations directly on the reduced waist (w̃)
basis, using the first line of Eq. (24). In Appendix A we give
expressions for the relevant overlap integrals, making explicit
the radial mode restriction, and in Appendix B we calculate
the change of basis coefficients.

III. EXPERIMENTAL CONFIGURATION

In order to highlight the Poincaré-sphere representation for
the two FWM signals, we carried out an experiment with Rb
vapor as the nonlinear medium. A simplified scheme of our
experimental setup is shown in Fig. 4. We use a single tunable
diode laser (Sanyo, model DL7140-201S), with homemade
electronics for current and temperature control. A small por-
tion of the laser power goes to a saturated absorption (SA)
setup to allow for frequency reference, and then it is coupled
to a single-mode fiber to correct the initial transverse profile,
which is fairly non-Gaussian. At the fiber exit, the beam is
split in two by a polarizing beam splitter (PBS). We name
the transmitted and reflected beams Ea and Eb, respectively.
Beam Ea is modulated by a spatial light-modulator (SLM)
before being sent to the vapor cell, and it carries the nontrivial
optical mode. Our SLM is a liquid crystal on silicon (LCOS)
SLM (Hamamatsu Photonics, model X10468-02). Beam Eb is
sent directly to the Rb vapor cell to intersect beam Ea.

In the experiment, the two beams Ea and Eb, with wave
vectors ka and kb, respectively, and orthogonal and linear po-
larizations, copropagate with a small angle of about 10 mrad
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FIG. 4. Simplified scheme of the experimental setup for the de-
tection of FWM beam profiles. The pairs of lenses L1-L2 and L3-L4
form telescopes to increase and decrease the diameter of the beam
modulated by the SLM. The spatial filters, formed by pairs of lenses
and a pinhole at the focal plane, were positioned on the path of both
FWM signals.

inside a 5-cm-long cell. We detect the two four-wave mixing
signals E1 and E2 generated in the (2ka − kb) and (2kb − ka)
directions, respectively. Since Ea and Eb possess orthogonal
polarizations, the generated fields E1 and E2 are also orthogo-
nally polarized with respect to each other. Moreover, E1 (E2)
is orthogonally polarized with respect to Ea (Eb). This results
in an arrangement at the output where the four signals possess
alternating polarizations.

We arrange the setup in such a way that the minimum
waists of both incident beams are located inside the vapor cell,
where they intercept. The rubidium cell, containing both 87Rb
and 85Rb in natural abundances, is heated to about 70 ◦C to
increase atomic density. For all measurements, we considered
the |5 2S1/2, Fg = 3〉 → |5 2P3/2〉 transition of 85Rb. Since the
nonlinear output is much weaker than the transmitted beams,
scattered light from the input beams was a big problem, espe-
cially because we work in a degenerate configuration, and we
circumvented this issue by using spatial filters on the paths
of both FWM beams. The waists of the incident beams at

the location of the cell were w0 ≈ 0.5 mm. This gives the
Rayleigh range value of zR = πw2

0/λ ≈ 1 m. For a cell of
length L = 5 cm, we assume that the thin-medium regime
(L/zR � 1) is always satisfied.

IV. RESULTS AND DISCUSSION

First, we performed experiments by setting field Ea as
a mode on the equator (θ = π/2) of the PS O(�, 0),
ψ

(a)
�,0 (π/2, 0) [see Fig. 5(a)], and field Eb as a pure Gaussian

beam. Figures 5(b) and 5(c) show the calculated and mea-
sured far-field intensity profiles of the generated signals, E2

and E1, respectively. We see that for signal E1 [Fig. 5(c)] we
obtain more intricate figures, while the structure of signal E2

[Fig. 5(b)] seems to be dominated by that of the pump in each
case. This is due to the fact that signal E1 has two contributions
from the structured pump, and the nonlinear polarization as-
sociated with its generation is proportional to (ψ (a)

�,0 )2. On the
other hand, for E2, which has only one contribution from Ea,
the macroscopic polarization is proportional to (ψ (a)

�,0 )∗.
The central spots present in signal E1 are due to the contri-

bution from the � = 0 modes arising from the crossed term in
the product (ψ (a)

�,0 )2. They only develop in the far field because
of the difference in Gouy phases with respect to the 2� modes.
This becomes evident when one looks at the near-field inten-
sity distributions of the FWM signal E1 for � = 1, 2, shown
in Fig. 5(d). This type of transition of the transverse structure
has been verified in other situations [18,29,53]. This behavior
is not verified for signal E2, since it only contains the PS mode
with total order N = |l|, and therefore its shape is stable under
propagation. Finally, it is worth commenting on the distortions
seen in the experimental images. This is due to the degenerate
configuration we are working with, which makes it difficult
to completely filter the scattered light superimposed to the
spatial profiles of the generated signals.

We also made the pump field ua occupy different positions
on the PS. First we consider ua following a path starting on

FIG. 5. (a) Calculated intensity profiles of modes ψ�,0(π/2, 0), for � = 1, 2, 3, alongside the corresponding beams prepared in the
experiment near the interaction region. Calculated and detected far-field intensity profiles of the FWM signals (b) E2 and (c) E1, resulting
from the mixing of ua given by the modes shown in (a) and ub given by a Gaussian mode. (d) Calculated and detected near-field intensity
profiles of the FWM signal E1 for the cases � = 1, 2.
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FIG. 6. (a) Incident field modes along a path described by points
1, 2, and 3 on the first-order sphere O(1, 0). (b) Corresponding
modes on the output sphere O(2, 0) for the FWM signal E1, when
ub = u0,0. Insets show the intensity profiles of the sphere modes on
the indicated positions. (c) Measured (top) and calculated (bottom)
FWM intensity profiles for signal E1 when the mode vector of field
ua is located on the points 1, 2, and 3 along the path shown in (a).

the positive pole, (θ, φ) = (0, 0), going to (π/2, 0) on the
equator, and then to (π/2, π/2). We call these points 1, 2,
and 3, respectively [see Fig. 6(a)]. The incident modes in
these positions are ψ1,0(0, 0) = u1,0, ψ1,0(π/2, 0) = (u1,0 +
u−1,0)/

√
2, and ψ1,0(π/2, π/2) = (u1,0 + iu−1,0)/

√
2. Fig-

ure 6(b) shows the corresponding path followed by the PS
component of the FWM field E1 on the output sphere O(2, 0).
In Fig. 6(c), we show the experimental and theoretical far-field
intensity profiles of signal E1 in this case. For point 1, where ua

is a pure u1,0 mode, the field E1 emerges as a pure u2,0 mode,
and we are essentially performing OAM addition [50]. As we
leave the pole, we can employ the PS geometric representation
to interpret the behavior of the FWM output field structure.
We see that the actual FWM intensity profiles differ from
those expected solely from a PS mode ψ2,0 on points 2 and 3,
corresponding to the first term on the right-hand side (r.h.s.) of
Eq. (22). This is due to the contribution from the radial modes
in the superposition E1, which becomes maximum when θ =
π/2, as seen from the second term on the r.h.s. of Eq. (22).

What is remarkable from these results is that the variation
of the azimuthal angle φ on the input sphere results in a
rigid rotation of the FWM intensity profile that is equal to
the rotation of the intensity profile of ua. This is not obvious
since, as already mentioned, (i) the azimuthal angle on the
output sphere is doubled, ϕ1 = 2φ, and (ii) there are radial
modes contributing to the FWM field mode structure. In fact,

this net effect is precisely a result of the combination of
these two aspects. To explain this, we first look at the rota-
tion of the intensity profile of the input PS mode ψl,0(θ, φ),
Il (r⊥; θ, φ) = |ψl,0(θ, φ)|2, which can be understood when
we write

Il (r, γ ; θ, φ) = |ul,0|2
{

1 + sin θ cos 2l

(
γ − φ

2l

)}
. (26)

We see that the PS azimuthal angle φ shifts the origin of the
transverse azimuthal coordinate γ as

Il (r, γ ; θ, φ) = Il (r, γ − φ/2l; θ, 0), (27)

thus rotating the intensity profile by +φ/2l . This can be
verified by looking at Figs. 6(a) and 6(b), where we see the
intensity profiles of the modes on the spheres O(1, 0) and
O(2, 0) rotate by 45◦ when the azimuthal angles vary by 90◦
and 180◦, respectively. The intensity profile of the FWM field
E1, I1 = |E1|2, can be found as

I1(r, γ ; θ, φ) = sin2 θ |Ul |2 + |ã0|2|ũ2l,0|2

×
{

1 + sin ϑ1 cos

[
4l

(
γ − φ

2l

)]}

+ 2
√

2ã0Ṽ
|2l|

0 Ul sin θ sin

(
ϑ1

2
+ π

4

)

× cos

[
2l

(
γ − φ

2l

)]
, (28)

where the LG radial amplitude Ṽ |�|
p (r) is defined via

ũ�,p(r, γ ) = Ṽ |�|
p (r)ei�γ , and Ul = ∑|l|

p=0 c̃pũ0,p is the term
from Eq. (22) containing the superposition of radial modes.
Thus, we see that, just like in Eq. (26), I1 presents a shift of
the transverse azimuthal coordinate by the amount φ/2l , equal
to that of the input PS mode ψl,0:

I1(r, γ ; θ, φ) = I1(r, γ − φ/2l; θ, 0). (29)

Next we analyze the FWM signal E2 for a similar path on
the input sphere O(1, 0), going through points 1, 2, and 3
and ending at point 4, the negative pole, (θ, φ) = (π, π/2).
On this position, the incident mode is ψ1,0(π, π/2) = u−1,0.
In Fig. 7(a) we show the paths followed by ua = ψ1,0(θ, φ)
(left), and by the generated field E2 ∝ ψ1,0(π − θ, φ) (right).
We divide the complete path 1–4 into three sections, and in
Fig. 7(b) we illustrate how the incident and generated mode
vectors change on the sphere in each section. In Fig. 7(c)
we show the detected images of the intensity profiles of the
incident field ua at each position (top) and the resulting FWM
signal E2 in each case (bottom). For points 1 and 4 the insets
show the tilted lens (TL) profiles, indicating that in these
positions the input and FWM fields possess opposite OAM.
Along the arc 2–3 the input and generated field modes are
degenerate in the sense that the position vector on the first-
order sphere is the same. These results indicate the fulfillment
of the reflection symmetry for signal E2.

V. CONCLUSIONS

In this work, we have investigated the transfer of spatial
structures from the input pump fields to the converted fields
in a FWM degenerated process in a Rb vapor cell. We have
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FIG. 7. (a) Path followed by the input mode ua = ψ1,0(θ, φ)
passing through points 1, 2, 3, and 4 on the sphere O(1, 0), and
the corresponding path followed by the FWM signal E2 ∝ ψ1,0(π −
θ, φ), going through points 1′, 2, 3, and 4′. The path on the generated
field sphere is a reflection of the path on the input sphere with respect
to the equatorial plane. (b) Sections 1, 1′–2, 2–3, and 3–4, 4′ and the
variation of the mode vectors of ua and E2 in each one. (c) Detected
far-field intensity profiles of the input and FWM signals at the points
1, 1′, 2, 3, and 4, 4′. For points 1, 1′ and 4, 4′ we also show in the
insets the tilted lens (TL) profiles, indicating opposite OAM between
input and FWM fields.

analyzed that the whole interaction can be seen as a two-
channel three-wave mixing process, whose spatial structures
for the converted fields are independently driven by the square
of one input field times the conjugate of the other field. By set-
ting one of the input fields in a fundamental Gaussian mode,
we have shown that the spatial structure of each conversion
channel, in a thin medium, will be equivalent to what takes
place in a second-order harmonic generation (SHG) and in a
parametric down-conversion (PDC) for the fields E1 and E2,
respectively.

This allowed us to simultaneously explore the symmetries
previously reported for these nonlinear processes [38,39], by
structuring the other input field in an OAM Poincaré sphere
O(l, 0). In particular, it was possible to observe the specular
reflection symmetry for the field E2 with respect to the equa-
torial plane in the OAM sphere. We have also shown that the
spatial structure of the other channel (E1) is a combination
of two effects: the generation of radial order modes, and an

inner symmetry for the OAM components, similar to what
was predicted for a three-wave mixing process [39]. This
simultaneous two-channel symmetry of spatial modes can be
useful for parallel generation and transmission of correlated
fields for quantum information, as, for instance, the genera-
tion of multipartite entanglement within the spatial modes of
the converted fields when the pump mode is in a superposi-
tion of high-order modes [54,55], where it has been shown
that the entanglement structure can be tailored through the
pump spatial mode [56,57]. In addition, OAM-multiplexed
continuous-variable entanglement has been demonstrated in
four-wave mixing, with important applications to quantum
teleportation and quantum dense coding [33–36]. These appli-
cations can benefit from the symmetries reported here, since
the OAM beams generated in the process are subjected to
them and also to radial-angular coupling.
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APPENDIX A: RADIAL MODE RESTRICTION
ON THE REDUCED WAIST BASIS

As mentioned in the main text, with the appropriate choice
of a beam waist, it is possible to restrict the number of radial
orders contained in the output mode superpositions. In this
Appendix we outline the calculation of the overlap integrals
on the reduced beam waist basis, and make this restriction
explicit.

The transverse overlap integral on the w̃ = w/ξ mode
basis is

�̃ll ′m�
qq′np(ξ ) =

∫∫
ul,qul ′,q′u∗

m,nũ∗
�,p

∣∣
z=0d2r⊥. (A1)

We now look at three different cases, corresponding to the
coefficients ã0, b̃0 and c̃p in Eqs. (22) and (23).

Let us focus first on the case q = q′ = m = n = 0. The
relevant integral is

�̃ll ′0�
000p(ξ ) =

∫∫
ul,0ul ′,0u∗

0,0ũ∗
�,p

∣∣
z=0d2r⊥

= 2πδ�,l+l ′Cl,0Cl ′,0C0,0C�,pξ
|�|+1 1

w4

×
∫ ∞

0
(rw )|l|+|l ′|+|�|L|�|

p

(
ξ 2r2

w

)
e−r2

w (3+ξ 2 )/2rdr,

(A2)
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where rw = √
2r/w. The choice ξ = √

3 will be most in-
teresting for us because it allows to establish a maximum
value for the possibly coupled p orders. The only nonzero
coefficients are those with � = l + l ′,

�̃ll ′0,l+l ′
000p (

√
3) = 8

πw4

√
p! 31−|l|−|l ′ |

|l|! |l ′|! (p + |l + l ′|)!

×
∫ ∞

0

(
3r2

w

)|l+l ′|(
3r2

w

)P
L|l+l ′ |

p

(
3r2

w

)
e−3r2

w rdr,

(A3)

where P = (|l| + |l ′| − |l + l ′|)/2. Then

�̃ll ′0,l+l ′
000p (

√
3) = 4

πw2

√
p! 3−1−|l|−|l ′ |

|l|! |l ′|! (p + |l + l ′|)!

×
∫ ∞

0
x|l+l ′ |xPL|l+l ′ |

p (x)e−xdx. (A4)

1. Coefficients ã0 for the sphere modes contained in E1

For l · l ′ � 0, P = 0, and we can substitute xP by
L|l+l ′|

0 (x) = 1. Using the orthogonality relation of the as-
sociated Laguerre polynomials,

∫ ∞
0 xαLα

p (x)Lα
q (x)e−xdx =

�(p+α+1)
p! δp,q, we can write

�̃ll ′0,l+l ′
000p (

√
3) =

{
4√

3πw2

√
|l+l ′ |!

|l|! |l ′|! 3|l|+|l′ | for p = 0

0 for p > 0.

(A5)

We then see that no radial order p > 0 is generated.

2. Coefficients c̃p for the radial modes contained in E1

Now, for l · l ′ < 0, P = min(|l|, |l ′|), and we expand
the monomial xP in terms of Laguerre polynomials
as xn = n!

∑n
j=0(−1) j

(n+α

n− j

)
Lα

j (x) = n!
∑n

j=0 bα
j,nLα

j (x), with
α = |l + l ′|, to write

�̃ll ′0,l+l ′
000p (

√
3) = 4

πw2

√
p! 3−1−|l|−|l ′ |

|l|! |l ′|! (p + |l + l ′|)!P!
P∑

j=0

b|l+l ′|
j,P

×
∫ ∞

0
x|l+l ′ |L|l+l ′|

j (x)L|l+l ′|
p (x)e−xdx. (A6)

The x integral is once again the orthogonality relation of the
associated Laguerre polynomials. Finally, we obtain

�̃ll ′0,l+l ′
000p (

√
3) = 4

πw2

(−1)p

(P − p)!

√
3−1−|l|−|l ′ |

|l|! |l ′|! p!(p + |l + l ′|)!
× P!(P + |l + l ′|)!, (A7)

for p � P, and �̃ll ′0,l+l ′
000p (

√
3) = 0, for p > P. This result is

simplified in the case l ′ = −l , which makes P = |l|, and
we get

�̃l,−l00
000p (

√
3) =

{
4√

3πw2

(−1)p

(|l|−p)!
|l|!

p! 3|l| for p � |l|
0 for p > |l|. (A8)

3. Coefficients b̃0 for the sphere modes contained in E2

Next, for l = l ′ = q = q′ = n = 0, we have

�̃00m�
000p (ξ ) =

∫∫
u2

0,0u∗
m,0ũ∗

�,pd2r⊥

= 2πδ�,−mC2
0,0Cm,0C�,0ξ

|�|+1 1

w4

×
∫ ∞

0
(rw )|m|+|�|L|�|

p

(
ξ 2r2

w

)
e−r2

w (3+ξ 2 )/2rdr. (A9)

The OAM conservation dictates � = −m, and thus for ξ = √
3

we can arrive at the expression

�̃00m,−m
000p (

√
3) = 4

πw2

√
3−1−|m| (2|m|)!

(|m|!)2
δp,0. (A10)

APPENDIX B: COEFFICIENTS FOR CHANGING
WAIST BASES

We may expand the mode u�,p, with waist w, on the basis
of modes ũl,q, with waist w̃ = w/ξ , as

u�,p =
∑
l,q

λ�,l
p,q(ξ )ũl,q, (B1)

where the expansion coefficients are

λ�,l
p,q(ξ ) =

∫∫
u�,pũ∗

l,q

∣∣
z=0d2r⊥. (B2)

Since we must have � = l , we drop one of the upper indices,
to write

λ�
p,q(ξ ) = π

2
C�,pC�,qξ

|�|+1

×
∫ ∞

0
x|�|L|�|

p (x)L|�|
q (ξ 2x)e−x(1+ξ 2 )/2dx, (B3)

where we made the change of variable x = 2r2/w2. For
ξ = 1, we obtain λ�

p,q(1) = δp,q, which is expected. To ob-
tain an analytical expression, we can employ the generating
function for the Laguerre polynomials

∑∞
n=0 t nLα

n (x) = (1 −
t )−(α+1)e−tx/(1−t ). Differentiating p times with respect to t ,
and making t = 0, we get

Lα
p (x) = 1

p!

∂ p

∂t p

[
e−tx/(1−t )

(1 − t )α+1

]∣∣∣∣
t=0

, (B4)

and we can rewrite the integral in Eq. (B3) as

1

p!q!

∂ p

∂t p

∂q

∂t ′q
1

[(1 − t )(1 − t ′)]|�|+1

∫ ∞

0
x|�|e−b(t,t ′ )xdx

= |�|!
p!q!

∂ p

∂t p

∂q

∂t ′q
1

[b(t, t ′)(1 − t )(1 − t ′)]|�|+1

∣∣∣∣∣
t,t ′=0

,

(B5)

with b(t, t ′) = 1+ξ 2

2 + t/(1 − t ) + ξ 2t ′/(1 − t ′). By carrying
the indicated calculations, one obtains

λ�
p,q(ξ ) = (−1)p

√
p!q!

(|�| + p)!(|�| + q)!

(
2ξ

1 + ξ 2

)|�|+1

×
p∑

n=0

(−1)n (q + p + |�| − n)!

n!(p − n)!(q − n)!

(
1 − ξ 2

1 + ξ 2

)q+p−2n

.

(B6)
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