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Integrated photonic sources of frequency-bin-encoded multipartite entangled states
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We demonstrate that genuine multipartite entangled states can be generated using frequency bin encoding in
integrated photonic platforms. We introduce a source of four-photon GHZ states and a source of three-photon
W states. We predict generation rates on the order of 104 Hz for a silicon microring source with milliwatt
pump powers. These results, along with the versatility and scalability of integrated structures, identify this as a
promising approach for the generation of higher-dimensional and larger entangled states.
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I. INTRODUCTION

Entangled states are an indispensible resource for a host of
quantum protocols and for tests of fundamental physics. There
is now an abundance of photonic sources of bipartite entan-
gled states and strategies for generating multipartite states are
being explored [1]. Multipartite entangled states, which exist
in a Hilbert space with three or more factor spaces, are partic-
ularly interesting from both a fundamental and practical point
of view: they exhibit correlations that cannot be reproduced
with only bipartite states.

Multipartite states can be encoded in a number of ways,
including using multiple degrees of freedom in only two
particles [2]. However, many applications rely on genuine
multipartite entangled states [3,4]; we define genuine multi-
partite states as those for which the Hilbert state is composed
of n factor spaces which correspond to n physically separable
entities, for example, n photons.

Genuine multipartite states can be composed of photons
generated by parametric nonlinear processes, such as sponta-
neous four-wave mixing (SFWM) or spontaneous parametric
down-conversion. The logical states can be encoded in a
number of ways. Many approaches make use of polarization
encoding in bulk systems [5,6], but this scheme has draw-
backs: it is constrained to two logical states per particle—e.g.,
horizontal or vertical polarization—and it lacks scalability,
since polarization is difficult to control in integrated systems.

Motivated by the need for integration, path encoding has
also been explored. In this scheme, the logical state is en-
coded by the waveguide in which the photon is detected [7,8].
Although this can be implemented on-chip [9], its scalabil-
ity is challenging because increasing the dimensionality of
the system requires increasing the number of waveguides. In
some cases, the implementation of large states is also compli-
cated by the need to avoid waveguide crossings, at least for
conventional lithography processes.

*Present address: National Research Council of Canada, 100 Sus-
sex Drive, Ottawa, Ontario K1A 0R6, Canada; Milica.Banic@nrc-
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Another approach is energy encoding, where information is
encoded in the photons’ frequencies. This degree of freedom
is scalable, robust, and compatible with integrated platforms.
Taking photons generated by SFWM, one possibility is to en-
code the logical states in the generated photons’ frequencies,
red- or blue-detuned with respect to the pump. This scheme
has been implemented in bulk for the generation of energy-
encoded W states [10] and it can in principle be extended
to integrated structures [11]. However, the relatively large
spacing between the logical states’ frequencies makes their
manipulation challenging.

Recently, frequency bin encoding has been explored. This
is a type of energy encoding in which the frequencies are
close enough to be manipulated using commercial electro-
optic modulators (EOMs) [12]. It has been demonstrated that
more than two logical states could be implemented in this
approach, making frequency bin encoding a promising candi-
date for the generation of qudit states [12,13]. The generation
of frequency-bin-encoded states can be implemented using
photons generated by SFWM in a resonator, in which the
photon pairs are generated in a comb of resonances [14–16].
In this scheme, the logical state of a photon is determined by
its spectral distance from the pump resonance (see Fig. 1).

The generation of frequency-bin-encoded bipartite entan-
gled states, such as Bell states, has already been demonstrated
[17]; in the present work, we discuss the generation of
frequency-bin-encoded multipartite states in integrated pho-
tonic devices. We demonstrate how this strategy can be used
for the generation of W states and GHZ states, two paradig-
matic examples of multipartite entangled states. In Sec. II we
describe the multiphoton sources employed in these devices.
In Sec. III we discuss the generation of four-photon GHZ
states and in Sec. IV we do the same for three-photon W
states. Finally, we draw our conclusions in Sec. V.

II. PHOTON SOURCES

The schemes to be discussed begin with the genera-
tion of entangled photons by spontaneous four-wave mixing
(SFWM) in ring resonators. We assume that the sources
generate uncorrelated photon pairs; this can be accomplished
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FIG. 1. Single-pump configuration described by Eq. (1). The
configuration of the different modes in frequency is sketched in (a).
Green arrows represent classical pumps (with amplitudes α, α′);
orange and blue arrows represent signal and idler fields. S0, S1, I0,
I1 label the ring resonances. The source and the pumping scheme is
shown in (b).

by driving the microring source with appropriately shaped
pulses [18] or by using more complex ring resonator struc-
tures as the source [19]. Here we will assume the sources are
driven by a train of pulses with a duration shorter than the
dwelling time of the ring resonators. Under these conditions
the generated photon pairs are nearly uncorrelated [20,21] and
to good approximation the photons are generated in a single
Schmidt mode.

We consider two configurations for the pump and gener-
ated modes: in the first, a pump field centered at a single
resonance frequency is used to generate photons in two pairs
of ring resonances. Taking the generated pairs to be uncorre-
lated, the nonlinear Hamiltonian for this pumping scheme can
be written as

HNL(t ) = h̄�α2(t )a†
S0a†

I0 + h̄�′α′2(t )a†
S1a†

I1 + H.c., (1)

where � and �′ are nonlinear coupling rates, α(t ) and α′(t )
are pump amplitudes, and a†

J is the raising operator associated
with the resonance labeled by J . Each resonance has two
labels associated with it: the frequency bin is denoted by a
number (0 or 1), while S and I stand for signal and idler.
The logical state of a photon is encoded in the frequency bin
(0 or 1), which depends only on its spectral distance from the
pump, but the photons also have a second label (S or I) that
depends on whether they are red- or blue-shifted with respect
to the pump. In this source, energy conservation ensures that
pairs of signal and idler photons are generated in the same
frequency bin. The frequency bins should be close enough in

FIG. 2. Dual-pump configuration described by Eq. (2). The con-
figuration of the modes in frequency is sketched in (a). Green arrows
represent classical pumps (with amplitudes α, α′); orange and blue
arrows represent signal and idler fields. S0, S1, I0, I1 label the ring
resonances. The source and pumping scheme is shown in (b).

frequency (10 GHz spacing) to be modulated by commercial
electro-optic modulators. This constraint is important even
if EOMs are not necessary for the generation of the state;
their use could be necessary off-chip, for example, for the
tomography of the generated state.

Equation (1) can be implemented using a single ring, pro-
vided the free spectral range is sufficiently small that the
photons’ frequency bins can be modulated using commercial
electro-optic modulators [12]. If a single ring were used, the
coefficients α and α′ in Eq. (1) would be the same. Another
approach is the use of two rings with different radii [15],
such that each is driven by the same pump frequency, with
one ring generating photon pairs in the resonances S0 and
I0, while the other generates photon pairs in S1 and I1 fre-
quencies (see Fig. 1). In this dual-ring implementation, the
pump coefficients α and α′ can be controlled independently.
Also, if two rings are used, the distance between the frequency
bins does not depend on the rings’ FSR, so the frequency
bins can be spectrally close without affecting the generation
rate, which scales quadratically with the FSR [22]. The two
rings could also be driven by a different pump amplitude
and phase—hence the distinction between α(t ) and α′(t )
in Eq. (1).

We will also consider a dual-pump scheme (see Fig. 2),
such that the generation of photons is described by

HNL = h̄�α2(t )a†
S0a†

I1 + h̄�′α′2(t )a†
S1a†

I0 + H.c., (2)

where again we have assumed the state of the photon pairs is
approximately separable. Here energy conservation requires
that one photon of each pair is generated in frequency bin 1,
while the other is generated in bin 0. Unlike in the previous
configuration, α and α′ refer to pump amplitudes at different
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FIG. 3. Sketch of the GHZ state source. The boxes A label the
photon pair sources, which are pumped as indicated in Fig. 1. For
each source, the positions of the two rings’ resonances can be tuned
using a heater, sketched in yellow. The generated signal and idler
photons are separated by demultiplexers (labeled B). C labels an
add-drop filter resonant with frequency bin I1.

frequencies, so they could be made distinct even in an imple-
mentation with a single ring. However, two high-finesse rings
could be used to increase the generation rate [16].

For each cycle in the pulse train, the state generated in
either pumping scheme can be written as

|ψ〉 = e− i
h̄

∫ t
t0

dt ′HNL(t ′ ) |vac〉 , (3)

where we have neglected time ordering corrections. Inserting
Eq. (1) or (2), we can write

|ψ〉 = eβC†
II −H.c. |vac〉 , (4)

where C†
II is a pair generation operator. We will consider the

parameter regime where, to good approximation, at most four
photons are generated in each cycle, with the probability of
higher-order events being negligible. In this case (4) can be
approximated as

|ψ〉 ≈ [1 + O(β2)] |vac〉 + βC†
II |vac〉 + β2

2
C†2

II |vac〉 , (5)

where C†
II |vac〉 is a normalized two-photon state and |β|2 is

the probability of generating a photon pair per pump pulse, in
the low pair generation regime [7,11,23].

III. FOUR-PHOTON GHZ STATES

We first discuss the generation of frequency-bin-encoded
four-photon Greenberger-Horne-Zeilinger (GHZ) states. A
maximally entangled four-qubit GHZ state has the form

|GHZ〉 = 1√
2

(|0000〉 + |1111〉), (6)

where 0 and 1 denote the qubits’ logical states. GHZ states
are resources for tasks ranging from fundamental tests of
quantum mechanics to applications in quantum information
and communication [3,24–26].

The source of frequency-bin-entangled GHZ states is
sketched in Fig. 3. The scheme implemented by this device
is analogous to the one implemented in bulk systems for
the generation of polarization-encoded GHZ states [5] and it
relies on postselection on fourfold coincidences.

In our implementation, we begin with the generation of
photon pairs in two microring sources in the single-pump
configuration (labeled “A” in Fig. 3). We assume all four rings

are driven simultaneously to generate photons that are indis-
tinguishable in time; in Fig. 3 we envision splitting the pump
such that each ring is coupled to its own input waveguide.

The state generated by each source is described by Eq. (5).
Inserting Eq. (1) in (3) we have

C†
II = 1

β
{β1a†

S0a†
I0 + β2a†

S1a†
I1}, (7)

where

β1 = −i�
∫ t

t0

α2(t ′)dt ′, (8)

β2 = −i�′
∫ t

t0

α′2(t ′)dt ′ (9)

are related to the probabilities of generating a pair of photons
in each pair of resonances (S0 and I0 or S1 and I1) and
|β|2 = |β1|2 + |β2|2 is again the total probability of generat-
ing a photon pair per pump pulse. The state generated by each
source then is

|ψ〉 = |vac〉 + (β1a†
S0a†

I0 + β2a†
S1a†

I1) |vac〉 , (10)

where we have restricted our attention to the first-order term.
In principle, four photons can be generated in a single source.
However, our postselection on signal photons prevents such
events from causing fourfold coincidences.

The signal and idler photons from each source are sepa-
rated deterministically using a series of add-drop filters, which
act as a dichroic mirror (“B” in Fig. 3). Paths 1 and 4 carry
only signal photons, while paths 2 and 3 carry only idler
photons. All four paths carry both logical states, because the
logical state and signal or idler are distinct degrees of freedom
in this encoding. At this stage the state can be written as

|ψ〉 = [|vac〉 + (
β1a†(1)

S0 a†(2)
I0 + β2a†(1)

S1 a†(2)
I1

) |vac〉]
⊗ [|vac〉 + (

β3a†(4)
S0 a†(3)

I0 + β4a†(4)
S1 a†(3)

I1

) |vac〉], (11)

where the superscript on each ladder operator denotes the
relevant path (see Fig. 3). Expanding the tensor product re-
sults in zero-, two-, and four-photon terms; we restrict our
attention to the latter, since fourfold coincidence events will
be postselected. The relevant term is

|ψIV 〉 =N
(
β1a†(1)

S0 a†(2)
I0 + β2a†(1)

S1 a†(2)
I1

) |vac〉
⊗ (

β3a†(4)
S0 a†(3)

I0 + β4a†(4)
S1 a†(3)

I1

) |vac〉 , (12)

where N is a normalization constant.
Next, paths 1 and 4 are routed to detectors, while paths

2 and 3 are “merged” at an add-drop filter resonant with I1,
but not I0 (“C” in Fig. 3). The add-drop acts in analogy to a
polarizing beam splitter, effecting the transformation

a†(2)
I0 → a†(2)

I0 ,

a†(3)
I0 → a†(3)

I0 ,

a†(2)
I1 → a†(3)

I1 ,

a†(3)
I1 → a†(2)

I1 . (13)

Because we will trace over S and I , paths 2 and 3 must contain
photons of the same color to obtain a pure GHZ state. The
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state following the add-drop is

|ψIV 〉 =N
(
β1a†(1)

S0 a†(2)
I0 + β2a†(1)

S1 a†(3)
I1

) |vac〉
⊗ (

β3a†(4)
S0 a†(3)

I0 + β4a†(4)
S1 a†(2)

I1

) |vac〉 , (14)

and the state describing fourfold coincidence events is

|ψ̄IV 〉 = N̄
(
β1β3a†(1)

S0 a†(2)
I0 a†(3)

I0 a†(4)
S0

+β2β4a†(1)
S1 a†(2)

I1 a†(3)
I1 a†(4)

S1

) |vac〉 (15)

= N̄ (β1β3 |0000〉 + β2β4 |1111〉) |SIIS〉 , (16)

which is a pure frequency-bin-encoded GHZ state after trac-
ing over S and I .

We envision the source in Fig. 3(a) to be a pair of sil-
icon microring resonators. Such sources have been shown
to generate nearly uncorrelated photon pairs with |β|2 ≈ 0.1
for picojoule pump pulses with durations around 10 ps and
a 10 MHz repetition rate; this corresponds to a pair rate of
∼106 Hz [20]. From this we predict the probability of generat-
ing a pair of pairs per pump pulse to be ∼|β|4 ≈ 0.01, giving a
four-photon generation rate RIV ∼ 105 Hz. Half of these sets
of photons lead to fourfold coincidences after the add-drop
(see the Appendix), so we expect a GHZ generation rate of
104–105 Hz for milliwatt pump powers. The expected off-chip
rate depends strongly on the coupling loss, which is strongly
dependent on the platform chosen for the implementation of
the circuit. As an example, if one assumes a coupling loss of
6 dB per channel, which has been reported in recent work on
a silicon platform [16], the expected fourfold coincidence rate
would be on the order of 10–100 Hz.

This scheme could be modified to produce a three-photon
GHZ state by choosing one of the four paths to be an ancilla
and using an EOM in this path to shift photons in bin 0 to 1 or
vice versa. That is, the EOM would modify the state to be

|ψ̄IV 〉 = N̄ (β1β3e−iφ |0001〉 + β2β4 |1111〉) |SIIS〉 , (17)

a three-photon GHZ state with an ancilla photon in path 4. By
φ we denote the phase acquired due to the modulation; the
pump phases could be adjusted to cancel this out.

Given the relative ease of implementing more than two log-
ical states in frequency bin encoding, one might think about
extending this scheme to higher dimensions. Yet, this device
cannot be simply generalized to generate high-dimensional
four-photon GHZ states and it is unclear whether such a
source could be implemented using this platform with only
four photons. This sort of extension is challenging in general
and we comment on this more in the Conclusion.

IV. THREE-PHOTON W STATES

We now turn to the generation of three-photon W states.
W states are known to be relatively robust against loss [27]
and, like GHZ states, they have been explored as resources
for a number of quantum protocols [28–33]. A maximally
entangled three-qubit W state has the form

|W〉 = 1√
3

(|100〉 + |010〉 + |001〉). (18)

Our scheme for generating such states begins with the gen-
eration of four photons in a single source (labeled “A” in

FIG. 4. Integrated W state source. Box A labels the photon
source, which is pumped as indicated in Fig. 2. The heater sketched
in yellow can be used to tune the positions of the two rings’ reso-
nances. Signal and idler photons are separated at the demultiplexer
(B) and routed toward detectors. C labels a filter which transmits only
signal photons in frequency bin 1.

Fig. 4) with the pumping scheme sketched in Fig. 2. In this
case the two rings’ resonances are different and they can be
excited simultaneously through the same bus waveguide and
a properly engineered pump.

Here

C†
II = 1

β
{β1a†

S0a†
I1 + β2a†

S1a†
I0}, (19)

with β1 and β2 defined in Eqs. (8) and (9). Inserting this in
Eq. (5) and restricting our attention to the four-photon terms,
we have

|ψIV 〉 =N
(
β2

1 a†
S0a†

S0a†
I1a†

I1 + β2
2 a†

S1a†
S1a†

I0a†
I0

+ 2β1β2a†
S0a†

S1a†
I0a†

I1

) |vac〉 . (20)

As in the GHZ device, the signal and idler photons are sep-
arated deterministically by add-drop filters (“B” in Fig. 4);
the signal photons are routed to path 4 and the idler photons
to path 2. Each path is sent into a directional coupler (DC)
which acts as a 50-50 beam splitter. Three of the four DC
outputs lead directly to detectors: these are the three “parties”
among which the W state is shared. The fourth output (path 4)
is filtered (“C” in Fig. 4), leaving only photons generated in
resonance S1, and then routed to a herald detector. After this
processing, a four-photon coincidence event is described by

|IV ′〉 =N ′[4β2
2 |0011〉 + 2β1β2(|0101〉 + |1001〉)

] |IISS〉 ,

(21)

which is derived in Appendix.
Here again we expect the rate of pairs of pairs generated

in the source to be ∼105 Hz (see Sec. III). The fraction of
four-photon sets that could lead to fourfold coincidences after
the DCs and filtering in path 4 is given by

F = 1

8

(
2|β2|4 + |β1|2|β2|2

|β1|4 + |β2|4 + |β1|2|β2|2
)

, (22)

where we have set R = T = 1√
2

for the DCs, which should be
configured as 50-50 beam splitters to maximize the generation
rate. The total rate of W states is RW = FRIV . The rate
depends on the relative amplitudes of β1 and β2; for example,
to generate the W state of Eq. (18), one would set β1 = 2β2,
giving F = 1

28 . Then with a silicon microring source we esti-
mate RW ∼ 103–104 Hz for milliwatt pump powers.

We point out that the redundant degree of freedom can be
exploited to improve the efficiency: without the signal or idler
label, the photons could not be deterministically separated
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into two multiple paths, so the fraction of photons leading
to fourfold coincidences would be smaller. Indeed, in this
respect, this scheme is more efficient than a similar scheme
where the signal or idler labels do encode the logical states,
with three beam splitters required to route them to four detec-
tors [10,11].

This device cannot be generalized directly as a source for
N-photon W states with N > 3: for N > 4, one would require
more photon pairs distributed among more paths, so the form
of the circuit would immediately need to be modified. Since
the source in this device always generates an equal number of
photons in bin 0 and bin 1, an N = 4 W state would require
either a different source or the use of ancillas, which would
again require more sources and paths. The design of other
sources for larger W states is an interesting area for future
work and it is possible that a more general design or approach
could be found.

V. CONCLUSION

Frequency bin encoding has emerged as a convenient ap-
proach to the generation of nonclassical light, particularly
in integrated platforms. The generation of high-fidelity Bell
states, for example, has been demonstrated; here we have ex-
plored the generation of multipartite states. We have described
integrated sources of frequency-bin-encoded W and GHZ
states, based on the manipulation and postselection of photon
pairs generated by SFWM in pulsed microring sources. For
typical silicon microring sources pumped by picojoule pump
pulses with a MHz repetition rate, we predict generation rates
of 103–104 Hz for both W and GHZ states. The implemen-
tation of these schemes is a clear next step in extending
frequency bin encoding towards the generation of multipartite
entangled states.

Frequency bin encoding can accommodate more than two
logical levels and integrated platforms are well-suited for
multiplexing many photon sources; it is natural to consider
whether one could conceive sources of more complex, high-
dimensional multipartite states. The schemes discussed here
cannot be generalized in a straightforward way, a difficulty
that has been encountered by others [34]. It is challenging to
comment more generally on the resources required to generate
a particular state or, conversely, about what states can be
generated given a particular set of experimental resources. In-
deed, it has been demonstrated that one cannot even efficiently
compute the high-dimensional state generated by a given ex-
perimental scheme [35]. Yet the extension of this work to
the design of more complex sources is an obvious topic for
future work, especially given the ease with which—relative to
other scenarios for investigating high-dimensional degrees of
freedom—the platforms discussed here can be implemented.
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APPENDIX: W AND GHZ DETAILS

Here we provide a more detailed description of the W and
GHZ generation schemes.

1. Three-photon W state

We consider the W state device (Fig. 4) with the photon
pair source driven in the dual-pump scheme (Fig. 2). Assum-
ing that the generated photon pairs are roughly separable, the
nonlinear Hamiltonian describing the production of pairs can
be taken to be

HNL = h̄�α2(t )a†
S0a†

I1 + h̄�′α′2(t )a†
S1a†

I0 + H.c. (A1)

Here � and �′ are nonlinear coupling rates associated with
each ring, α and β are classical pump amplitudes in the two
rings, and a†

J are raising operators associated with a ring reso-
nance J . Neglecting time ordering corrections, this generates
the state

|ψ〉 = e− i
h̄

∫ t
t0

dt ′HNL(t ′ ) |vac〉 (A2)

= e−i
∫ t

t0
dt ′[�α(t ′ )2a†

S0a†
I1+�′α′2(t ′ )a†

S1a†
I0+H.c.] |vac〉 (A3)

= e
{
−i�

(∫ t
t0

dt ′α2(t ′ )
)

a†
S0a†

I1−i�′
(∫ t

t0
dt ′α′2(t ′ )

)
a†

S1a†
I0

}
−H.c. |vac〉

(A4)

≡ eβC†
II −H.c. |vac〉 , (A5)

where we introduce the pair generation operator

C†
II = 1

β

{
−i�

(∫ t

t0

dt ′α2(t ′)
)

a†
S0a†

I1

− i�′
(∫ t

t0

dt ′α′2(t ′)
)

a†
S1a†

I0

}
(A6)

≡ 1

β

{
β1a†

S0a†
I1 + β2a†

S1a†
I0

}
. (A7)

Here |β|2 = |β1|2 + |β2|2 is the probability of generating a
pair per pump pulse and C†

II |vac〉 is a normalized two-photon
state.

We consider the regime of low pair generation probability,
such that pairs of photons and pairs of pairs are generated,
with negligible higher-order events. The state generated by the
source then is approximately

|ψ〉 = [1 + O(β2)] |vac〉 + βC†
II |vac〉 + β2

2
C†2

II |vac〉 ,

(A8)

which is just Eq. (A5) to second order. If we set β2 = β1eiφ ,
then the two-photon term above (when normalized) corre-
sponds to a frequency-bin-encoded Bell state of the form

|�〉 = 1√
2

(a†
S0a†

I1 + eiφa†
S1a†

I0) |vac〉 (A9)

= 1√
2

(|01〉 + eiφ |10〉), (A10)

where the two qubits are the signal and idler photons and their
logical states are encoded in the frequency bins in which they
are generated.
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Here we are interested in the four-photon terms that arise
from the latter term in (A8). Inserting C†

II we have

|ψ4〉 =N
(
β2

1 a†
S0a†

S0a†
I1a†

I1 + β2
2 a†

S1a†
S1a†

I0a†
I0

+ 2β1β2a†
S0a†

S1a†
I0a†

I1

) |vac〉 , (A11)

where

N = 1√
4|β1|4 + 4|β2|4 + 4|β1|2|β2|2

(A12)

is a normalization constant.

a. Routing photons

We consider a setup where the signal and idler photons
generated by the source are split between two paths. Each
path is then split by a beam splitter and we postselect on four-
photon coincidences (see Fig. 4). We can write the operators
in Eq. (A11) in terms of operators referring to each detection
arm using beam splitter input-output relations. Recall for a
single beam splitter, where we label the input ports 1 and 2
and the output ports 3 and 4, we have[

a3

a4

]
=

[
T R
R T

][
a1

a2

]
, (A13)

where the matrix is unitary. Using this we obtain

a1 = T ∗a3 + R∗a4,

a2 = R∗a3 + T ∗a4, (A14)

so for our setup we can write

aI = R∗
1c(1)

I + T ∗
1 c(2)

I ,

aS = R∗
2c(3)

S + T ∗
2 c(4)

S . (A15)

Here c(n)
J are ladder operators associated with the output

branch n (see Fig. 4). We now substitute (A15) into (A11).
The resulting expression involves operators of the form

OJ,J ′,K,K ′ = a†
Ja†

J ′a
†
K a†

K ′ (A16)

acting on the vacuum, where J, J ′ are associated with signal
photons and K, K ′ with idler photons. Inserting (A15) into
(A16) we have

OJ,J ′,K,K ′ = (
R2c(3)†

J + T2c(4)†
J

)(
R2c(3)†

J ′ + T2c(4)†
J ′

)
× (

R1c(1)†
K + T1c(2)†

K

)(
R1c(1)†

K ′ + T1c(2)†
K ′

)
.

Expanding this we have

OJ,J ′,K,K ′ = R1T1R2T2
(
c(3)†

J ′ c(4)†
J + c(3)†

J c(4)†
J ′

)(
c(1)†

K c(2)†
K ′ + c(1)†

K ′ c(2)†
K

) + OJ,J ′,K,K ′ (A17)

= R1R2T1T2
(
c(3)†

J ′ c(4)†
J c(1)†

K c(2)†
K ′ + c(3)†

J ′ c(4)†
J c(1)†

K ′ c(2)†
K + c(3)†

J c(4)†
J ′ c(1)†

K c(2)†
K ′ + c(3)†

J c(4)†
J ′ c(1)†

K ′ c(2)†
K

) + OJ,J ′,K,K ′

= R1R2T1T2
(
c(1)†

K c(2)†
K ′ c(3)†

J ′ c(4)†
J + c(1)†

K ′ c(2)†
K c(3)†

J ′ c(4)†
J + c(1)†

K c(2)†
K ′ c(3)†

J c(4)†
J ′ + c(1)†

K ′ c(2)†
K c(3)†

J c(4)†
J ′

) + OJ,J ′,K,K ′ , (A18)

where we have grouped the terms that cannot result in a fourfold coincidence in the term OJ,J ′,K,K ′ . Note that if J = J ′ and
K = K ′, we have

OJ,J,K,K = 4R1R2T1T2
(
c(1)†

K c(2)†
K c(3)†

J c(4)†
J

) + OJ,J,K,K . (A19)

Our notation for the states generated by these operators will be the following:

c(1)†
K c(2)†

K ′ c(3)†
J c(4)†

J ′ |vac〉 = |K, K ′, J, J ′〉 . (A20)

We can then see that

OJ,J ′,K,K ′ |vac〉 = R1R2T1T2
(|K, K ′, J ′, J〉 + |K ′, K, J ′, J〉 + |K, K ′, J, J ′〉 + |K ′, K, J, J ′〉) + OJ,J ′,K,K ′ |vac〉 , (A21)

where the latter term will be excluded by postselecting on fourfold coincidences.

b. Output state and filtering

Recall Eq. (A11), which is the four-photon state generated by the source. After propagating through the beam splitters, the
part of the state with a photon in each of the four outputs can be written as

|IV 〉 = N
(
β2

1OS0,S0,I1,I1 + β2
2OS1,S1,I0,I0 + 2β1β2OS0,S1,I0,I1

) |vac〉 , (A22)

with N defined in (A12). Using (A21) we have

|IV 〉 =N
(
R1R2T1T2

[
4β2

1 |I1, I1, S0, S0〉 + 4β2
2 |I0, I0, S1, S1〉 + 2β1β2

( |I0, I1, S1, S0〉 + |I1, I0, S1, S0〉
+ |I0, I1, S0, S1〉 + |I1, I0, S0, S1〉 )] + [

β2
1OS0,S0,I1,I1 + β2

2OS1,S1,I0,I0 + 2β1β2OS0,S1,I0,I1
] |vac〉 )

(A23)

and we define

|IV ′〉 =N ′[4β2
1 |I1, I1, S0, S0〉 + 4β2

2 |I0, I0, S1, S1〉
+ 2β1β2(|I0, I1, S1, S0〉 + |I1, I0, S1, S0〉 + |I0, I1, S0, S1〉 + |I1, I0, S0, S1〉)

]
, (A24)

where |IV ′〉 is the state describing fourfold coincidence events only. We separate the signal or idler and frequency bin (0/1)
degrees of freedom by writing, e.g., |S0〉, explicitly as a composite system with two degrees of freedom |S〉 |0〉. In this notation
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we have

|IV ′〉 = N ′[4β2
1 |1, 1, 0, 0〉 + 4β2

2 |0, 0, 1, 1〉 + 2β1β2(|0, 1, 1, 0〉 + |1, 0, 1, 0〉 + |0, 1, 0, 1〉 + |1, 0, 0, 1〉)
] |I, I, S, S〉 (A25)

and clearly, if we trace over S and I , we have a pure state in the frequency bin degree of freedom. Finally, we also postselect on
frequency bin 1 in the herald detector, which we take to be detector 4. Doing this we are left with

|IV ′〉 = N ′′[4β2
2 |0, 0, 1〉123 + 2β1β2(|0, 1, 0〉123 + |1, 0, 0〉123)

] |1〉4 , (A26)

N ′′ = 1√
16|β2|4 + 8|β1|2|β2|2

. (A27)

Now if we set the pump powers such that β1β2 = 2β2
1 , we

have

|IV ′〉 = 1√
3

(|0, 0, 1〉 + |0, 1, 0〉 + |1, 0, 0〉)123 |1〉4 , (A28)

which is a W state in ports 1,2,3. Notice one could also use the
pump phases to add a relative phase to one of the three terms,
but not arbitrary relative phases between the three terms; in
principle it seems this could be done by adding a frequency-
dependent phase shift to one of the paths. Of course, the
relative amplitudes between the terms can be modified; al-
though the state is not completely general, the tunability in
(A26) is sufficient to construct a W state that is suitable for
superdense coding and perfect teleportation [29].

c. W rate

Many of the photon-pair pairs generated by the microring
source do not result in fourfold coincidences. We can find
the fraction of photons that remain by computing the overlap
between |IV ′〉 in (A26), which is the postselected state, and
|IV 〉 in (A23), which is the full four-photon state. We find

| 〈IV |IV ′〉 |2 = |N |2|N ′′|2|R1R2T1T2|2

× (
16|β2|4 + 8|β1|2|β2|2

)2
(A29)

=
(

1

4|β1|4 + 4|β2|4 + 4|β1|2|β2|2
)

×
(

1

16|β2|4 + 8|β1|2|β2|2
)

|R1R2T1T2|2

× (
16|β2|4 + 8|β1|2|β2|2

)2
. (A30)

Putting R1 = R2 = T1 = T2 = 1√
2
, which optimizes rate of

W states, we have

| 〈IV |IV ′〉 |2 =
(

16|β2|4 + 8|β1|2|β2|2
4|β1|4 + 4|β2|4 + 4|β1|2|β2|2

)
1

16
(A31)

=
(

2|β2|4 + |β1|2|β2|2
|β1|4 + |β2|4 + |β1|2|β2|2

)
1

8
. (A32)

If we put 2β2 = β1, which gives the W state of Eq. (A28), we
have

| 〈IV |IV ′〉 |2 =
(

6

21

)
1

8
= 1

28
. (A33)

That is, of the pairs of pairs generated in the source, 1
28 lead to

fourfold coincidences; we expect

RW = RIV /28, (A34)

where RW is the rate of W states and RIV is the rate of photon-
pair pairs from the source.

2. Four-photon GHZ state

a. Sources

Here we take two SFWM sources in the pair generation
regime, with the resonances configured as shown in Fig. 1.
The nonlinear Hamiltonian describing each source can be
taken to be

HNL(t ) = h̄�α(t )a†
S0a†

I0 + h̄�′α′(t )a†
S1a†

I1 + H.c. (A35)

Neglecting time-ordering corrections, the state generated by
this Hamiltonian is

|ψ〉 = e− i
h̄

∫ t
t0

dt ′HNL(t ′ ) |vac〉 (A36)

= e−i
∫ t

t0
dt ′[�α(t ′ )a†

S0a†
I0+�′α′(t ′ )a†

S1a†
I1+H.c.] |vac〉 (A37)

= e
{
−i�

(∫ t
t0

dt ′α(t ′ )
)

a†
S0a†

I0−i�
(∫ t

t0
dt ′α′(t ′ )

)
a†

S1a†
I1

}
−H.c. |vac〉

(A38)

≡ eβC†
II −H.c. |vac〉 , (A39)

where now

C†
II = 1

β

{
−i�

(∫ t

t0

dt ′α(t ′)
)

a†
S0a†

I0

− i�

(∫ t

t0

dt ′α′(t ′)
)

a†
S1a†

I1

}
(A40)

≡ 1

β
{β1a†

S0a†
I0 + β2a†

S1a†
I1}. (A41)

Here |β|2 = |β1|2 + |β2|2 is the probability of generating a
pair per pump pulse and C†

II |vac〉 is a normalized two-photon
state. If we set β2 = β1eiφ , then the two-photon state corre-
sponds to a frequency-bin-encoded Bell state of the form

|�〉 = 1√
2

(a†
S0a†

I0 + eiφa†
S1a†

I1) |vac〉 (A42)

= 1√
2

(|00〉 + eiφ |11〉), (A43)
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where the two qubits are the signal and idler photons and their
logical states are encoded in the frequency bins in which they
are generated.

Returning to the more general case, we consider the low
pair generation probability regime, such that the state gener-
ated by each source is approximately

|ψ〉 = |vac〉 + βC†
II |vac〉 (A44)

= |vac〉 + (β1a†
S0a†

I0 + β2a†
S1a†

I1) |vac〉 . (A45)

We neglect the four-photon term in Eq. (A45) because such
terms will not result in fourfold coincidences.

b. Manipulation

We now discuss the manipulation of the photons in the
GHZ device (see Fig. 3). We begin with two-photon pair
sources configured as described above [see Eq. (A45)]. We
label the two spatial modes associated with the sources path
1 and 4. The state generated by the two rings is approximately

|ψ〉 = [|vac〉 + (
β1a†(1)

S0 a†(1)
I0 + β2a†(1)

S1 a†(1)
I1

) |vac〉]
⊗ [|vac〉 + (

β3a†(4)
S0 a†(4)

I0 + β4a†(4)
S1 a†(4)

I1

) |vac〉]
(A46)

= |ψ0,2〉 + (
β1a†(1)

S0 a†(1)
I0 + β2a†(1)

S1 a†(1)
I1

) |vac〉
⊗ (

β3a†(4)
S0 a†(4)

I0 + β4a†(4)
S1 a†(4)

I1

) |vac〉 , (A47)

where in (A47) we have grouped the terms that result in
the generation of no photons or photon pairs in |ψ0,2〉. After
each source, the signal and idler photons are separated using
an add-drop filter; the path taken by signal photons remains
unchanged, while idler photons are routed into a new path.
The state is then

|ψ〉 = |ψ0,2〉 + (
β1a†(1)

S0 a†(2)
I0 + β2a†(1)

S1 a†(2)
I1

) |vac〉
⊗ (

β3a†(4)
S0 a†(3)

I0 + β4a†(4)
S1 a†(3)

I1

) |vac〉 . (A48)

Next, paths 2 and 3 are mixed at an add-drop filter. The ring
is resonant with the frequency bin I1, so photons in bin I0

remain in the same path, while photons in I1 are swapped.
That is, the add-drop effects the transformation

a†(2)
I0 → a†(2)

I0 , (A49)

a†(3)
I0 → a†(3)

I0 , (A50)

a†(2)
I1 → a†(3)

I1 , (A51)

a†(3)
I1 → a†(2)

I1 , (A52)

so the state becomes

|ψ〉 = |ψ0,2〉 + (
β1a†(1)

S0 a†(2)
I0 + β2a†(1)

S1 a†(3)
I1

) |vac〉
⊗ (

β3a†(4)
S0 a†(3)

I0 + β4a†(4)
S1 a†(2)

I1

) |vac〉 . (A53)

Expanding the tensor product we have

|ψ〉 = |ψ0,2〉 + (
β1β4a†(1)

S0 a†(2)
I0 a†(4)

S1 a†(2)
I1

+ β2β3a†(1)
S1 a†(3)

I1 a†(4)
S0 a†(3)

I0

) |vac〉
+ (

β1β3a†(1)
S0 a†(2)

I0 a†(4)
S0 a†(3)

I0

+ β2β4a†(1)
S1 a†(3)

I1 a†(4)
S1 a†(2)

I1

) |vac〉 . (A54)

Only the third term can lead to fourfold coincidences, while
the first two cannot. We focus on the last term

|GHZ〉 = N
(
β1β3a†(1)

S0 a†(2)
I0 a†(3)

I0 a†(4)
S0

+β2β4a†(1)
S1 a†(2)

I1 a†(3)
I1 a†(4)

S1

) |vac〉 (A55)

= N (β1β3 |0000〉 |SIIS〉 + β2β4 |1111〉 |SIIS〉)

(A56)

= N (β1β3 |0000〉 + β2β4 |1111〉), (A57)

where we have introduced the same notation used above to
distinguish the frequency bin and signal or idler degrees of
freedom and traced over the latter. We have a four-photon
GHZ state with arbitrary relative amplitude and phase be-
tween the two terms.
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