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Dynamics of magnetizations in the classical chaotic regime of the all-to-all Ising
model with dissipation
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We study the all-to-all Ising model in the presence of dissipation and periodic external field. The corresponding
Lindblad equation has a time-periodic Liouvillian. The dynamics of magnetizations is explored by using both
the mean-field theory and numerical simulation at a finite number of spins. The mean-field result exhibits a
transition from the periodic response at small field amplitude to the chaotic dynamics at large amplitude. The
Lyapunov exponents are calculated, which supports the existence of a classical chaotic phase. However, in the
numerical simulation at a finite number of spins, the response is periodic at both small and large amplitudes.
The scaling analysis of the Floquet Liouvillian spectrum suggests that the periodic response persists even in the
thermodynamic limit. Further analysis shows that, in the classical chaotic regime, the density-matrix elements
have a wide dispersion, instead of being localized. Such a delocalization of wave packets explains the failure of
mean-field approximation.
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I. INTRODUCTION

Dissipative spin models are currently attracting wide inter-
est, because they describe genuine nonequilibrium states of
matter and, at the same time, can be realized in various plat-
forms from superconducting circuits to Rydberg atoms [1–9].
The model consists of an ensemble of spins that are subject
to dissipation caused by external baths. The dynamics are
described by the Lindblad equation, obtained by integrating
out the baths’ degrees of freedom [10].

Great efforts have been taken in the investigation of various
spin models. In the central spin model [11], the dissipative
phase transition was located according to the closing of the
Liouvillian gap. The transverse-field Ising model was thor-
oughly studied both under the mean-field approximation and
beyond [12–17], in which the bistability of steady states in
some region of the parameter space was found to be replaced
by a first-order phase transition after the spatial correlation
was correctly considered. As the couplings between spins
are all-to-all couplings and then the system can be seen as
a huge spin, the mean-field approximation was adopted. The
magnetization was found to display an everlasting oscillation
in the thermodynamic limit, indicating that the time trans-
lational symmetry is spontaneously broken into a discrete
one [18–20]. If the dissipation acts in the eigenbasis of the
transverse field, then a continuous dissipative phase transition
manifests itself as continuous order parameters with discon-
tinuous derivatives [21–24]. The XY Z-Heisenberg model was
also studied by different approximation schemes [25–29] to
clarify its phase diagram.
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These studies focused on the time-independent Liouvil-
lians. But much less is known as the Liouvillian changes
periodically with time [30–40]. The topic of this paper is
to study the response to a time-periodic Liouvillian. On the
other hand, in closed quantum systems, the response to a
time-periodic Hamiltonian has been under intensive investiga-
tions. The kicked top models were studied both theoretically
[41–48] and experimentally [49–51], which is known to ex-
hibit a transition between a regular dynamical phase and a
chaotic one, depending on the value of the kicking strength.
Similar chaotic behavior was found in the Lipkin-Meshkov-
Glick model as the parameters change periodically with time
[52–55]. The study in this paper can be seen as an investiga-
tion of the dissipation effect on the chaotic dynamics in the
periodically driven spin models.

As a concise example, we study the all-to-all Ising model
in the presence of collective dissipation. Without dissipation,
chaotic behavior appears in the presence of a strongly oscillat-
ing external field [53–55]. We find that the chaotic behavior is
robust against weak dissipation, if the mean-field approxima-
tion is taken. As the oscillating amplitude of field increases,
a periodic response changes into a subharmonic oscillation,
and then into a chaotic behavior. But the numerical simulation
shows that, beyond the mean-field approximation, only the
periodic response can survive the quantum fluctuation, but
neither the subharmonic nor the chaotic dynamics can be
observed. The mean-field approximation works only as the
oscillating amplitude is small in the periodic-response regime,
but it fails as the amplitude is large and describes chaos. More-
over, such a failure persists even if we consider the stochastic
quantum trajectories. In some previous studies of dissipative
quantum chaos [56–58], the dissipation localizes the wave
packet, which is the foundation of mean-field approximation.
But in our model, the wave packet is delocalized, explaining
why the mean field fails.
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The paper is organized as follows. We introduce the model
in Sec. II. Section III contributes to the discussion of the
mean-field results. The exact numerical simulations of the dy-
namics of magnetizations are discussed in Sec. IV. In Sec. V,
we explain the discrepancy between mean-field approxima-
tion and numerical results by looking into the density-matrix
elements. The unraveling of the master equation and the cor-
responding quantum trajectories are discussed in Sec. VI. The
Floquet Liouvillian spectrum is studied in Sec. VII. Finally,
Sec. VIII summarizes our results.

II. THE MODEL

We consider the transverse field Ising model with all-to-all
couplings, and a sinusoidal modulation added to the external
field. The Hamiltonian is written as

Ĥ = −NgĴ2
x + N�(t )Ĵz, (1)

where N denotes the total number of spins, g denotes the
coupling strength, and Ĵα = ∑

j σ̂
α
j /N denotes the collective

spin operators with σ̂ α
j being the Pauli matrices of the jth

spin and α = x, y, z. �(t ) denotes the time-dependent external
field, which is supposed to be �(t ) = �0 + A sin(ω0t ), where
A, �0, and ω0 are the oscillating amplitude, mean value, and
frequency, respectively. We set g = 1 as the unit of energy
throughout the paper.

In the presence of dissipation, the dynamics of the system
is described by the Lindblad equation [59]. The density matrix
satisfies

d ρ̂

∂t
= −i[Ĥ, ρ̂] + Nγc(2Ĵ−ρ̂Ĵ+ − {ρ̂, Ĵ+Ĵ−}), (2)

where Ĵ± = (Ĵx ± iĴy)/2 are the jump operators, and γc is the
dissipation rate. As A = 0 and then �(t ) = �0 is a constant,
the solution of Eq. (2) was studied previously [23]. The jump
operator forces the spins to be aligned in the negative z direc-
tion, while the interaction between spins favors an alignment
in the x direction. Their interplay results in a steady state,
which is either ferromagnetic (with nonzero magnetization
in the x direction) or paramagnetic. Here we extend to the
case of A �= 0, in which the field oscillation prevents a steady
state being reached, and then we expect a nontrivial dynamical
behavior.

III. CHAOTIC DYNAMICS
IN THE MEAN-FIELD EQUATIONS

The mean-field theory is frequently employed for solv-
ing the all-to-all models [16,18,19,22,23,25–27,60,61]. We
choose the order parameters to be mα = 〈Ĵα〉 = Tr[ρ̂Ĵα]. By
ignoring the correlations (i.e., setting 〈Ĵα Ĵβ〉 = 〈Ĵα〉〈Ĵβ〉) in
the limit N → ∞, we obtain a nonlinear system of differential
equations, which read

ṁx = −2�(t )my + γcmxmz,

ṁy = 4mxmz + 2�(t )mx + γcmymz,

ṁz = −4mxmy − γc
(
m2

x + m2
y

)
. (3)

It is easy to see that |m(t )| =
√

m2
x + m2

y + m2
z is a constant of

motion, which can be set to unity without loss of generality.

(a)

(b)

FIG. 1. The time evolution of mx for (a) A = 0.1 with 25 different
initial states and (b) A = 1 with two initial states: (θ0 = 0.5π, φ0 =
0.1π ) and (θ1 = 0.5π + 10−7, φ1 = 0.1π ). Different line colors are
for different initial states. The dissipation strength is set to γc = 1.

m is moving on a Bloch sphere, and the initial state can be
described by the azimuthal angles (θ, φ), which are defined
by mx = sin θ cos φ, my = sin θ sin φ, and mz = cos θ . Equiv-
alently speaking, we force all the spins at the initial time to be
aligned in the same direction, i.e., the direction with azimuthal
angles (θ, φ).

Since the coefficient �(t ) is a periodic function of t with the
period 2π/ω0, one may naively think that the solution m(t )
is also a periodic function. This is the case for small A, but
not true for large A. We note that Eq. (3) bears some resem-
blance to the Lorenz equation [62], one famous example of
the deterministic chaos in the classical systems. In Eq. (3), the
possibility of chaos comes from the fact that �(t ) is time peri-
odic [63], even the trajectory is limited on a two-dimensional
sphere. Indeed, we observed a periodic m(t ) for small A, but a
chaotic m(t ) for large A. Something similar has been observed
in the Rabi Hamiltonian, which is integrable over the entire
parameter space [64,65]. But when an external drive is intro-
duced, the system can become chaotic at some specific driving
amplitudes [63].

Next we choose �0 = 1 and ω = 1 as an example for the
demonstration. In Fig. 1(a), we display the evolution of mx

for small A (A = 0.1) and 25 initial states that are evenly
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(a)

(b)

FIG. 2. The time evolution of mx for (a) A = 0.73 and (b) A =
0.7345. The red line highlights a complete period. The transient
regime (t < 150) is omitted.

distributed on the Bloch sphere. We find that the results with
different initial states are similar with no significant difference
in the long-term dynamical behavior. The choice of initial
state does not affect whether the dynamics has an initial-state
sensitivity. Except for the initial state at the south pole [m =
(0, 0, 1)], all the others eventually evolve into one of the two
oscillation modes that are symmetric to each other. The two

FIG. 3. Bifurcation diagram of the stroboscopic values of mz as
a function of A, as γ = 1.

oscillation modes have the same period, which is exactly the
driving period (2π/ω0). For small A, the long-time response
is insensitive to a small deviation in the initial state. On the
other hand, Fig. 1(b) shows the evolution of mx for a large
A (A = 1.0). Without loss of generality, we choose the initial
state to be (θ1 = 0.5π, φ1 = 0.1π ). Till the largest evolution
time that is accessible, no periodicity is observed. More im-
portantly, the long-time response is extremely sensitive to the
initial condition. Even for a tiny deviation in the initial state
(θ1 − θ0 = 10−7), mx(t ) displays a significant difference as t
is as large as a few hundred [see the lines of different colors
in Fig. 1(b)].

For the values of A between 0.1 and 1.0, mx(t ) displays
abundant dynamical behaviors. As A increases up to a certain
critical value, the time period is doubled. In Fig. 2(a), we
plot mx(t ) for A = 0.73. It is easy to see that the period
is not 2π/ω0; instead, it becomes 4π/ω0. As A increases
further, the period doubling happens again. For example, for
A = 0.7345, the period becomes 8π/ω0 [see Fig. 2(b)]. The
period-doubling bifurcation is well known in the classical
nonlinear systems. Usually, a cascade of period-doubling bi-
furcations leads to chaos [66]. This explains why we observe
a chaotic dynamics as A is as large as A = 1.

To further clarify the bifurcation and development of
chaos, we evolve Eq. (3) from randomly chosen initial condi-
tions, and, after a transient period of length 16T , record the
values of mz at the next 100 stroboscopic instants of time.
The obtained bifurcation diagram is presented in Fig. 3. As
the oscillating amplitude A increases, we observe the period
doubling and chaotic attractors. We provide more evidence
for the existence of different dynamical behaviors in the Ap-
pendix, where the trajectory of m(t ) on the Bloch sphere is
plotted.

In our model, the subharmonic response (i.e., doubled
period) to a time-periodic Liouvillian must be distinguished
from that in the Floquet time crystals. As will be shown
next, the subharmonic response in our model can only be
observed in the mean-field limit. It cannot survive the quan-
tum fluctuation that is unavoidable at finite N . To locate
the chaotic phase in the parameter space, we calculate the
Lyapunov exponent. The defining property of a chaotic sys-
tem is the extreme sensitivity of trajectories to the initial
condition. Two points that are initially close will drift apart
exponentially over time. The Lyapunov exponent [67] pro-
vides a quantitative measure for this, which is defined as
the average exponential rate of convergence or divergence
between adjacent trajectories in the phase space. Especially,
the largest Lyapunov exponent (LLE) is frequently employed
for determining whether a nonlinear system is chaotic. If the
LLE is greater than zero, two initial points will depart from
each other exponentially, and then the system is chaotic [68];
otherwise, it is not. We use the Wolf algorithm for obtaining
the Lyapunov exponents. Figure 4 displays the dependence
of the LLE on A and γc. The area in red or yellow has a
positive LLE, while the area in blue or green has a negative
LLE. The chaotic phase is clearly distinguishable in the pa-
rameter space. An interesting finding is that for a fixed γc

in the interval (0, 1), the dynamics is chaotic only for an
intermediate amplitude of oscillating field, but the dynamics is
regular either if A is too large or too small. In the presence of
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FIG. 4. The largest Lyapunov exponent as a function of γc and
A. The system displays chaotic dynamics as LLE > 0 (see the area
in red or yellow).

strong dissipation (γc > 1.5), there is no chaotic dynamics for
whatever A.

IV. PERIODIC BEHAVIOR AT FINITE N

The mean-field result is usually called the classical limit
in the study of quantum chaos. Next, to check the validity
of mean-field approximation, we numerically simulate the
real-time dynamics at finite N , by exploiting the permutation
symmetry of all-to-all models. The Dicke basis with maxi-
mum angular momentum is defined as [69]

|M〉 =
√

1

C
N
2 +M

N

∑
∑N

j=1 σ j=M

|σ1, σ2, . . . , σN 〉, (4)

where C
N
2 +M

N is the binomial coefficient, and σ j = ±1/2
represents the spin-up and down states, respectively. And
M = −N/2,−N/2 + 1, . . . , N/2 is the magnetization in the
z direction. The initial state is supposed to be a pure state
with all the spins aligned in the same direction. We use
the azimuthal angles (θ, φ) to indicate the initial direc-
tion, then the initial state can be expressed in the Dicke
basis as

|θ, φ〉 =
N
2∑

M=− N
2

C
M+ N

2
N cos

θ

2

N
2 +M

sin
θ

2

N
2 −M

ei( N
2 −M )φ |M〉. (5)

Equation (2) has permutation symmetry; its solution can
then be expressed as ρ̂(t ) = ∑

M,M ′ ρM,M ′ (t )|M〉〈M ′|, where
ρM,M ′ (t ) is the density matrix in the Dicke basis. Now Eq. (2)
changes into a system of ordinary differential equations for
ρM,M ′ , which are solved numerically. The permutation sym-
metry reduces the dimension of Hilbert space from 2N to N ,
and then allows us to access a large system with the number
of spins N ≈ 102–103.

In Fig. 5(a), we compare the dynamics of magnetizations
at finite N and in the mean-field approximation (N = ∞),

(a)

(b)

FIG. 5. The time evolution of mz for (a) A = 0.1 and (b) A =
1 with different N . The black solid lines represent the mean-field
results. The initial condition is fixed to be θ0 = 0.5π, φ0 = 0.2π .

as A = 0.1 is in the mean-field periodic regime. At finite
N , the magnetizations display periodic oscillations in the
asymptotic long time. The curve of mz(t ) at N = 50 is
already very close to the mean-field one. As N increases,
mz(t ) goes even closer to the mean-field result [see Fig. 5(a)
inset]. As N → ∞, we expect that the numerical results
should coincide with the mean-field results. If A is small,
then the mean-field approximation is good for large
enough N .

Figure 5(b) shows the comparison as A = 1.0 is in the
mean-field chaotic regime. The results are significantly dif-
ferent from those at A = 0.1. Up to N = 200, we find no
similarity between the numerical result and the mean-field
one. For N ranging between 50 and 200, the initial transient
behavior of mz(t ) always quickly evolves into the asymptotic
behavior: periodic oscillation. And the mz(t ) for N = 50 and
200 have the same period, with only their amplitude being
different. But in the mean-field result, mz(t ) is aperiodic at
arbitrarily long time. These observations suggest that the ex-
act numerical solutions do not converge to the mean-field
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(a)

(b)

FIG. 6. The evolution of mx and mz with different A. The number
of spins is chosen to be N = 100. And the initial condition is θ0 =
0.5π, φ = 0.1π .

one in the limit N → ∞. If A is large, then the mean-field
approximation is bad, even for large N . This seems to be
strange for an all-to-all model. We will further discuss this
discrepancy in next section. We also compare the dynamics of
magnetizations for different A, as N is fixed. Figures 6(a) and
6(b) display mz(t ) and mx(t ), respectively, for the values of A
ranging from 0.1 to 1.0. The magnetization in the z direction
always displays a periodic oscillation. And the oscillations
for different A are in phase [see Fig. 6(a) inset]. On the
other hand, the magnetization in the x direction displays two
different dynamical modes, depending on the value of A. As
seen in Fig. 6(b), as A is small (A = 0.1, 0.3), mx displays
an everlasting oscillation with the period 2π/ω0. But as A
is large (A = 0.73, 1.0), mx rapidly decays to zero. For an
intermediate A (A = 0.5), mx maintains an oscillation for a
relatively long time, but the decay can still be clearly seen.
Since the mean-field approximation conserves |m|, mx should
remain finite at arbitrarily large time (see the Appendix). The
decay of mx is a signal that the quantum result deviates from
the mean-field approximation.

A
=

0

N=10 N=50 N=200

A
=

0.
5

A
=

1.
0

0.00 0.02 0.04 0.06 0.08
|ρ|

FIG. 7. Absolute values of the density-matrix elements for dif-
ferent A.

V. DENSITY-MATRIX ELEMENTS

The discrepancy between mean-field approximation and
finite-N simulation needs an explanation. Indeed, the possibil-
ity of replacing Eq. (2) in terms of the classical equations (3)
relies on the fact that the wave packet is of small width
(≈1/

√
N) [69]. This means that, in the presence of dissipa-

tion, the density matrix 〈M|ρ̂|M ′〉 should display a sharp peak
of width ≈1/

√
N in the M

N - M ′
N plane.

Previous simulations tell us that the periodic behavior
emerges for t > 40; therefore, we choose to plot the density
matrix at t = 100 
 40. Figure 7 shows the density-matrix
elements in the M

N - M ′
N plane, for different values of A. As

A = 0 or 0.5, the density matrix displays a peak struc-
ture. The nonzero matrix elements concentrate within an
elliptical region, and the area of concentration decreases
with N . For N as large as 100, we clearly see the lo-
calization of nonzero matrix elements. It is reasonable to
think that all the nonzero elements will be localized into a
single point in the limit N → ∞, in which limit the clas-
sical mean-field theory is valid. On the other hand, the
paradigm for A = 1.0 is qualitatively different. The den-
sity matrix does not display a peak structure. Instead, the
nonzero elements disperse widely in the whole M

N - M ′
N plane.

As N increases, there is no significant concentration of the
nonzero elements. This means that the foundation of mean-
field approximation collapses as A = 1.0. A discrepancy
between mean-field approximation and finite-N result is then
expected.

We notice that, for a single particle trapped in a harmonic
potential, some studies [56–58] showed that the dissipation
tends to localize the wave packet and then the N → ∞ limit
coincides with the mean-field approximation. But in the cur-
rent model, the dissipation does not result in localization. This
difference will be further discussed next.
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x
m

y

Time t (units of 1/g)

m
z

FIG. 8. The quantum trajectories of m(t ), generated by the un-
raveled equation. We choose A = 1.0 and N = 100.

VI. UNRAVELING OF THE MASTER EQUATION
AND QUANTUM TRAJECTORIES

It is possible to transform the Lindblad equation (2) into a
stochastic differential equation by an approach called unrav-
eling, resulting in [58]

|dψ〉 = − iĤ |ψ〉dt +
√

2Nγc(Ĵ− − 〈Ĵ−〉)|ψ〉dξt

+ 2Nγc
(〈Ĵ+〉Ĵ− − 1

2 Ĵ+Ĵ− − 1
2 〈Ĵ+〉〈Ĵ−〉)|ψ〉dt, (6)

where dξt = (dξR
t + idξ I

t )/
√

2 with ξR
t and ξ I

t denoting two
independent Wiener processes. Equation (6) describes a ran-
dom motion of |ψ〉 in the Hilbert space. By ordering ρ̂ =
|ψ〉〈ψ | where · · · denotes the average over the distribution
of ξt , we recover the master equation (2). The unraveled
equation (6) is sometimes used in the numerical simulation,
replacing the original master equation, since the dimension
of Hilbert space is much less than that of the density matrix.
Equation (6) was also employed in the study of quantum
chaos [58], in which it provides a direct comparison between
quantum trajectories and classical trajectories, while the orig-
inal Lindblad equation only provides a comparison between
quantum expectation values and classical trajectories.

We numerically solve Eq. (6) to obtain the correspond-
ing mα = 〈Ĵα〉 = 〈ψ |Ĵα|ψ〉. Figure 8 illustrates the random
evolution of magnetization for two different initial states,
(θ0 = 0.5π, φ0 = 0π ) and (θ1 = 0.5π, φ1 = 0.5π ), induced
by the same path ξt . We choose A = 1.0 to be in the classical
chaotic regime. We can see that the dynamical behavior with
two different initial states is basically the same, and there
is no initial-state sensitivity. Even if each single quantum
trajectory is nonperiodic due to the random force, it does
not exhibit initial-state sensitivity. This coincides with our
previous results of expectation values, that is, the finite-N
quantum dynamics of magnetizations does not exhibit chaos.

It will be interesting to compare our results with some pre-
vious studies of quantum chaotic dynamics. In Refs. [56,57],
the jump operator is Hermitian, while the jump operator in
Eq. (6) is (Ĵ− − 〈Ĵ−〉), that is, non-Hermitian. In Ref. [58],
the jump operator is also non-Hermitian, but the commutator
between the jump operator and the driving term in Ĥ is a
constant, while in Eq. (6), the commutator is [Ĵ−, Ĵz], that
is, not a constant. These differences might be responsible for
the different destiny of the wave packet. In our model, the
wave packet is delocalized, as shown in the previous section;
therefore, the mean-field approximation fails, even if we con-
sider the stochastic quantum trajectory. But the wave packet is
localized by the jump operator in previous studies.

VII. FLOQUET LIOUVILLIAN SPECTRUM

In a closed system, it is widely believed that the mean-
field approximation becomes exact for the all-to-all models
in the limit N → ∞. In the open systems, a similar result was
obtained [70], as the Liouvillian is time independent. But our
numerical results suggest that the mean-field approximation is
bad even in the limit N → ∞, if there is a big time-periodic
term in the Liouvillian and the classical equations display
chaotic features. Since we can only obtain the exact results
at finite N , a scaling analysis is helpful for confirming our
viewpoint. Next we give a scaling analysis of the Floquet
Liouvillian spectrum. The Lindblad equation can be expressed
in a vectorized form as

d ρ̂

dt
= ˆ̂L(ρ̂ ), (7)

where ˆ̂L is the so-called Liouvillian superoperator (or Liouvil-
lian in short), which is a non-Hermitian linear operator acting
on the vector space of density matrices. For the dissipative

systems with time-independent ˆ̂L, it is well known that the

eigenvalues and eigenvectors of ˆ̂L determine the dynamics.

The eigenvalues of ˆ̂L (Liouvillian spectrum) are complex
numbers. More important, if the system size N is finite, all
the eigenvalues must have negative real part, except one that
is zero.

These notations can be generalized to the case of time-

periodic ˆ̂L. For a Lindblad equation with ˆ̂L(t ) = ˆ̂L(t + T ),
there exists a complete set of solutions written as ρ̂(t ) =
eλt �̂(t ), where �̂(t ) = �̂(t + T ) is the time-periodic part of the
density matrix, according to the Floquet theorem. And �̂(t )
satisfies

ˆ̂L[�̂(t )] − d

dt
�̂(t ) = λ�̂(t ). (8)

Then λ can be seen as the eigenvalue of [ ˆ̂L(t ) − d/dt], which
is an operator acting on the generalized vector space of density
matrices, just as (Ĥ − id/dt ) is an operator acting on the
generalized Hilbert space (Sambe space) for a closed sys-
tem with time-periodic Hamiltonian. While the eigenvalues of
(Ĥ − id/dt ) are called the Floquet spectrum, the eigenvalues

of [ ˆ̂L(t ) − d/dt] are called the Floquet Liouvillian spectrum.
We can formally define the Floquet Liouvillian as

follows. The evolution superoperator that maps ρ̂(t0) at
some reference time (denoted by t0) to ρ̂(t0 + T ) can be
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(b)

(a)

FIG. 9. The Floquet Liouvillian spectrum for (a) A = 0.1 and
(b) A = 1.0. The number of spins is N = 30.

written as ˆ̂Pt0 = T exp{∫ t0+T
t0

dt ˆ̂L(t )}, where T represents
the time ordering. Then, �̂(t0) in Eq. (8) is the eigenvector
of ˆ̂Pt0 , with the corresponding eigenvalue being eλT . The

Floquet Liouvillian can be defined as ˆ̂St0 = ln ˆ̂Pt0/T , whose
eigenvectors and eigenvalues are �̂(t0) and λ, respectively.
The Floquet Liouvillian spectrum is indeed the spectrum
of ˆ̂St0 . It is worth emphasizing that ˆ̂St0 does not necessarily
have a Lindblad form [31,71]. The criteria for judging
whether ˆ̂St0 is Lindbladian were given in Ref. [71]. And it

was found that ˆ̂St0 is non-Lindbladian for some parameters

of a few-body open system [31]. Checking whether ˆ̂St0 is
Lindbladian is particularly difficult for a many-body system
like ours, because the logarithmic function has an infinite
number of branches in the complex plane. We only find that
ˆ̂St0 does not have a Lindblad form in the principal branch.

But, whether ˆ̂St0 is Lindbladian is unimportant for the analysis
of the spectrum. As will be shown next, it is the properties
of the spectrum that determine the periodic behavior in the
dynamics.

Numerically, we obtain the Floquet Liouvillian spectrum

by diagonalizing the matrix of [ ˆ̂L(t ) − d/dt] in the general-
ized vector space of the density matrix. We decompose �̂(t )
into the linear combination of eimω0 |M〉〈M ′|, where {|M〉〈M ′|}
spans the density-matrix space, ω0 = 2π/T is the driving
frequency, and m = 0,±1,±2, . . . indexes different photon
blocks. Equation (8) then changes into a matrix equation. We
need to cut off the range of m for a numerical diagonalization.
In practice, keeping more than ten blocks realizes a good

FIG. 10. The Floquet Liouvillian gap as a function of 1/N . The
dots represent the numerical results, while the lines represent the
fitted curves.

convergence in the spectrum. Note that such a technique is
already well known in the studies of Floquet Hamiltonian
systems [72].

Compared to the Floquet spectrum or Liouvillian spec-
trum, much less is known about the Floquet Liouvillian
spectrum. For the dissipative systems, we guess that the Flo-
quet Liouvillian spectrum has the same properties as the
Liouvillian spectrum, i.e., all the complex eigenvalues have
negative real parts except for a unique one that is zero. The
numerics support our guess. Figure 9 displays the Floquet
Liouvillian spectrum at N = 30. For both A = 0.1 and 1.0,
we see that the rightmost eigenvalue in the complex plane is
zero, which is nondegenerate. And the others are to the left of
zero, i.e., they have a negative real part.

The Floquet Liouvillian spectrum completely determines
whether the dynamics is periodic, subharmonic, or chaotic.
To see it, we arrange all the eigenvalues as

λ0 = 0 � Reλ1 � Reλ2 � . . . , (9)

with the corresponding eigenvectors being �̂0(t ), �̂1(t ),
�̂2(t ), . . . . For an arbitrary initial state, the solution of the
Lindblad equation can be formally expressed as

ρ̂(t ) =
∑

j

Kje
λ j t �̂ j (t ), (10)

where the coefficients Kj depend on the initial state. In the
asymptotic long time, the terms with Reλ j < 0 all decay to
zero, and 1/|Reλ j | is just the decay time of the jth mode. At
finite N , all the λ j with j > 0 have negative real parts; there-
fore, the density matrix in the asymptotic long time becomes

ρ̂(t )
t→∞−→ K0�̂0(t ), (11)

which is exactly periodic with the period T . We then expect
that the asymptotic behavior is always periodic at finite N .
The situation is more complicated in the thermodynamic limit.
As found in the previous studies of time-independent Liouvil-
lians, there exist possibilities that the real parts of some λ j

decrease with increasing N and vanish in the limit N → ∞
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FIG. 11. The trajectories of m(t ) during t ∈ [16T0, 80T0] with
T0 = 2π/ω0 being the time period, for A = 0.1, 0.73, 0.7345, and
1.0. The initial condition is chosen to be (θ, ϕ) = (0.5π, 0.1π ).

[11,18,61,73–76]. As a consequence, the asymptotic density
matrix becomes

ρ̂(t )
t→∞−→

L∑
j=0

Kje
iIm(λ j )t �̂ j (t ), (12)

where L is the number of eigenvalues with vanishing real
parts. Additionally, if these λ j have also nonvanishing imagi-
nary parts, then ρ̂(t ) possibly display subharmonic or chaotic
behaviors, depending on the values of Im(λ j ). Conversely,
if the real parts of λ j with j > 0 are all finite in the limit
N → ∞, then subharmonic oscillation and chaotic behavior
are both impossible. According to the above argument, we
perform a scaling analysis of the Floquet Liouvillian gap,
which is defined as � = λ0 − Reλ1. If � → 0 in the ther-
modynamic limit, then there possibly exist multiple λ j whose
real parts vanish. But if � remains finite, then all the λ j with
j > 0 have negative real parts, and then Eq. (11) holds even
in the thermodynamic limit. Figure 10 plots � as a function
of 1/N . The dots are the numerical results, while the lines
are the fitted curves. The gap at A = 1.0 is smaller than the
gap at A = 0.1. But in both cases, we clearly see that the gap
does not go to zero as N → ∞. The residue gaps in the limit
N → ∞ are comparable with the driving strength or driving
frequency. This indicates that no λ j with j > 0 has vanishing
real parts; therefore, the asymptotic behaviors are periodic for
both A = 0.1 and 1.0, even in the limit N → ∞. Such a result
is consistent with our previous simulation of the real-time
dynamics of magnetizations.

VIII. CONCLUSIONS

In summary, we study the all-to-all Ising model with
a time-periodic external field and subject to a dissipation,

(a)

(b)

FIG. 12. The trajectories of magnetizations on the Bloch sphere
for (a) A = 0.1 and (b) A = 1 with different N . The black solid lines
represent the mean-field results.

by using both the mean-field approximation and the exact
numerical simulation. If the field amplitude is small, both
the mean-field approximation and the numerical simulation
predict a perfect periodic oscillation of magnetizations.
And the numerical results in the thermodynamic limit are
consistent with the mean-field one.

As the field amplitude increases, the mean-field ap-
proximation predicts the period doublings or subharmonic
oscillations, and a series of period doublings finally leads to
the chaotic dynamics of magnetizations, which is confirmed
by the calculations of Lyapunov exponents. In contrast, the
numerical simulation shows that the magnetizations are al-
ways oscillating periodically, whatever the field amplitude
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is. No subharmonic or chaotic dynamics is observed, even
when we choose the number of spins to be as large as
a few hundred in the simulation. We analyze the Floquet
Liouvillian gap, which converges to a finite value in the ther-
modynamic limit, for either small or large field amplitude. A
finite gap is another evidence of the periodic oscillations of
observables.

To explain the failure of mean-field approximation, we
study the density-matrix elements. As the driving amplitude
is small, the density matrix displays a peak structure, with its
width decreasing towards zero in the thermodynamic limit,
indicating that the mean-field approximation works. But as
the amplitude is large, the peak structure in the density matrix
vanishes, indicating that the foundation of mean-field theory
collapses.

We also study the unraveled stochastic equation, which
gives the quantum trajectories of magnetizations. For both
small and large amplitudes, the quantum trajectory does not
show initial-state sensitivity.

For the all-to-all models, the mean-field approximation is
generally believed to be good for sufficiently large number of
spins. But we find that this is not the case if the time-periodic
field and the dissipation are both present. For a large field
amplitude, the predictions from the mean-field approxima-
tion and the numerical method are qualitatively different. Our
finding suggests that one should be more careful when using
the mean-field approximation in the case of time-periodic
Liouvillians.
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APPENDIX: TRAJECTORY ON THE BLOCH SPHERE

Because |m(t )| is a constant of motion in the mean-field
equations, the vector m = (mx, my, mz ) is moving on a Bloch
sphere. Without loss of generality, we set |m| = 1. For |m| �=
1, we can always rescale |m| to unity by changing the units.

To display the trajectory of m(t ) on a sphere, we first
perform the stereographic projection and map the unit sphere
into the x-y plane. The map is defined by x = 2mx/(1 − mz )
and y = 2my/(1 − mz ). Figure 11 displays the trajectories in
the x-y plane for A = 0.1, 0.73, 0.7345, and 1.0. We choose
the time interval to be [16T0, 80T0] with T0 = 2π/ω0 being the
period. The periodic, subharmonic, and chaotic behaviors are
clearly distinguishable. As A = 0.1, the trajectory is periodic
with an oval shape. As A = 0.73, the trajectory has two differ-
ent loops, which is a signature of period doubling, as it should
be. As A = 0.7345, the trajectory has four different loops,
indicating that the period is four times that of the original
one. As A = 1.0, we find the trajectory is aperiodic, showing
features of chaos. From Fig. 11, we can also see that the three
components are all nonzero; otherwise, the trajectory in the
plane should be a circle or straight line.

Figure 12 displays the trajectories in the Bloch sphere for
A = 0.1 and 1.0 with different N . The parameters are chosen
to be the same as in Fig. 5. The black line represents the
mean-field result. We see that the mean-field trajectory is on
the unit sphere, because m2 = m2

x + m2
y + m2

z is conserved.
But the quantum trajectory at finite N does not conserve
J2. As a consequence, the quantum trajectory does not stay
on the unit sphere. As A = 0.1, the quantum trajectory goes
closer to the mean-field one as N increases. But as A = 1.0,
the difference between quantum and mean-field trajectories
is always clear, even for large N . The mean-field trajectory
displays a chaotic behavior on the sphere. But at finite N , the x
and y components quickly decay to zero. Only mz experiences
a periodic oscillation.
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[41] F. Haake, M. Kuś, and R. Scharf, Z. Phys. B 65, 381 (1987).
[42] Q. Wang and M. Robnik, Entropy 23, 1347 (2021).
[43] U. T. Bhosale and M. S. Santhanam, Phys. Rev. E 95, 012216

(2017).
[44] J. N. Bandyopadhyay and A. Lakshminarayan, Phys. Rev. E 69,

016201 (2004).
[45] J. B. Ruebeck, J. Lin, and A. K. Pattanayak, Phys. Rev. E 95,

062222 (2017).
[46] M. Lombardi and A. Matzkin, Phys. Rev. E 83, 016207 (2011).
[47] X. Wang, S. Ghose, B. C. Sanders, and B. Hu, Phys. Rev. E 70,

016217 (2004).

[48] J. Iwaniszewski and P. Peplowski, J. Phys. A 28, 2183 (1995).
[49] S. Chaudhury, A. Smith, B. Anderson, S. Ghose, and P. S.

Jessen, Nature (London) 461, 768 (2009).
[50] V. R. Krithika, V. S. Anjusha, U. T. Bhosale, and T. S. Mahesh,

Phys. Rev. E 99, 032219 (2019).
[51] C. Neill, P. Roushan, M. Fang, Y. Chen, M. Kolodrubetz, Z.

Chen, A. Megrant, R. Barends, B. Campbell, B. Chiaro et al.,
Nat. Phys. 12, 1037 (2016).

[52] G. Engelhardt, V. M. Bastidas, C. Emary, and T. Brandes, Phys.
Rev. E 87, 052110 (2013).

[53] A. Lerose, J. Marino, A. Gambassi, and A. Silva, Phys. Rev. B
100, 104306 (2019).

[54] A. Das, K. Sengupta, D. Sen, and B. K. Chakrabarti, Phys. Rev.
B 74, 144423 (2006).

[55] A. Russomanno, R. Fazio, and G. E. Santoro, Europhys. Lett.
110, 37005 (2015).

[56] S. Ghose, P. Alsing, I. Deutsch, T. Bhattacharya, S. Habib, and
K. Jacobs, Phys. Rev. A 67, 052102 (2003).

[57] S. Ghose, P. Alsing, I. Deutsch, T. Bhattacharya, and S. Habib,
Phys. Rev. A 69, 052116 (2004).

[58] B. Pokharel, M. Z. Misplon, W. Lynn, P. Duggins, K. Hallman,
D. Anderson, A. Kapulkin, and A. K. Pattanayak, Sci. Rep. 8,
2108 (2018).

[59] D. Manzano, Aip Adv. 10, 025106 (2020).
[60] J. Kurchan, P. Leboeuf, and M. Saraceno, Phys. Rev. A 40, 6800

(1989).
[61] G. Piccitto, M. Wauters, F. Nori, and N. Shammah, Phys. Rev.

B 104, 014307 (2021).
[62] E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
[63] J. Larson and D. H. J. O’Dell, J. Phys. B 46, 224015 (2013).
[64] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
[65] J. Larson and T. Mavrogordatos, The Jaynes-Cummings Model

and its Descendants (IOP, Bristol, England, 2021).
[66] D. Kaplan and L. Glass, Understanding Nonlinear Dynamics

(Springer, New York, 1995).
[67] J. P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
[68] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Physica

D 16, 285 (1985).
[69] B. Sciolla and G. Biroli, J. Stat. Mech. (2011) P11003.
[70] F. Carollo and I. Lesanovsky, Phys. Rev. Lett. 126, 230601

(2021).
[71] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys. Rev.

Lett. 101, 150402 (2008).
[72] A. Eckardt and E. Anisimovas, New J. Phys. 17, 093039 (2015).
[73] V. V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
[74] N. Shibata and H. Katsura, Prog. Theor. Exp. Phys. 2020,

12A108 (2020).
[75] Z. Cai and T. Barthel, Phys. Rev. Lett. 111, 150403 (2013).
[76] B. Baumgartner and H. Narnhofer, J. Phys. A 41, 395303

(2008).

013328-10

https://doi.org/10.1103/PhysRevA.95.042133
https://doi.org/10.1103/PhysRevLett.119.190402
https://doi.org/10.1103/PhysRevA.103.013306
https://doi.org/10.1103/PhysRevB.98.241108
https://doi.org/10.1103/PhysRevLett.110.257204
https://doi.org/10.1103/PhysRevX.6.031011
https://doi.org/10.1103/PhysRevB.101.214302
https://doi.org/10.1103/PhysRevB.95.134431
https://doi.org/10.1103/PhysRevA.97.062107
https://doi.org/10.1088/1367-2630/ab2afe
https://doi.org/10.1103/PhysRevB.101.100301
https://doi.org/10.1103/PhysRevB.104.165414
https://doi.org/10.1088/1367-2630/aa7ceb
https://doi.org/10.1103/PhysRevB.84.235140
https://doi.org/10.1103/PhysRevA.93.032121
https://doi.org/10.1103/PhysRevE.98.022111
https://doi.org/10.1088/1367-2630/aadcbd
https://doi.org/10.1103/PhysRevA.98.052129
https://doi.org/10.1088/1742-5468/aabfc5
https://doi.org/10.1103/PhysRevA.97.062121
https://doi.org/10.1007/BF01303727
https://doi.org/10.3390/e23101347
https://doi.org/10.1103/PhysRevE.95.012216
https://doi.org/10.1103/PhysRevE.69.016201
https://doi.org/10.1103/PhysRevE.95.062222
https://doi.org/10.1103/PhysRevE.83.016207
https://doi.org/10.1103/PhysRevE.70.016217
https://doi.org/10.1088/0305-4470/28/8/012
https://doi.org/10.1038/nature08396
https://doi.org/10.1103/PhysRevE.99.032219
https://doi.org/10.1038/nphys3830
https://doi.org/10.1103/PhysRevE.87.052110
https://doi.org/10.1103/PhysRevB.100.104306
https://doi.org/10.1103/PhysRevB.74.144423
https://doi.org/10.1209/0295-5075/110/37005
https://doi.org/10.1103/PhysRevA.67.052102
https://doi.org/10.1103/PhysRevA.69.052116
https://doi.org/10.1038/s41598-018-20507-w
https://doi.org/10.1063/1.5115323
https://doi.org/10.1103/PhysRevA.40.6800
https://doi.org/10.1103/PhysRevB.104.014307
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1088/0953-4075/46/22/224015
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/RevModPhys.57.617
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1088/1742-5468/2011/11/P11003
https://doi.org/10.1103/PhysRevLett.126.230601
https://doi.org/10.1103/PhysRevLett.101.150402
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1093/ptep/ptaa131
https://doi.org/10.1103/PhysRevLett.111.150403
https://doi.org/10.1088/1751-8113/41/39/395303

