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Statistical properties of speckle patterns for a random number of scatterers and
nonuniform phase distributions
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The statistical properties of speckle patterns have important applications in optics, oceanography, and transport
phenomena in disordered systems. Here we obtain closed-form analytic results for the amplitude distribution of
speckle patterns formed by a random number of partial waves characterized by an arbitrary phase distribution,
generalizing classical results of the random-walk theory of speckle patterns. We show that the functional form
of the amplitude distribution is solely determined by the distribution of the number of scatterers, while the phase
distribution only influences the scale parameters. In the case of a nonrandom number of scatterers, we find an
analytic expression for the amplitude distribution that extends the Rayleigh law to nonuniform random phases.
For a negative binomial distribution of the number of scatterers, our results reveal that large fluctuations of the
wave amplitudes become more pronounced in the case of biased random phases. We present numerical results
that fully support our analytic findings.
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I. INTRODUCTION

Waves propagating in random media undergo multiple
scattering from inhomogeneities [1]. The scattered waves in-
terfere with each other and give rise to an irregular intensity
pattern that echoes the random structure of the sample. In
optics, the most straightforward realization of this basic phe-
nomenology occurs when a laser beam is reflected by a rough
surface, leading to the formation of a granular intensity pattern
known as a speckle pattern [2–4]. Studies of various aspects
linked to speckle formation have been carried out since the
invention of lasers, which remain an active area of research
[4,5]. Prominent statistical properties include not only the
intensity distribution but also other speckle distributions, such
as those related to light polarization [6] and phase singulari-
ties [7]. Another important topic that has been experiencing
rapid development from both a theoretical and an experimen-
tal point of view is the study of three-dimensional speckle
patterns [8–10]. The statistical properties of speckle patterns
find important applications in hydrodynamics [11], medical
science [12], imaging techniques [13–15], material science
[16,17], multimode fiber systems [18], optical radar perfor-
mance [19], and transport phenomena in disordered systems
[20,21].

The random-walk model is the simplest theoretical ap-
proach to study speckle patterns [2,3]. In this framework, the
resultant electromagnetic field observed at a specific point is
the superposition of a large number of partial waves, each
one arising from an individual scatterer within the sample.
Each contribution to the speckle field carries a random phase,
whose statistical properties reflect the spatial arrangement of
the scatterers. The problem is formally equivalent to a ran-
dom walk in two dimensions [3,22]. When the phases are
independent random variables, the central-limit theorem holds
and the resultant electromagnetic field follows a Gaussian

distribution. In the strong-scattering regime, where the phases
are uniformly distributed, the amplitude of the resultant field
follows the well-known Rayleigh distribution [2,3]. In the
weak-scattering regime, in which the phases exhibit weak
fluctuations around a constant value, the amplitude obeys the
Rice distribution [3].

The breakdown of the central-limit theorem in the random-
walk model leads to deviations from both the Rayleigh and
the Rice distribution. Indeed, non-Rayleigh statistics emerges
in the strong-scattering regime as long as the phases are cor-
related random variables [23–27] or the number of scatterers
is finite [28–30]. More fundamental approaches, based on the
solutions of the classical wave equation [20,31], have shown
that the exponential tail of the Rayleigh distribution fails to
reproduce the statistics of large amplitudes [20,32,33]. In the
context of random-walk models, Jakeman and Pusey [34] put
forward a phenomenological model for the strong-scattering
regime in which the number of scatterers is itself a random
variable. When the variance of the number of scatterers is
large enough, the amplitude of the resultant speckle field fol-
lows the so-called K distribution, which has been recognized
as a very good model for scattering experiments involving
turbulent media [35,36]. From a more theoretical perspective,
the K distribution can be seen as a consequence of the break-
down of the central-limit theorem, which occurs due to the
fluctuating number of scatterers [22,34,36,37].

Theoretical approaches for speckle patterns have tradi-
tionally focused on the limiting cases of strong- and weak-
scattering regimes. The Rayleigh distribution characterizes
amplitude fluctuations resulting from a highly inhomogeneous
medium, while the Rice distribution arises from a quasihomo-
geneous medium. In these two limits, the phases of the partial
waves are uniformly distributed. On the other hand, much
less attention has been devoted to the scattering of waves
with nonuniform phase distributions, i.e., physical situations
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in which the values of the phases have different statistical
weights. These cases are of physical relevance since nonuni-
form phase distributions play an important role in a number
of practical situations, such as the scattering from a finite
disordered sample [38], the speckle patterns formed in the
near-field region [39–41], and the amplitude fluctuations aris-
ing from nonisotropic arrangements of scatterers [42].

Concerning nonuniform random phases, there have been
a few attempts [22,36,43] to generalize the random-walk
model of speckle patterns to include this feature. Barakat [43]
derived the amplitude distribution in the particular case of
a von Mises phase distribution, while Jakeman and Tough
[22,36] considered a weak perturbation around the uniform
phase distribution. Despite the fact that many results from the
classical speckle theory have been developed a long time ago,
the interest in the statistical properties of both linear and non-
linear wave propagation has been renewed with the growing
interest in extreme wave generation [26,44–47]. However, a
systematic approach to calculate the amplitude distribution of
speckle patterns for a generic distribution of phases is lacking.
The purpose of our paper is to fill this gap.

Here we introduce an exactly solvable random-walk model
for speckle patterns generated by a random number of scat-
terers with an arbitrary phase distribution. By distinguishing
between biased and unbiased random phases, we derive gen-
eral analytic expressions for the amplitude distribution of the
speckle field, from which one can find several closed-form
analytic results that cover a rich variety of specific situa-
tions, generalizing classical results [2,34] within the theory
of speckle patterns. In particular, we find an analytic result
for the amplitude distribution in the simple case of a non-
random number of scatterers, which extends the Rayleigh
law to arbitrary phase distributions. We show that the dis-
tribution of the number of scatterers fully determines the
functional form of the amplitude distribution, while the in-
formation about the phase distribution is encoded in the scale
parameters characterizing the joint distribution of the speckle
field. For a negative binomial distribution of the number of
scatterers, we show that amplitude fluctuations become more
pronounced in the case of biased random phases, due to a
power-law tail in the amplitude distribution. The exactness
of our theoretical findings are fully confirmed by numerical
simulations.

The paper is organized as follows. In the next section we
introduce the random-walk model for the scattering by an
inhomogeneous surface with a random number of scatterers.
Section III presents the main analytic results for the ampli-
tude distribution in the cases of biased and unbiased random
phases. In Sec. IV we summarize our results and discuss
some prospects for future work. Appendix A explains all
details involved in the derivation of the main analytic findings
of Sec. III, while in Appendix B we demonstrate a useful
identity to obtain closed-form expressions for the amplitude
distribution when the number of scatterers follows a negative
binomial distribution.

II. RANDOM-WALK MODEL FOR SPECKLE PATTERNS

In this work we focus on the random-walk model of
speckle patterns. One of the original motivations for in-

troducing this phenomenological model is the study of the
interference pattern formed at a large distance from an ir-
regular surface [2,3,36]. For concreteness, we consider a
one-dimensional regular lattice of length L with N sites or
positions labeled by j = 0, . . . , N − 1, in which the distance
between two adjacent sites is given by L

N−1 . Each site is
occupied by a pointlike source that emits coherent light with
wavelength λ. We study the distribution of the amplitude that
characterizes the resulting interference pattern emerging at a
large distance from the sample (Fraunhofer diffraction). Since
pointlike scatterers emit spherically symmetric partial waves,
we assume that the amplitudes of all individual waves are
equal to a constant E0. Let φ j ( j = 0, . . . , N − 1) be the
phase of the partial wave arising from the j scatterer. The
electromagnetic field on a screen or observation plane located
at a large distance from the sample is given by

E (β ) = E0

N−1∑
j=0

ei j[β/(N−1)]+iφ j , (1)

where

β = 2π
L

λ
sin(θ ) (2)

is given in terms of the angular position θ ∈ (−π
2 , π

2 ) on the
screen.

Equation (1) holds when all partial waves arrive on the
screen. There are different reasons to drop this assumption and
consider a more realistic scenario in which light is emitted
only by a fraction of scatterers randomly placed over the
sample. This class of models is particularly relevant when
the scatterers exhibit dynamic behavior, moving in and out
of the illuminated region due to dynamical processes [37]. A
minimal microscopic model of this situation is represented by
the expression for the electric field

E (β ) = E0

N−1∑
j=0

x je
i j[β/(N−1)]+iφ j , (3)

where the binary random variable x j ∈ {0, 1} tells whether the
individual wave labeled by j reaches the detector. If x j = 1,
then the j wavefront reaches the screen; otherwise x j = 0.
Therefore, the occupation random variables x0, . . . , xN−1 de-
termine the (random) positions of the scatterers along the
one-dimensional lattice. The total number k = 0, . . . , N − 1
of wavefronts that reach the screen is now given by

k =
N−1∑
j=0

x j . (4)

Note that the speckle field in Eq. (3) is a sum of k terms. The
phases φ0, . . . , φN−1 are independent random variables that
follow an arbitrary distribution �(φ).

In order to complete the definition of the model, we need to
specify the distribution of x0, . . . , xN−1. The discrete quantity
k = 0, . . . , N − 1 is itself a random variable that models the
microscopic fluctuations of the number of scatterers among
different samples. Given a certain value of k, we choose the
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conditional joint distribution P(x|k) of x = (x0, . . . , xN−1) as

P(x|k) = 1

Nk
δk,
∑N−1

j=0 x j

×
N−1∏
j=0

[
k

N
δx j ,1 +

(
1 − k

N

)
δx j ,0

]
, (5)

where Nk is the normalization factor for finite N . In the limit
N → ∞, this factor converges to N (∞)

k = e−kkk

k! . According to
Eq. (5), the variables x0, . . . , xN−1 are independently drawn
from a bimodal distribution, where x j = 1 with probability
k/N and x j = 0 with probability 1 − k/N . The term contain-
ing the Kronecker δ ensures that the constraint k = ∑N−1

j=0 x j

is fulfilled for each realization of the model. The object P(x|k)
is the conditional probability for a fixed k, while the joint
distribution p(x) is obtained from

p(x) =
N∑

k=0

pkP(x|k), (6)

where pk is the discrete probability of k. Equations (5) and (6)
completely define the distribution of x0, . . . , xN−1.

Our primary aim is to compute the probability distribution
Pβ (A) of the amplitude

A(β ) = |E (β )|, (7)

generalizing classical results [2,34] of the theory of speckle
patterns to arbitrary phase distributions �(φ). Once the an-
alytic form of Pβ (A) is known, the distribution Fβ (I ) of
the intensity I = A2 is determined by the relation Fβ (I ) =
(4I )−1/2Pβ (

√
I ), which is obtained by a simple change of

variables. Since N is the number of available positions of the
scatterers along the sample, the average density of scatterers
is given by

D = a

N
, (8)

where a is the average number of scatterers

a =
N∑

k=0

pkk. (9)

In the next section we present analytic expressions for Pβ (A)
in the regime where both N and a are infinitely large but the
density D goes to zero. This low-density regime is achieved
by setting a ∝ Nδ (δ < 1) and then taking the limit N → ∞.
Put differently, our analytic findings are valid in the regime
where the average number of scatterers is very large but much
smaller than the total number of available spaces in the sam-
ple.

III. DISTRIBUTION OF AMPLITUDES

In this section we present the main analytic results for
Pβ (A). Let Wβ (ER, EI ) be the joint probability distribution
of the complex field E (β ) = ER(β ) + iEI (β ) for fixed β. In
order to obtain a finite limit of Wβ (ER, EI ) as a → ∞, we
need to rescale the amplitude E0 with respect to a. The rescal-
ing factor depends on the choice of the distribution �(φ) of
phases φ0, . . . , φN−1. Thus, although there is no need to fully

specify the form of �(φ) to derive the expressions for Pβ (A),
we do have to distinguish between two different families of
distributions, since E0 has to be rescaled differently in each
case. Let 〈 f (φ)〉φ be the average of a function f (φ) of the
random phase φ,

〈 f (φ)〉φ =
∫ 2π

0
dφ �(φ) f (φ). (10)

For unbiased random phases, �(φ) is such that 〈eiφ〉φ = 0
and we rescale the amplitude of the speckle field as E0 →
E0/

√
a. An important example of an unbiased distribution

�(φ) is the uniform distribution in the interval [0, 2π ), which
characterizes the strong-scattering regime. For biased random
phases, �(φ) is such that 〈eiφ〉φ 	= 0 and the amplitude must
be rescaled as E0 → E0/a. The most straightforward example
of biased phases arises when all phases are set to a constant
value.

Apart from the aforementioned constraints on �(φ), our
main analytic results hold for arbitrary distributions pk and
�(φ). In other words, both the distribution of the number of
scatterers and the phase distribution are inputs of the analytic
expressions. Nevertheless, for the purpose of generating nu-
merical results, we do have to specify pk and �(φ). As a
simple example of a nonuniform �(φ), we will consider a
bimodal distribution

�(φ) = qδ(φ − φ0) + (1 − q)δ(φ − φ0 − π ), (11)

where φ0 ∈ [0, 2π ) and q ∈ [0, 1]. According to Eq. (11), we
randomly select phases φ0 and φ0 + π with probabilities q
and 1 − q, respectively. When q = 1

2 , Eq. (11) produces an
unbiased distribution, while for q 	= 1

2 , the distribution �(φ)
becomes biased.

As we will see below, when a approaches infinity, the
statistics of the number of scatterers is encoded in the function

ν(g) = lim
a→∞

N∑
k=0

pkδ

(
g − k

a

)
, (12)

which provides the distribution of the rescaled number k/a
of scatterers when a → ∞. The shape of ν(g) is dictated by
the discrete distribution pk . When discussing explicit results
for the amplitude distribution, it is convenient to distinguish
between two regimes that characterize the fluctuations of the
number k of scatterers. Let 
2

ν be the variance of ν(g). In the
regime of weak fluctuations of k, the discrete distribution pk is
such that ν(g) = δ(g − 1) and therefore 
ν = 0. A typical ex-
ample where pk results in vanishing fluctuations in the number
of scatterers is given by the Poisson distribution pk = ake−a

k! . In
the regime of strong fluctuations of k, pk is such that ν(g) has
a finite variance (
ν > 0).

We model the regime of strong fluctuations by following
[34] and considering a negative binomial distribution of the
number of scatterers

pk = �(μ + k)

�(μ)

1

k!

(
a

μ

)k 1

(1 + a/μ)μ+k
, (13)
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where the parameter μ > 0 controls the variance σ 2
k of pk

according to

σ 2
k = a + a2

μ
. (14)

As μ → ∞, Eq. (13) converges to a Poisson distribution with
mean a and we recover the regime of weak fluctuations. For
μ = 1, Eq. (13) gives rise to the geometric (or exponential)
distribution

pk = 1

a + 1

(
a

a + 1

)k

. (15)

From a practical perspective, the negative binomial distribu-
tion can be interesting to study the scattering by samples in
which spatial correlations in the positions of the scatterers
induce the formation of clusters of fluctuating size. If the size
L of the scattering region is comparable to the correlation
length, the number of scatterers inside the region defined
by L should display large fluctuations. This argument has
motivated the use of the negative binomial distribution in
random-walk models that fit empirical data obtained from
scattering experiments with a variety of turbulent systems
[34,36].

Inserting Eq. (13) into Eq. (12), one can show that the
corresponding ν(g) is the � distribution

ν(g) = μμ

�(μ)
gμ−1e−μg, (16)

whose variance is given by


2
ν = 1

μ
. (17)

The above equation further clarifies why this model is in-
teresting. The � distribution (16) interpolates between the
regimes of weak fluctuations (μ → ∞) and strong fluctua-
tions (μ → 0) by only changing a single parameter μ. As
expected, Eq. (16) reduces to the exponential distribution
ν(g) = e−g for μ = 1.

In summary, the distribution ν(g), analogous to the contin-
uous version of pk , along with �(φ), determines the shape of
the amplitude distribution Pβ (A). In the following sections we
discuss explicit results where �(φ) and ν(g) follow Eqs. (11)
and (16), respectively.

A. Biased phases

First, we present the analytic results for distributions of
phases that fulfill 〈eiφ〉φ 	= 0. In this case, the joint distribu-
tion Wβ (ER, EI ) of the complex field E (β ) = ER(β ) + iEI (β )
[Eq. (3)] is given by

Wβ (ER, EI ) =
∫ ∞

0
dgν(g)δ(ER − gReE∗(β ))

× δ(EI − g ImE∗(β )), (18)

where the mean value E∗(β ) of the speckle field is a function
of the position β on the screen, namely,

E∗(β ) = E0

β
〈sin(β + φ) − sin φ〉φ

+ i
E0

β
〈cos φ − cos(β + φ)〉φ. (19)

Equation (18) is valid when both N and a become infinitely
large, but the average density D = a/N of the number of
scatterers goes to zero.

The distribution Pβ (A) of the amplitude readily follows
from Eqs. (7) and (18),

Pβ (A) = 1

|E∗(β )|ν
(

A

|E∗(β )|
)

. (20)

The above result holds for any distribution �(φ) of phases,
provided 〈eiφ〉φ 	= 0, and for any distribution ν(g) of the
rescaled number of scatterers. The distribution ν(g) controls
the functional form of Pβ (A), while �(φ) appears in the scale
parameter |E∗(β )|. We explain how to derive Eqs. (19) and
(20) in Appendix A.

The moments of the amplitude are directly obtained from
the moments of ν(g). By defining 〈An〉 as the nth moment of
Pβ (A), it is straightforward to show that the first and second
moments of the amplitude are given by

〈A〉 = |E∗(β )| (21)

and

〈A2〉 = |E∗(β )|2(1 + 
2
ν

)
, (22)

respectively. Hence, the contrast of the speckle pattern, which
is the relative standard deviation of A, is solely determined by
the standard deviation 
ν of the number of scatterers in the
medium, i.e., √

〈A2〉 − 〈A〉2

〈A〉 = 
ν. (23)

Clearly, strong fluctuations in the number of scatterers lead
to pronounced fluctuations in the intensity across the screen.
Equations (20) and (23) hold for an arbitrary distribution ν(g).

In the regime of weak fluctuations in the number of scat-
terers, we have that ν(g) = δ(g − 1), and Eq. (20) leads to

Pβ (A) = δ(A − |E∗(β )|). (24)

Hence, if the tail of pk decays sufficiently fast, the distribution
of the amplitude becomes peaked at its average value |E∗(β )|.
Using the explicit form of E∗(β ) [Eq. (19)], we can rewrite
Pβ (A) as

Pβ (A) = δ

(
A −

√
〈sin φ〉2

φ + 〈cos φ〉2
φ

2E0

β
sin

(
β

2

))
.

(25)
This is the sinc function multiplied by a factor that depends on
the phase distribution. Thus, for biased distributions �(φ), de-
spite phases being generally random variables, the amplitude
equals its average value as long as 
ν = 0. Figure 1 shows
numerical histograms of the amplitude obtained from Eq. (3)
for different sizes N in the regime of weak fluctuations in the
number of scatterers. Clearly, as N increases, the histograms
in (3) become sharply peaked at 〈A〉 = |E∗(β )|, confirming
Eq. (25). When all phases are equal to a constant, Eq. (25)
reduces to the usual sinc function.

In the regime of strong fluctuations in the number of scat-
terers, we combine Eqs. (16) and (20) and obtain the explicit
formula

Pβ (A) = μμ

|E∗(β )|μ�(μ)
Aμ−1e−μA/|E∗(β )|. (26)
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FIG. 1. Numerical results for the distribution of the amplitude
for β = π/2 in the regime of weak fluctuations in the number of
scatterers. The biased random phases are drawn from the bimodal
distribution of Eq. (11), with q = 0.7 and φ0 = π/4, while the
number of scatterers k follows a Poisson distribution with average
a = √

N . The numerical results are generated from 105 realizations
of Eq. (3) with different N . The dashed vertical line marks the
average amplitude 〈A〉 = |E∗(β )| for N → ∞ [see Eq. (24)]

Figure 2 compares Eq. (26) with histograms of the amplitude
generated from numerical results for finite N . The latter are
obtained from Eq. (3) for several realizations of the model.
Figure 2 demonstrates the exactness of Eq. (26) in depicting
the amplitude distribution in cases involving biased random
phases and strong fluctuations in the number of scatterers.

Equation (26) reveals two interesting consequences of
the strong fluctuations in the number of scatterers. The
first one concerns the dramatic change in Pβ (A → 0) as a
function of the variance 
2

ν = 1/μ. For μ > 1, we obtain
limA→0 Pβ (A) = 0, while the amplitude distribution diverges
as a power law Pβ (A) ∝ Aμ−1 (A → 0) for μ < 1. For μ = 1,
limA→0 Pβ (A) converges to a finite value. The second in-
teresting feature concerns the behavior of Pβ (A) for large
amplitudes, as illustrated in Fig. 3. For large A, Pβ (A) exhibits
a power-law tail Aμ−1 (μ < 1) that extends up to a threshold

FIG. 2. Comparison between the analytic expression for the
distribution of the amplitude [Eq. (26)] (solid lines) and numerical re-
sults (symbols) for β = π/2 and biased random phases. The rescaled
number of scatterers ν(g) follows a � distribution with variance 1/μ

[see Eq. (16)]. The phases are drawn from the bimodal distribution
of Eq. (11), with q = 0.7 and φ0 = π/4. The numerical results
(different symbols) are obtained from 2 × 105 realizations of the
model with N = 107, where the number of scatterers is drawn from
a negative binomial distribution with mean a = √

N [see Eq. (13)].

FIG. 3. Tails of the distribution of the amplitude for biased ran-
dom phases and β = π/2. These results, obtained from Eq. (26),
are shown in logarithmic scale. The rescaled number of scatterers
follows a � distribution ν(g) with variance 1/μ [see Eq. (16)]. The
phases are drawn from the bimodal distribution of Eq. (11), with
q = 0.7 and φ0 = π/4.

of O(|E∗(β )|/μ). For A � |E∗(β )|/μ, the exponential factor
in Eq. (26) becomes important and suppresses the power-law
decay. The value of the threshold that separates the power-law
and exponential regimes diverges as μ → 0, which high-
lights the appearance of huge fluctuations in the amplitude.
In summary, for μ < 1, although the probability to observe a
vanishing amplitude at a given point β on the screen is very
large, there is a significant probability to observe an extremely
large amplitude in comparison to 〈A〉. The occurrence of such
rare events is enhanced by increasing the fluctuations in the
number of scatterers.

B. Unbiased phases

Here we present the analytic results for phase distribu-
tions �(φ) that satisfy the constraint 〈eiφ〉φ = 0. In this case,
the distribution of the complex field E (β ) = ER(β ) + iEI (β )
reads

Wβ (ER, EI ) = 1

2πE2
0 σRσI

√
1 − ρ2

∫ ∞

0

dgν(g)

g

× exp

[
− 1

2gE2
0 (1 − ρ2)

×
(

E2
R

σ 2
R

+ E2
I

σ 2
I

− 2ρ

σRσI
EREI

)]
, (27)

where σR, σI , and ρ are given by

σ 2
R = 1

2
+ 1

4β
〈sin(2β + 2φ) − sin(2φ)〉φ, (28)

σ 2
I = 1

2
− 1

4β
〈sin(2β + 2φ) − sin(2φ)〉φ, (29)

ρ = 1

4βσRσI
〈cos(2φ) − cos(2β + 2φ)〉φ. (30)

The above parameters thus depend on the phase distribution
�(φ) as well as on the position β along the screen. In the
regime of weak fluctuations in the number of scatterers (
ν =
0), Eq. (27) reduces to a bivariate Gaussian distribution, which
is a direct consequence of the central-limit theorem as applied
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to a random walk in two dimensions [2]. In the regime of
strong fluctuations in the number of scatterers (
ν > 0), the
central-limit theorem breaks down and one has to specify ν(g)
to determine Wβ (ER, EI ).

Equation (27) yields the analytic expression for the distri-
bution of the amplitude

Pβ (A) =
∫ ∞

0

dgν(g)

g
Cβ (A|g), (31)

where

Cβ (A|g) = A

E2
0 σRσI

√
1 − ρ2

exp

(
− A2

4gE2
0 (1 − ρ2)σ 2

Rσ 2
I

)

× I0

⎛
⎜⎝
√(

σ 2
R − σ 2

I

)2 + 4σ 2
Rσ 2

I ρ2

4gE2
0 (1 − ρ2)σ 2

Rσ 2
I

A2

⎞
⎟⎠, (32)

with I0(x) denoting the modified Bessel function of the first
kind. Equations (27) and (31) hold when both N and a are in-
finitely large, yet the density of scatterers fulfills D = a/N →
0. In Appendix A we cover all the specific steps involved in
the derivation of Eqs. (27) and (31).

Equation (31) is one of the main findings of our work,
since it provides the amplitude distribution for unbiased ran-
dom phases and any pair of distributions �(φ) and ν(g),
generalizing classic results [2,34,37] in the theory of speckle
patterns. Let us analyze a few limiting cases of Eq. (31). In
the regime of weak fluctuations in the number of scatterers
[ν(g) = δ(g − 1)], we get

Pβ (A) = A

E2
0 σRσI

√
1 − ρ2

exp

(
− A2

4E2
0 (1 − ρ2)σ 2

Rσ 2
I

)

× I0

⎛
⎜⎝
√(

σ 2
R − σ 2

I

)2 + 4σ 2
Rσ 2

I ρ2

4E2
0 (1 − ρ2)σ 2

Rσ 2
I

A2

⎞
⎟⎠. (33)

Equation (33) depicts a novel amplitude distribution that ap-
plies to any phase distribution, as long as it satisfies the soft
constraint 〈eiφ〉φ = 0. Since the argument of the Bessel func-
tion in the above equation is proportional to A2, Eq. (33) is
distinct from a Rice distribution [2]. The latter describes the
statistics of the amplitude produced by a finite constant field
plus a large number of small random fields with uniformly dis-
tributed phases [2]. When the phases are continuous random
variables sampled from a uniform distribution in the interval
[0, 2π ), Eqs. (28)–(30) result in

σ 2
R = σ 2

I = 1
2 , ρ = 0 (34)

and Eq. (33) simplifies to the well-known Rayleigh distribu-
tion

P (A) = 2A

E2
0

exp

(
− A2

E2
0

)
. (35)

Thus, Eq. (33) essentially generalizes the Rayleigh distribu-
tion to nonuniform phase distributions. Figure 4 compares
Eq. (33) with numerical histograms of the amplitude for two
distinct distributions of unbiased phases in the regime of weak
fluctuations in the number of scatterers. The numerical results
are fully consistent with our analytic expression.

FIG. 4. Comparison between Eq. (33) (solid lines) and numerical
histograms (symbols) for β = π/2 and weak fluctuations in the
number of scatterers. The unbiased random phases follow a uniform
distribution in the interval [0, 2π ) or they are sampled from the
bimodal distribution of Eq. (11), with q = 0.5 and φ0 = π/4. The
number of scatterers k follows a Poisson distribution with average
a = √

N . The numerical results are generated from 2 × 105 realiza-
tions of Eq. (3) with N = 107.

For random phases with a uniform distribution, we can
substitute Eqs. (34) in Eq. (32), resulting in

P (A) = 2A

E2
0

∫ ∞

0

dgν(g)

g
e−A2/gE2

0 . (36)

The distribution P (A) above is independent of the position β

along the screen, regardless of the specific form of ν(g). When
fluctuations in the number of scatterers are large (
ν > 0), the
universality associated with the central-limit theorem breaks
down. As a result, the behavior of P (A) depends on the distri-
bution ν(g). For example, when ν(g) follows a � distribution,
we can substitute Eq. (16) into Eq. (36), integrate over the
variable g, and arrive at the so-called K distribution [34,37]

P (A) = 4μ(μ+1)/2

Eμ+1
0 �(μ)

AμKμ−1

(
2
√

μ

E0
A

)
, (37)

with Kμ(x) representing a modified Bessel function of the
second kind.

Let us now turn our attention to the general equation (31).
Depending on the specific form of ν(g), the integral in Eq. (31)
has no analytic solution and one cannot derive a closed-form
expression for Pβ (A). However, when ν(g) is given by the �

distribution (16), we show in Appendix B that, for any positive
integer μ = n = 1, 2, . . . , the amplitude distribution can be
calculated from the identity

Pβ (A) = A

E2
0 σRσI

√
1 − ρ2

(−1)n−1nn

(n − 1)!

∂n−1H (u)

∂un−1

∣∣∣∣
u=n

, (38)

where H (u) is given by

H (u) = 2I0

(
A f (ω)

√
u

E0σRσI

√
1 − ρ2

)
K0

(
A g(ω)

√
u

E0σRσI

√
1 − ρ2

)
.

(39)
The functions f (ω) and g(ω) are defined as

f (ω) =
{

sin ω if 0 � ω � π/4
cos ω if π/4 < ω � π/2,

(40)
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FIG. 5. Comparison between the theoretical results (solid lines)
for the amplitude distribution and numerical results (symbols) for
β = π/2 and unbiased random phases. The rescaled number of scat-
terers ν(g) follows a � distribution with variance 1/μ [see Eq. (16)].
The phases are drawn from the bimodal distribution of Eq. (11), with
q = 0.5 and φ0 = π/4. The numerical results (different symbols)
are obtained from 2 × 105 realizations of the model with N = 107,
where the number of scatterers is drawn from a negative binomial
distribution with mean a = √

N [see Eq. (13)].

g(ω) =
{

cos ω if 0 � ω � π/4
sin ω if π/4 < ω � π/2,

(41)

where ω ∈ [0, π/2] is determined by �(φ) as

ω = 1
2 sin−1

[√(
σ 2

R − σ 2
I

)2 + 4σ 2
Rσ 2

I ρ2
]
. (42)

Equation (38) provides a practical way to obtain closed-form
analytic expressions for Pβ (A) when ν(g) is given by Eq. (16),
with integer μ = n > 0, and �(φ) is an arbitrary distribution.
Thus, Eq. (38) generalizes the K distribution of the amplitude,
which is specific to uniform random phases, to any distribu-
tion of unbiased phases. The analytic expressions for Pβ (A)
when μ = 1 and 2 are given by

Pβ (A) = 2A

E0γ
I0

(
A f (ω)

γ

)
K0

(
Ag(ω)

γ

)
(43)

and

Pβ (A) = 2
√

2A2

E0γ 2

[
g(ω)I0

(√
2A f (ω)

γ

)
K1

(√
2Ag(ω)

γ

)

− f (ω)I1

(√
2A f (ω)

γ

)
K0

(√
2Ag(ω)

γ

)]
, (44)

respectively, with

γ = E0σRσI

√
1 − ρ2. (45)

In Appendix B we explain how to derive Eq. (38).
In Fig. 5 we compare our theoretical results with numerical

histograms obtained from Eq. (3) in the regime of strong
fluctuations in the number of scatterers. The solid curves for
μ = 1 and 2 are obtained from Eqs. (43) and (44), respec-
tively, while the theoretical results for μ < 1 are derived by
numerically solving the integral in Eq. (31). The remarkable
consistency between our analytic findings and numerical sim-
ulations confirms the exactness of our theory.

FIG. 6. Tails of the distribution of the amplitude for unbiased
random phases and β = π/2. These results, obtained from Eq. (26),
are shown in logarithmic scale. The rescaled number of scatterers
follows a � distribution ν(g) with variance 1/μ [see Eq. (16)]. The
phases are drawn from the bimodal distribution of Eq. (11), with
q = 0.5 and φ0 = π/4.

There are two distinctive features of Pβ (A) when the
phases are unbiased random variables and ν(g) follows
Eq. (16). First, as shown in Fig. 5, the distribution Pβ (A) goes
to zero at A = 0 for any value of μ, in stark contrast to the
behavior of Pβ (A) for biased random phases [see Eq. (26)].
The complex field E is a sum of a large number of indepen-
dent random variables. For unbiased phases, the fraction of
samples or realizations with E exactly equal to zero decreases
exponentially with N [48]. Therefore, in the limit N → ∞,
the fraction of samples with A = 0 goes to zero, regardless
of the value of μ or the choice of the phase distribution. For
biased phases, the statistics of E are controlled by the distri-
bution of the rescaled number g = k/a of scatterers. In the
limit a → ∞, samples that have a small number of scatterers
in comparison to the mean a contribute with E = 0 to the
statistics of E . Therefore, the fact that Pβ (A → 0) is nonzero
for biased phases is a consequence of the finite fraction of
samples with g = k/a → 0.

The second interesting property concerns the right tail of
the amplitude distribution. In Fig. 6 we plot Pβ (A) for large
A in the case of unbiased phases. For small μ and conse-
quently strong fluctuations in the number of scatterers, the
distribution Pβ (A) exhibits once more a power-law tail up to
a certain threshold, above which Pβ (A) decays exponentially
fast. Although this behavior is similar to the biased case, there
is a key difference: The threshold value in Fig. 6 remains ap-
proximately independent of μ. For this reason, the probability
of observing large fluctuations of the amplitude for unbiased
phases is much smaller than for biased phases, for which the
threshold value diverges as μ → 0 (see Fig. 3).

IV. CONCLUSION

In this work we have developed a comprehensive theory
of speckle patterns based on the random-walk model. In this
model, the resultant speckle field is the superposition of a
stochastic number of partial waves, each with a random phase.
The distribution of the number of scatterers and the distri-
bution of phases are inputs of the model. By distinguishing
between biased and unbiased random phases, we have de-
rived general equations for the amplitude distribution of the
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speckle field in the limit of an infinitely large mean number
of scatterers. Once the phase distribution and the distribution
of the number of scatterers are specified, our main findings,
Eqs. (20) and (31), lead to closed-form analytic expressions
that encompass a broad range of situations.

Two families of analytic results for unbiased random
phases deserve special attention. First, when the number of
scatterers is nonrandom, Eq. (31) yields a different form of
the amplitude distribution which is the natural generalization
of the Rayleigh law to nonuniform random phases. Second,
when the number of scatterers is drawn from a negative bi-
nomial distribution with an integer scale parameter, Eq. (31)
gives rise to generalizations of the K distribution to nonuni-
form phases. We have confirmed the exactness of these results
by comparing them with numerical simulations for a bimodal
phase distribution.

Interestingly, we have shown that the behavior of the
amplitude distribution Pβ (A) for large A is qualitatively dis-
tinct in the cases of biased and unbiased random phases. In
both situations, Pβ (A) displays a power-law decay up to a
certain threshold, above which it decays exponentially fast
(see Figs. 3 and 6). The difference appears in the threshold
behavior as a function of the variance 
2

ν of the number
of scatterers. While for biased random phases this threshold
increases as a function of 
2

ν , it remains approximately con-
stant for unbiased random phases. This implies that a certain
degree of phase coherence favors the generation of extremely
large amplitudes, in line with previous works [26,27]. In this
context, it would be interesting to quantify the impact of
fluctuations of the number of scatterers in the formation of
rogue intensity waves [26,49].

We expect that our analytic findings can be experimentally
tested using a spatial light modulator (SLM). This device
replicates the scattering from a rough surface through the
phase modulation of an incident wave. When the SLM is
illuminated by a laser beam, each pixel’s diffraction on the
SLM mask generates a partial wave with a specific phase. In
principle, it is possible to imprint any sequence of random
phases on the SLM [23,25,26], making it an ideal platform
for testing our analytic predictions in the case of nonuniform
phase distributions. However, an important drawback of this
experimental setup is the limited number of pixels. Our main
results for the amplitude distribution, Eqs. (20) and (31), are
valid in the regime of low density of scatterers. This implies
that both the sample size N (total number of pixels in a
transversal direction) and the mean number of scatterers a
(mean number of active pixels) are very large, but the density
a/N goes to zero. In general, approaching this limit in SLM
experiments may be a difficult task.

It would be interesting to compare our analytic findings
for the amplitude distribution with results obtained from the
numerical solutions of the Maxwell equations for large as-
semblies of scatterers distributed in space with a controllable
density [50]. In this way, one could test whether the results
obtained from the random-walk model serve as approxima-
tions to other relevant scenarios, such as in the study of
speckle patterns formed by three-dimensional samples [8] or
in the near-field regime. Another interesting research line is
to investigate the connection between the parameters of our
phenomenological random-walk model and the structural fea-

tures characterizing models of interacting scattering particles,
such as particle size and spatial correlations in the positions
of the scatterers [51]. In this context, one expects that biased
phase distributions are relevant to model the effects arising
from spatial correlations.

To summarize, our analytic results expand the scope of the
random-walk model of speckle patterns and open the perspec-
tive to systematically investigate the role of nonuniform phase
distributions in a wide range of problems involving the linear
superposition of random waves [11]. Our analytic techniques
and results should be particularly useful to study nonisotropic
random walks in finite dimensions [22,52,53].
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APPENDIX A: DERIVATION OF THE AMPLITUDE
DISTRIBUTION

In this Appendix we explain how to obtain the analytic
results for the amplitude distribution. The first step is to
calculate the characteristic function Gβ (u, v) of the joint dis-
tribution Wβ (ER, EI ) of the real and imaginary parts of the
speckle field E (β ) = ER(β ) + iEI (β ). The function Gβ (u, v)
is defined as

Gβ (u, v) =
〈

exp

⎛
⎝−iuE0

N−1∑
j=0

x jReE j (φ j )

⎞
⎠

× exp

⎛
⎝−ivE0

N−1∑
j=0

x jImE j (φ j )

⎞
⎠〉

x,φ

, (A1)

with

E j (φ j ) = ei jβ/(N−1)+iφ j . (A2)

The symbols 〈· · · 〉x and 〈· · · 〉φ denote the average over
x0, . . . , xN−1 and φ0, . . . , φN−1, respectively. The Fourier
transform of Gβ (u, v) yields Wβ (ER, EI ), namely,

Wβ (ER, EI ) =
∫ ∞

−∞

du dv

4π2
eiuER+ivEIGβ (u, v). (A3)

In order to calculate the average over x0, . . . , xN−1 with
the joint distribution (6), we need to factorize the condi-
tional probability P(x|k), defined in Eq. (5), as a product
over the index j = 0, . . . , N − 1 that identifies the scatterers.
This is achieved by using the integral representation of the
Kronecker δ,

δk,
∑N−1

j=0 x j
=
∫ 2π

0

dt

2π
exp

⎡
⎣it

⎛
⎝k −

N−1∑
j=0

x j

⎞
⎠
⎤
⎦, (A4)

which allows us to rewrite P(x|k) as

P(x|k) = 1

Nk

∫ 2π

0

dt

2π
eitk

×
N−1∏
j=0

e−itx j

[
k

N
δx j ,1 +

(
1 − k

N

)
δx j ,0

]
. (A5)

013501-8



STATISTICAL PROPERTIES OF SPECKLE PATTERNS … PHYSICAL REVIEW A 109, 013501 (2024)

Combining the above expression with Eq. (6) and inserting the
resulting form of p(x) in Eq. (A1), we compute the average
over x and obtain

Gβ (u, v) =
N∑

k=0

pk

Nk

∫ 2π

0

dt

2π
eitk

× exp

⎡
⎣N−1∑

j=0

ln

(
1 + k

N
[e−it Tj (u, v) − 1]

)⎤⎦,

(A6)

where we define

Tj (u, v) = 〈e−iuE0ReE j (φ)−ivE0ImE j (φ)〉φ. (A7)

The average 〈 f (φ)〉φ of an arbitrary function f (φ) of a single
phase φ is defined in Eq. (10).

In the limit N → ∞, we can expand the logarithm in
Eq. (A6) up to O(1/N ) and replace the sum over j =
0, . . . , N − 1 by an integral over y ∈ [0, 1],

Gβ (u, v) =
∞∑

k=0

pk

N (∞)
k

∫ 2π

0

dt

2π
e−k+itk

× exp

(
ke−it

∫ 1

0
dy〈e−iu ReEφ (y)−iv ImEφ (y)〉φ

)
,

(A8)

where

Eφ (y) = E0eiβy+iφ (A9)

and N (∞)
k = e−kkk

k! is the analytic expression for the normal-
ization factor Nk when N → ∞. By representing the second
line of Eq. (A8) as a power series, we can integrate over t and
arrive at the expression for the characteristic function in the
limit N → ∞,

Gβ (u, v) =
∞∑

k=0

pke(k/a)Za(u,v), (A10)

with

Za(u, v) = a ln

(∫ 1

0
dy〈e−iu ReEφ (y)−iv ImEφ (y)〉φ

)
. (A11)

Equations (A10) and (A11) are valid as N → ∞ while keep-
ing a finite. The next step is to perform the limit a → ∞ in
the above equations. Since we first take the limit N → ∞
followed by a → ∞, the outcome of this order of limits is an
analytic expression for the characteristic function Gβ (ER, EI )
in the low-density regime, i.e., when D = a

N → 0. To perform
the limit a → ∞, we need to distinguish between biased and
unbiased phases.

1. Biased phases

Let us consider phase distributions �(φ) that fulfill the
condition

〈eiφ〉φ 	= 0. (A12)

In this case, the random variable Eφ (y) fluctuates around an
average orientation in the complex plane. The most repre-

sentative example of this family of distributions is when all
phases are equal to a constant.

In order to perform the limit lima→∞ Za(u, v) for this class
of phase distributions, we have to rescale the amplitudes of
the individual waves as E0 → E0/a, and Eq. (A11) takes the
form

Za(u, v) = a ln

[∫ 1

0
dy
〈
e− iu

a ReEφ (y)− iv
a ImEφ (y)

〉
φ

]
. (A13)

In the limit a → ∞, Za(u, v) converges to the expression

Z∞(u, v) = −iu
∫ 1

0
dy〈ReEφ (y)〉φ − iv

∫ 1

0
dy〈ImEφ (y)〉φ.

(A14)

Thus, by introducing the distribution ν(g) of the rescaled
number of scatterers [Eq. (12)], the limit a → ∞ of Eq. (A10)
is given by

Gβ (u, v) =
∫ ∞

0
dgν(g)egZ∞(u,v). (A15)

From Eq. (A3) we thus find the corresponding expression for
the joint distribution of the speckle field

Wβ (ER, EI ) =
∫ ∞

0
dgν(g)δ

(
ER − g

∫ 1

0
dy〈ReEφ (y)〉φ

)

× δ

(
EI − g

∫ 1

0
dy〈ImEφ (y)〉φ

)
. (A16)

Therefore, the fluctuations of the real and the imaginary parts
of E (β ) are solely determined by ν(g), with the amplitude
A(β ) relating to g as

A(β ) d g|E∗(β )|, (A17)

where

E∗(β ) =
∫ 1

0
dy〈ReEφ (y)〉φ + i

∫ 1

0
dy〈ImEφ (y)〉φ. (A18)

The symbol d in Eq. (A17) means that both sides of the
equation are equal in a distributional sense. Equation (A17)
immediately implies that the amplitude distribution Pβ (A) is
determined by ν(g) according to Eq. (20).

2. Unbiased phases

Here we consider phase distributions �(φ) that satisfy the
constraint

〈eiφ〉φ = 0. (A19)

In this case, the average of the complex random variable
Eφ (y) is zero. The most representative example of this class
of distributions is when the phases are continuous random
variables drawn from a uniform distribution in [0, 2π ).

For phase distributions that fulfill Eq. (A19), we rescale
the amplitude E0 as E0 → E0/

√
a and Eq. (A11) assumes the

form

Za(u, v) = a ln

[∫ 1

0
dy
〈
e− iu√

a
ReEφ (y)− iv√

a
ImEφ (y)

〉
φ

]
. (A20)

By expanding the right-hand side of the above equation in
powers of 1/

√
a, we can show that lima→∞ Za(u, v) is given
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by the quadratic form

Z∞(u, v) = − 1
2 E2

0 σ 2
Ru2 − 1

2 E2
0 σ 2

I v2 − uvE2
0 σRσIρ, (A21)

where σ 2
R , σ 2

I , and ρ are defined by Eqs. (28)–(30). Substitut-
ing this result in Eq. (A10) and taking the limit a → ∞, we
obtain the characteristic function

Gβ (u, v) =
∫ ∞

0
dgν(g)egZ∞(u,v). (A22)

Inserting Eq. (A22) in Eq. (A3) and calculating the Gaussian
integrals over u and v, we find the joint distribution of the
complex field

Wβ (ER, EI ) = 1

2πE2
0 σRσI

√
1 − ρ2

∫ ∞

0

dg

g
ν(g)

× exp

[
− 1

2gE2
0 (1 − ρ2)

×
(

E2
R

σ 2
R

+ E2
I

σ 2
I

− 2ρEREI

σRσI

)]
. (A23)

When the distribution of the number of scatterers is such
that ν(g) = δ(g − 1), Wβ (ER, EI ) follows a bivariate Gaus-
sian distribution, which is a consequence of the central-limit
theorem. When the variance of ν(g) is finite, the central-limit
theorem fails and Wβ (ER, EI ) depends on the form of ν(g).

Equation (A23) enables us to obtain the amplitude distri-
bution for any ν(g). Let Gβ (S) be the characteristic function
of the probability density Pβ (I ) of the intensity IdE2

R + E2
I ,

namely,

Gβ (S) =
∫ ∞

−∞
dERdEIWβ (ER, EI )e−iS(E2

R+E2
I ). (A24)

The distribution Pβ (I ) follows from the Fourier transform

Pβ (I ) =
∫ ∞

−∞

dS

2π
eiSI Gβ (S). (A25)

Substituting Eq. (A23) into Eq. (A24) and performing the
Gaussian integrals over ER and EI , we arrive at the expression

Gβ (S) = 1

E2
0 σRσI

√
1 − ρ2

∫ ∞

0

dg

g
ν(g)

×
[(

2iS + 1

gE2
0 (1 − ρ2)σ 2

R

)

×
(

2iS + 1

gE2
0 (1 − ρ2)σ 2

I

)

− ρ2

g2E4
0 (1 − ρ2)2σ 2

Rσ 2
I

]−1/2

. (A26)

The final act is the calculation of the Fourier transform in
Eq. (A25). Combining Eqs. (A26) and (A25), we can rewrite

Pβ (I ) as

Pβ (I ) = 1

4πE2
0 σRσI

√
1 − ρ2

∫ ∞

0

dg

g
ν(g)

×
∫ ∞

−∞

dS e−iSI

(r+ − iS)
1
2 (r− − iS)1/2

, (A27)

where we have defined

r± = 1

4gE2
0 (1 − ρ2)σ 2

Rσ 2
I

× [
σ 2

R + σ 2
I ±

√(
σ 2

R − σ 2
I

)2 + 4σ 2
Rσ 2

I ρ2
]
. (A28)

Following [54], we integrate over the variable S in Eq. (A27),
obtaining

Pβ (I ) = 1

2E2
0 σRσI

√
1 − ρ2

∫ ∞

0

dgν(g)

g
e−I/4gE2

0 (1−ρ2 )σ 2
Rσ 2

I

× I0

⎛
⎜⎝
√(

σ 2
R − σ 2

I

)2 + 4σ 2
Rσ 2

I ρ2

4gE2
0 (1 − ρ2)σ 2

Rσ 2
I

I

⎞
⎟⎠, (A29)

where I0(x) is a modified Bessel function of the first kind.
The above expression gives the distribution of the intensity
IdA2. We find Eq. (31) for the amplitude distribution Pβ (A)
by making a simple change of variables.

APPENDIX B: AMPLITUDE DISTRIBUTION FOR
INTEGER μ

Here we explain how to obtain Eq. (38), which leads to
analytic expressions for Pβ (A) when ν(g) is given by the �

distribution of Eq. (16) with integer μ. Substituting Eq. (16)
into Eq. (31) and setting μ = n ∈ Z+, we get the general
expression

Pβ (A) = A

E2
0 σRσI

√
1 − ρ2

nn

2n−1(n − 1)!

∫ ∞

0
dggn−2e−ng/2

× exp

(
− A2

2E2
0 (1 − ρ2)σ 2

Rσ 2
I g

)

× I0

⎛
⎜⎝
√(

σ 2
R − σ 2

I

)2 + 4σ 2
Rσ 2

I ρ2 A2

2E2
0 (1 − ρ2)σ 2

Rσ 2
I g

⎞
⎟⎠. (B1)

Now we introduce an alternative parametrization of the con-
stants that depend on σR, σI , and ρ. Let us define the positive
variables

X = A

E0σRσI

√
1−ρ2

cos(ω),

Y = A

E0σRσI

√
1−ρ2

sin(ω),

where the polar angle ω ∈ [0, π/2] is given by Eq. (42). We
can check that X and Y fulfill

X 2 + Y 2 = A2

E2
0 (1 − ρ2)σ 2

Rσ 2
I
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and

XY =
√

(σ 2
R − σ 2

I )2 + 4σ 2
Rσ 2

I ρ2 A2

2E2
0 (1 − ρ2)σ 2

Rσ 2
I

,

which allows us to rewrite Eq. (B1) as

Pβ (A) = A

E2
0 σRσI

√
1 − ρ2

nn

2n−1(n − 1)!

∫ ∞

0
dggn−2e−ng/2

× exp

(
− (X 2 + Y 2)

2g

)
I0

(
XY

g

)
. (B2)

Our aim is to find a convenient way to calculate the integral
over g in Eq. (B2). This integral can be seen as the (n − 2)th
integer moment of the variable g, whose unnormalized distri-
bution is a product of an exponential and a modified Bessel
function of the first kind. The idea is to express higher-order
moments (n > 1) in terms of derivatives of the lowest-order
moment (n = 1). This is a standard technique in statistical

physics, which is implemented here by defining the function

Hn(u) =
∫ ∞

0
dggn−2 exp

(
−ug

2
− (X 2 + Y 2)

2g

)
I0

(
XY

g

)
(B3)

of the variable u ∈ R+. The integral appearing in Eq. (B2) is
recovered by calculating the function Hn(u) at u = n. Thus,
by defining H (u) := H1(u) and noting that

∂n−1H (u)

∂un−1
=
(

−1

2

)n−1

Hn(u) (n > 1), (B4)

we rewrite Eq. (B2) as

Pβ (A) = A

E2
0 σRσI

√
1 − ρ2

(−1)n−1nn

(n − 1)!

∂n−1H (u)

∂un−1

∣∣∣∣
u=n

. (B5)

The above equation becomes a powerful identity to compute
Pβ (A) only if we are able to solve the integral

H (u) =
∫ ∞

0

dg

g
exp

(
−ug

2
− (X 2 + Y 2)

2g

)
I0

(
XY

g

)
. (B6)

Fortunately, it is possible to calculate the above integral using
[55]. The result is given by Eq. (39), which demonstrates
Eq. (38).
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