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Energy-level inversion for vortex states in spin-orbit-coupled Bose-Einstein condensates
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We investigate vortex states in Bose-Einstein condensates under the combined action of the spin-orbit coupling
(SOC), gradient magnetic field, and harmonic-oscillator trapping potential. The linear version of the system is
solved exactly. Through the linear-spectrum analysis, we find that by varying the SOC strength and magnetic-
field gradient one can perform energy-level inversion. With suitable parameters, initial higher-order vortex states
can be made the ground state (GS). The nonlinear system is solved numerically, revealing that the results are
consistent with the linear predictions in the case of repulsive intercomponent interactions. On the other hand,
intercomponent attraction creates the GS in the form of mixed-mode states in a vicinity of the GS phase-transition
points. The spin texture of both vortex- and mixed-mode GSs reveals that they feature the structure of 2D (baby)
skyrmions.
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I. INTRODUCTION

Atomic Bose-Einstein condensates (BECs) are versa-
tile platforms for simulations of various phenomena from
condensed-matter physics [1,2]. Among these phenomena, the
spin-orbit coupling (SOC) plays a basic role in spin Hall ef-
fects [3], topological insulators [4], spintronic devices [5], etc.
The experimental realization of SOC in one-dimensional (1D)
[6,7] and two-dimensional (2D) [8] two-component BEC has
inspired theoretical research into spin-orbit-coupled BECs.
The analysis based on the Gross-Pitaevskii equations (GPEs)
has produced remarkable phenomena, such as vortices [9–14],
solitons [15–24], and skyrmions [25]. Comprehensive insights
into experimental and theoretical achievements in this field are
provided by review [26–31].

2D solitons supported by the interplay of SOC and cubic
attractive interactions in the free space are remarkable modes
due to their stability against the collapse and specific vortex
structure: depending on the relative strength of the cross- and
self-attraction, stable modes are semi-vortices, with vorticities
0 and 1 in the two components, and mixed modes, which
include terms with vorticities (0,+1) in one component and
(−1, 0) in the other [11,12]. However, semivortex and mixed-
mode solitons are stable only when they represent the ground
state (GS), while the corresponding excited states, produced
by the addition of the equal vorticities to both components,
are completely unstable. Stabilization of the higher-vorticity
states can be provided if a tunable mechanism of energy-level
inversion can be introduced that modifies the eigenenergy
spectrum while preserving the corresponding eigenfunctions.

*binliu@fosu.edu.cn

Ideally, it should enable the transformation of any higher-
order vortex state into the GS, thereby paving the way for
the experimental realization. Recently, a possibility of the
transformation of any excited state into the respective GS in
a 1D BEC with SOC and gradient magnetic field has been
demonstrated in Ref. [32].

In this paper we introduce the 2D SOC system, which in-
cludes the gradient magnetic field and the harmonic-oscillator
(HO) trapping potential. The linear version of the system is
solved exactly. The solution demonstrates that the combined
effect of SOC and magnetic field leads to reduction of the
total energy of the vortex states, the size of the effect grow-
ing with the increase of the vorticity. Thus, by adjusting the
SOC strength and magnetic-field gradient, one can realize
the energy-level inversion, making it possible to convert any
higher-order vortex state into the GS. The full nonlinear sys-
tem, including either repulsive or attractive intercomponent
interaction, is solved numerically.

The following presentation is structured as follows. The
model is introduced in Sec. II. The linear solution is con-
structed in Sec. III, in terms of wave functions of Landau
levels. In Sec. IV numerical solutions of the nonlinear system
with intercomponent repulsion or attraction are produced. In
Sec. V spin textures of the newly found two-component states
are presented in detail. The paper is concluded by Sec. VI.

II. THE MODEL

We consider the spin-orbit-coupled, effectively 2D binary
BEC under the action of the HO trapping potential, writ-
ten in the scaled form as V = r2/2, and dc magnetic field
B = (−αx,−αy,�), which has a constant gradient −α along
the x and y directions,while its z component � is constant.
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The Rashba SOC is represented by operator Vso = iβ(σy∂x −
σx∂y) in the system of GPEs for the binary BEC, where
σ = (σx, σy, σz ) is the vector of the Pauli matrices and β is
the SOC strength. The scaled GPE system for the spinor wave
function, � = (�1, �2)T , is

i∂t�1 = 1
2 (−∇2 + r2)�1 + ��1 − α(x − iy)�2

+ β(∂x − i∂y)�2 + (g|�1|2 + γ |�2|2)�1,

i∂t�2 = 1
2 (−∇2 + r2)�2 − ��2 − α(x + iy)�1

− β(∂x + i∂y)�1 + (g|�2|2 + γ |�1|2)�2, (1)

where � plays the role of the effective Zeeman splitting be-
tween the components, g and γ are coefficients of the intra-
and intercomponent interactions, respectively [33–35]. Using
the remaining scaling invariance of Eq. (1), we set g = 1,
assuming the repulsive sign of the self-interaction in each
component. However, γ may be negative, representing the
possibility of the attraction between the components, which
can be introduced by means of the Feshbach resonance [36].
For use in the following analysis, we denote

� ≡ β	 − 1
2 , (2)

where 	 serves as a tunable parameter employed to control
the strength of Zeeman splitting.

Stationary solutions of Eq. (1) with chemical potential μ

are sought for in the usual form,

�(x, y, t ) = exp(−iμt ){ψ1(x, y), ψ2(x, y)}T , (3)

with functions ψ1,2(x, y) satisfying the following equations:

μψ1 = 1
2 (−∇2 + r2)ψ1 + �ψ1 − α(x − iy)ψ2

+ β(∂x − i∂y)ψ2 + (g|ψ1|2 + γ |ψ2|2)ψ1,

μψ2 = 1
2 (−∇2 + r2)ψ2 − �ψ2 − α(x + iy)ψ1

− β(∂x + i∂y)ψ1 + (g|ψ2|2 + γ |ψ1|2)ψ2. (4)

The SOC system (1) conserves two evident dynamical in-
variants, viz., the total norm of the two components,

N =
∫∫ [|ψ1(x, y)|2 + |ψ2(x, y)|2]dxdy, (5)

and energy (Hamiltonian),

E =
∫∫ {

1

2
(|∇ψ1|2+|∇ψ2|2)+ r2

2
(|ψ1|2 + |ψ2|2)

− α[(x − iy)ψ∗
1 ψ2 + (x + iy)ψ1ψ

∗
2 ]

− β[ψ2(∂x − i∂y)ψ∗
1 + ψ∗

2 (∂x + i∂y)ψ1]

+ �(|ψ1|2 − |ψ2|2) + γ |ψ1|2|ψ2|2

+ g

2
(|ψ1|4 + |ψ2|4)

}
dxdy, (6)

where ∗ stands for the complex conjugate. Note that the terms
∼β in expression (6), which seem formally asymmetric with
respect to �1 and �2, are actually symmetric if one takes
into account the possibility of the application of integration
by parts, �2(∂x − i∂y)�∗

1 → −�∗
1 (∂x − i∂y)�2. The system’s

GS corresponds to a minimum of the energy for a fixed value
of the norm. In fact, for the linearized system, with g = γ = 0,

the energy of stationary states is proportional to the respective
chemical potential, determined by the stationary GPE system
(4); therefore, in the linear limit the energy minimization is
tantamount to the minimization of μ.

We note that in terms of polar coordinates (r, θ ) and wave-
function components

�̃1 ≡ �1, �̃2 ≡ e−iθ�2, (7)

expression (6) for the energy takes an axisymmetric form:

E =
∫ ∞

0
rdr

∫ 2π

0
dθ

{
1

2

∑
j=1,2

⎛
⎝

∣∣∣∣∣∂ψ̃ j

∂r

∣∣∣∣∣
2

+ 1

r2

∣∣∣∣∣∂ψ̃ j

∂θ

∣∣∣∣∣
2
⎞
⎠

+ r2

2
(|ψ̃1|2 + |ψ̃2|2) − αr(ψ̃∗

1 ψ̃2 + ψ̃1ψ̃
∗
2 )

− β

[
ψ̃2

(
∂

∂r
− i

r

∂

∂θ

)
ψ̃∗

1 + ψ̃∗
2

(
∂

∂r
+ i

r

∂

∂θ

)
ψ̃1

]

+ �(|ψ̃1|2 − |ψ̃2|2) + γ |ψ̃1|2|ψ̃2|2

+ g

2
(|ψ̃1|4 + |ψ̃2|4)

}
. (8)

The invariance of energy (8) with respect to the rotation by
arbitrary angle, θ → θ + δθ , implies that the additional dy-
namical invariant of the system is the angular momentum,
which is defined as

M =
∫∫

(ψ̃∗
1 L̂ψ̃1 + ψ̃∗

2 L̂ψ̃2)dxdy

≡
∫∫

[ψ∗
1 L̂ψ1 + ψ∗

2 (L̂ − 1)ψ2]dxdy,

where L̂ = i(y∂x − x∂y) ≡ −i∂θ is the canonical angular-
momentum operator.

It is relevant to mention that essentially the same GPE sys-
tem (1) can be derived if, instead of the real magnetic field, a
synthetic field is used. It is well known that synthetic magnetic
fields can be induced by rapid rotation of the condensate [37]
or by an appropriate combination of illuminating laser beams
[38]. The use of synthetic fields opens the way to realization
of many fascinating phenomena, such as the Dirac’s monopole
[39].

Equations (1) and (4) are written in the scaled form. In
physical units, assuming that the binary condensate is a mix-
ture of two different atomic states of 87Rb [6], a relevant
value of the HO trapping frequency is ω = 10 Hz. The num-
ber of atoms in the condensates is 1000, which is sufficient
for the experimental observation of the predicted patterns in
full detail. The characteristic length, time, and energy are
identified as l = √

h̄/matω = 8.55 μm, τ = 1/ω = 100 ms,
and ε = h̄ω = 1.05 × 10−33 J, where mat = 1.44 × 10−25 kg
is the atomic mass of 87Rb. The strength of SOC, denoted
by β = lπ/(

√
3λ), where λ represents the wavelength of the

laser, can be adjusted across a wide range depending on the
specific configurations of the laser system [40]. Moreover,
the shorter the wavelength of the laser, the greater the SOC
strength. For instance, the Nd:YAG lasers typically emit light
with a wavelength of 1064 nm, corresponding to a SOC
strength of β = 1.47, while the He-Ne lasers emit light with a
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wavelength of 633 nm, resulting in a higher SOC strength of
β = 2.45.

III. THE SOLUTION OF THE LINEAR SYSTEM

We first solve the linear version of Eq. (4), i.e.,

Ĥψ =μψ, (9)

where the Hamiltonian can be represented in the compact
form,

Ĥ =
[

â†â + b̂†b̂ + 1
2 + β	 (β − α)b̂ − (α + β )â†

(β − α)b̂† − (α + β )â â†â + b̂†b̂ + 3
2 − β	

]
,

(10)

where the creation and annihilation operators are in-
troduced as â† = (x − iy − ∂x + i∂y)/2, â = (x + iy + ∂x +
i∂y)/2, b̂† = (x + iy − ∂x − i∂y)/2, and b̂ = (x − iy + ∂x −
i∂y)/2. To solve the linear stationary Schrödinger equation (9),
a series of wave functions of the Landau levels are introduced
as the basis [41]:

fn,m(r, θ ) = exp(imθ − r2/2)√
πn!(n + m)!

n+m∑
k=0

Ck
n+mAk

n(−1)kr2(n−k)+m,

(11)

where m is the winding number (alias vorticity, or magnetic
quantum number), n is an auxiliary quantum number, and
n + m is the Landau-level index. The ranges of n and m
are n = 0, 1, 2, . . . and m = −n,−n + 1,−n + 2, . . ., respec-
tively (m also takes positive integer values). Cm

n = n!
m!(n−m)! are

the binomial coefficients, and Am
n = n!

(n−m)! for m � n; Am
n ≡ 0

for m > n. The action of operators b̂† and â† on wave function
(11) amounts to

â† fn,m = √
n + 1 fn+1,m−1, â fn,m = √

n fn−1,m+1,

b̂† fn,m = √
n + m + 1 fn,m+1, b̂ fn,m = √

n + m fn,m−1.

(12)

In the case of equal SOC and magnetic-field-gradient co-
efficients in Eqs. (1) and (4), α = β, the present linear system
(9) admits an exact solution (eigenstate) in terms of wave
functions (11),

ψn,m
1 = 1√

Nn
fn,m(r, θ ),

ψn,m
2 =

√
4n + 	2 + 	

2
√
Nnn

fn−1,m+1(r, θ ), (13)

where 	 is defined by Eq. (2), and the normalization coeffi-
cient is

Nn =
⎧⎨
⎩

1, n = 0,

4n + 	2 + 	
√

4n + 	2

2n
, n = 1, 2, 3, . . . .

(14)

The difference δm = 1 between the two components of eigen-
state (13) is a characteristic feature of bound states of the
above-mentioned semivortex type supported by SOC in the
2D space [11]. The corresponding eigenvalues of the chemical
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FIG. 1. (a)–(c) Profiles of the radial wave functions R(n)
1,2(r), de-

fined as per Eqs. (18) and (19), with quantum numbers (a) n = 0,
(b) n = 1, and (c) n = 2. (d)–(f) The corresponding chemical po-
tential μn(β ) with (d) 	 = 1, (e) 	 = 0, and (f) 	 = −1, plotted
pursuant to Eq. (16). The dots are values of βn defined by Eq. (20).

potential are

μn,m =
{

1
2 + m + β	, n = 0,

1
2 + 2n + m − β

√
4n + 	2, n = 1, 2, 3, . . . .

(15)

For a given quantum number n, the eigenvalues (15) attain a
minimum at m = −n, namely,

μn,m=−n ≡ μn =
{

1
2 + β	, n = 0,

1
2 + n − β

√
4n + 	2, n = 1, 2, 3, . . .

(16)

(however, this conditional minimum, corresponding to a par-
ticular value of n, does not imply the system’s GS, which
should be identified as the absolute minimum). The respective
wave function is

ψn,m=−n
1 = R(n)

1 (r) exp(−inθ ),

ψn,m=−n
2 = R(n)

2 (r) exp [−i(n − 1)θ ], (17)

where the radial wave functions R(n)
1,2 for n � 1 are

R(n)
1 = 1√

πn!Nn
rn exp

(
− r2

2

)
,

R(n)
2 =

√
4n + 	2 + 	

2
√

πn!Nn
rn−1 exp

(
−x2

2

)
, (18)

and for n = 0,

R(0)
1 = (1/

√
π ) exp(−r2/2), R(0)

2 = 0. (19)

Typical profiles of the radial wave functions are plotted in
Figs. 1(a)–1(c).

Thus the quantum number n = −m can be used to label the
order of vortex states (17). It is seen that the SOC strength
β alters the spectrum (16) of eigenvalues μn but does not
affect the corresponding eigenfunctions (18). In particular,
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Figs. 1(d)–1(f) display the dependence of μn (alias energy, as
it is proportional to the chemical potential for the linearized
system) on β at 	 = 0 and ±1. Branches μn with larger
numbers n vary faster as functions of β. The intersection of
the branches corresponding to values n and n + 1 implies the
GS switching. The respective critical values βn at the switch-
ing points can be obtained by solving equation μn(βn) =
μn+1(βn):

βn = 1

4

⎧⎨
⎩

√
4 + 	2 − 	, n = 0,√
4n + 4 + 	2 +

√
4n + 	2, n = 1, 2, . . . .

(20)

Thus we find the fact that vortex states with any order n can
become the system’s GS by adjusting the value of the SOC
strength β.

The above analysis is based on the special case of α = β

(equal SOC and magnetic-field-gradient strengths). The anal-
ysis can be extended for α 	= β, setting 	 = 0 in Eq. (9),
i.e., � = −1/2 in Eq. (1). Then, an approximate solution of
Eq. (9) with winding number m (alias magnetic quantum num-
ber) can be looked for as a combination of the Landau-level
wave functions truncated at n = Nt :

ψ1 =
Nt∑

n=0

cn fn,m,

ψ2 =
Nt∑

n=0

dn fn−1,m+1, (21)

where cn and dn are coefficients to be determined. We here
produce the approximate results for Nt = 50, which are prac-
tically exact. By substituting the ansatz (21) into Eq. (9), we
derive a set of coupled linear equations for cn and dn:

μcn =
(

2n + m + 1

2

)
cn − (α + β )

√
ndn

+ (β − α)
√

n + m + 1dn+1,

μdn =
(

2n + m + 1

2

)
dn − (α + β )

√
ncn

+ (β − α)
√

n + mcn−1. (22)

Once the quantum number m is fixed, Eq. (22) can be solved
by dint of numerical diagonalization of the corresponding ma-
trix. By comparing the chemical potentials μ corresponding
to different winding numbers m, we can thus identify the
system’s GS.

The so produced map of quantum numbers m, correspond-
ing to the GS, in the (α, β ) parameter plane (alias the GS
phase diagram) is plotted in Fig. 2. Along the diagonal, α = β,
the GS predicted by this diagram agrees with the exact one
given by Eq. (20) (note the symmetry about the diagonal). The
phase diagram demonstrates that the GS switching between
quantum numbers m and m + 1 takes place at α 	= β as well.
Furthermore, we find that if fixing β = 3.0, as α changes
from negative to positive, the quantum number m gradually
transitions from positive to negative. Due to the symmetric
structure of states with quantum numbers m and −m, we

−3 −2 −1 0 1 2 3
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

β

m
−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

FIG. 2. The map of values of the winding number (magnetic
quantum number) m corresponding to GS of the linear system in the
(α, β) parameter plane.

focused only on the case where m � 0, or in other words, the
case where α � 0.

IV. THE NUMERICAL SOLUTION FOR THE
NONLINEAR SYSTEM

We address the complete form of Eq. (4), including the
nonlinear terms, repulsive or attractive, while fixing α = β, as
in the exact solution of the linear system. While energy-level
inversion can be achieved by changing both the parameters 	

and β, altering 	 also changes the wave functions of each
energy level, whereas altering β does not affect the wave
functions. To focus on the manipulations of the spectrum, in
the following discussion we vary β while keeping 	 = 0. In
this case, stationary states can be found in the numerical form
by means of the imaginary-time propagation method [42],
fixing the total norm of the solution as N = 1, see Eq. (5).
The input which was used to generate the solutions by means
of this method was taken as a superposition of the vortex
components of the linear eigenmodes given by Eqs. (17) and
(18), viz.,

ψ1 = ψ2 =
Ns∑

n=0

rn exp(−inθ − r2/2)√
2πNs

. (23)

For numerical calculations with 0 � β � 2, choosing Ns = 5
in Eq. (23) is sufficient to generate stable eigenmodes of the
nonlinear system.

We dwell on four cases, γ = 1, γ = 0, γ = −1, and γ =
−2, which correspond, respectively, to the repulsive, zero
attraction, and stronger attraction between the components.
Note that the commonly known miscibility condition for the
binary Bose gas in the free space is, in the present notation,
γ < 1 [43]. The case of γ = 1 corresponds to the miscibil-
ity boundary, but the pressure if the OH trapping potential
induces effective miscibility in this case.

The stationary nonlinear states may be naturally quantified
by the angular momentum (9). It is easy to check M = m if
one substitutes eigenfunction (13) into Eq. (9). Thus integer
values of M indicate vortex (or semivortex [11]) states, while
noninteger values of M indicate mixed-mode states, defined
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FIG. 3. (a)–(d) Angular momentum M and (e)–(h) energy E ,
defined as per Eqs. (9) and (6), respectively, as produced by the
imaginary-time simulations of the full (nonlinear) system (1) for β

varying from 0 to 1.8, with step δβ = 0.001, at (a, e) γ = 1, (b, f)
γ = 0, (c, g) γ = −1, and (d, h) γ = −2.

as in Ref. [11]. The dependence of M on β, produced by the
numerical solution, is shown in Fig. 3.

For the different values of γ , dependences M(β ) in
Figs. 3(a)–3(d) exhibit similar patterns, except in the vicin-
ity of the phase-transition points. Recall that the GS phase
transitions in the exact solution for the linear system are given
by Eq. (20)—in particular, β0 = 0.5, β1 = 1.2, and β2 = 1.6.
As β increases, M follows the descending staircaselike pat-
tern, dropping by 1 while passing each phase transition. Flat
segments of the M(β ) dependences are populated by the
(semi-)vortex two-component states, see typical examples in
Fig. 4, while the oblique transition segments carry mixed-
mode states, see examples in Fig. 5. The parameter γ affects
the width of the phase-transition region, which is wider for
smaller values of γ , in agreement with the general trend to
stabilization of mixed modes and destabilization of semivor-
tices following the decrease of γ (increase of −γ ) [11].

Curves for energy E as a function of β are plotted in
Figs. 3(e)–3(h). We can find that as γ decreases, the curves
near the phase-transition point gradually become smoother.
For regions far from the phase-transition point, these curves
are similar for different values of γ . Energy E gradually
decreases with the increase of β. Furthermore, each time
that β passes a phase-transition point, the rate of energy
reduction accelerates. These results are similar to those for
the dependences μn(β ) of the chemical potential displayed
in Eq. (16), which is actually the energy of the linearized
system.

To quantitatively analyze the impact of different γ on the
total energy of the vortex state, we utilized the linear solutions
given by Eqs. (17) and (18) as an approximation for the
nonlinear system. This approach yielded the energy induced
by intercomponent interactions for n � 1 as expressed by the

FIG. 4. Distributions of the absolute values |ψ1,2| and phases
�1,2 of wave functions of the two components in the GS of the
(semi-) vortex type for β = 0.3 (panels a1 − a4, with vorticities 0
and +1 in the two components; panel a3 seems to be an empty one,
as |ψ2| is very small in that case); β = 1.0 (panels b1 − b4, with
vorticities −1 and 0); and β = 1.5 (panels c1 − c4, with vorticities
−2 and −1). Other parameters in Eq. (1) are 	 = 0 and γ = 1.

equation

Expm = 2πγ

∫ ∞

0

∣∣Rn
1(r)

∣∣2∣∣Rn
2(r)

∣∣2
rdr = γCn

2n

22n+3π
. (24)

Additionally, for the case where n = 0, the energy Expm is
equal to 0. For the situations we discussed above, namely, n =
0, 1, 2, and 3, the corresponding Expm = 0, 0.020γ , 0.015γ ,
and 0.012γ , respectively. This result indicates that the total

FIG. 5. Distributions of the absolute values |ψ1,2| and phases
�1,2 of wave functions of the two components in the GS of the
mixed-mode type for β = 0.460 (panels a1 − a4), β = 1.204 (panels
b1 − b4), β = 1.575 (panels c1 − c4), and 	 = 0, γ = −2 in Eq. (4).
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energy of the system remains very close under different γ

values.
Regarding the (semi-) vortex GSs displayed in Fig. 4 for

γ = 1, those for β = 0.3, 1.0, and 1.5 correspond, severally,
to values of the angular momentum (9) M = 0, −1, and −2,
as is seen from comparison with Fig. 3. These properties are
readily explained by the fact that in all these cases an absolute
majority of atoms belong to component ψ1, which has the
same values of intrinsic vorticities, viz., m = 0, −1, and −2,
respectively. Thus, by selecting appropriate values of β, it is
possible to adjust the vortex GS so as to realize any desirable
value of its winding number.

On the other hand, the set of mixed-mode GSs found in
the case of the intercomponent attraction (γ = −2), which are
displayed in Fig. 5, have half-integer values of angular mo-
mentum (9), viz., M(β = 0.460) = −0.5, M(β = 1.204) =
−1.5, and M(β = 1.575) = −2.5. These values of M are
explained by the fact that the corresponding mixed states are
composed of two components with vorticities m � −1 and
m + 1, which have equal weights (this is a generic property of
mixed-mode solitons in the free 2D space). Further, particular
panels in Fig. 5 demonstrate an essential difference of the
mixed-mode GSs from their counterparts of the (semi-)vortex
type: in the mixed modes, higher-order vortices with |m| � 2
tend to split in lower-order ones, with separated pivots, and the
pivots shift sidewise. The evolution of the mixed-mode GSs
can be summarized as follows: as β increases, the next phase
transition increases the winding number of the right vortex in
the ψ1 component by 1, while ψ2 assumes a shape similar
to that featured by the mixed mode’s ψ1 component at the
previous stage.

To corroborate that the GSs, identified by the above analy-
sis, are indeed stable modes, as they should be, their stability
was verified by real-time simulations of their perturbed evolu-
tion. We added white noise to the ground-state wave functions,
with the maximum noise intensity reaching 10% of the wave
function’s amplitude. Subsequently, real-time evolution was
applied to the perturbed wave functions. The results of numer-
ical simulations are presented in Fig. 6, showcasing a vortex
state with parameters β = 1.5, γ = 1, and a mixed state with
parameters β = 1.575, γ = −2. It can be seen that at t = 0,
the wave functions exhibit numerous noise points. However,
as time progresses, by t = 200 the noise points on the wave
functions disappear. Furthermore, in the subsequent evolution,
the phases of the wave functions rotate around the vortex
centers, while the amplitude distribution no longer undergoes
changes. The results completely verify the stability of the
ground states in all cases.

V. THE (SEMI-)VORTEX AND MIXED STATES
AS BABY SKYRMIONS

The realization of SOC in the two-component Bose gas
suggests that it can be considered as a (pseudo-)spin system,
with the spin-vector density defined as

S = (ψ†ψ )−1ψ†σψ. (25)

For the vortex states with winding number m 	= 0 [recall
m = −n, as in Eq. (17)], vector S produced by the linear

FIG. 6. Numerical evolution of the perturbed ground state, where
(a1 − a4) and (b1 − b4) correspond to vortex state with parameters
β = 1.5, γ = 1, while (c1 − c4) and (d1 − d4) correspond to mixed
state with parameters β = 1.575, γ = −2. In each figure the bottom-
right corner depicts the phase distribution of the wave function.
From left to right, each column corresponds to the wave-function
density and phase distribution at evolution times t = 0 (initial state),
t = 200, t = 400, and t = 600.

solution (18) is

S(r, θ ) = 1

r2 + 1

{
2r cos θ, 2r sin θ, r2 − 1

}
. (26)

For m = 0, the spin-vector structure is trivial, S(r, θ ) =
{0, 0, 1}.

The spin textures of the vortex states with winding numbers
m = 0,−1, and −2 in the ψ1 component are displayed in
Figs. 7(a)–7(c). These textures for the states with m 	= 0 re-
semble those for 2D skyrmions, which are often called “baby
skyrmions” (to stress the difference from their full-fledged 3D
counterparts). The “babies” are well-known nonlinear modes
[44–47] which, in particular, were recently created in BEC
[48].

According to Eq. (26), limr→∞ S = {0, 0, 1}; hence the
skyrmionic spin textures are embedded in the asymptotically
uniform vector background. Thus the 2D space R2 may be
compactified into the 2D sphere S2. Note that spin vectors (26)
also take their values on S2, and therefore the skyrmion real-
izes the second homotopy group π2(S2) = Z, characterized
by the topological number

Q = 1

4π

∫ ∞

−∞

∫ ∞

−∞
S ·

(
∂S
∂x

× ∂S
∂y

)
dxdy. (27)

The skyrmion topological number counts the number of times
that S2 is covered by the vector field S(r, θ ). The substitution
of expression (26) in Eq. (27) yields Q = −1, which is the
topological charge of all the vortex states with m 	= 0, pro-
duced by the linear and nonlinear versions of Eq. (4) alike. In
particular, the numerical calculation of topological charge Q
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FIG. 7. Spin textures of the numerically constructed GSs of the
(a)–(c) vortex and (d)–(f) mixed-mode states in the nonlinear system
with γ = 1 and γ = −2, respectively. The vortex GSs in panels
(a)–(c) are identical to those displayed in Fig. 4, with the same pa-
rameters, viz., β = 0.3 and vorticities of the two components (0, +1)
(a), β = 1.0 and vorticities (−1, 0) (b), and β = 1.5 and vorticities
(−2,−1) (c). Similarly, the mixed-mode GSs in panels (d)–(f) are
identical to those displayed in Fig. 5, with the same parameters, viz.,
β = 0.460 (a), β = 1.204 (b), and β = 1.575 (c). Arrows indicate
the direction of the spin vector (25), and their colors represent the
magnitude of the Sz component. Accordingly, the respective direc-
tions vary from vertical-up (red) to vertical-down (blue) ones. Bold
blue arrows indicate the cores of the vortices.

according to Eq. (27), for states displayed in panels (a)–(c)
in Fig. 7, yields Q(m = 0) = 4.049 × 10−4, Q(m = −1) =
−0.978, and Q(m = −2) = −0.962, respectively, in agree-
ment with what is said above. Here the numerical-integration
domain is 0 � r < 8.0, 0 � θ < 2π . According to Eq. (27),
numerical integration over the entire space, i.e., −∞ < x, y <

∞, is inherently challenging, and there is always a presence of
systematic error. Increasing the integration range while main-
taining a constant spacing between the sampled points (dxdy)
would indeed yield topological numbers Q closer to integers.
However, this approach necessitates significantly higher com-
putational resources.

The mixed-mode states can be considered as a (nonlin-
ear) superposition of two baby skyrmions with topological
charges Q = 0 and −1. The spin textures of the mixed modes

are presented in Figs. 7(d)–7(f), and the respective numeri-
cally calculated values of topological charge (27) are Q =
−0.980,−1.931, and −1.891, respectively. The correspond-
ing values for the ideal solutions are Q = −1,−2, and −2,
respectively.

To visualize the structure of the skyrmions, it is relevant
to identify the location of vortex core(s) in them, i.e., points
where vector (26) takes the value S = {0, 0,−1}. The vortex
states with m 	= 0, displayed in Figs. 4 and 7(a)–7(c), feature
the single core, pinned to the center, r = 0. On the other hand,
Figs. 5 and 7(d)–7(f) show that (as is actually mentioned
above) for the first mixed-mode state, the core position is
offset from the center, and two cores are featured by the
second and third mixed modes.

VI. CONCLUSION

In this work we have reported results of the systematic
analysis of vortex states in the 2D SOC (spin-orbit-coupled)
BEC under the action of the gradient magnetic field and HO
trapping potential. We have obtained exact solutions for the
linearized system and found that by varying the SOC strength
and the magnetic-field gradient, the energy-level inversion can
be realized, allowing the trapped higher-order vortex modes to
transition into the GS (ground state). We have also solved the
full nonlinear system numerically and found that in the case of
the intercomponent repulsion, the results for the vortex modes
are consistent with the predictions of the linear theory. On the
other hand, the attractive intercomponent interaction creates
mixed-mode states in the vicinity of the GS phase-transition
points. Then we analyzed the GS spin textures and found that
both the vortex and mixed-mode states have the structure of
the 2D (baby) skyrmions. Our findings predict possibilities for
the creation of stable higher-order vortex states in experiments
with BEC.

It may be relevant to elaborate similar settings, emulating
the SOC and the action of gradient magnetic field, in optics.
A challenging possibility is to extend the analysis for 3D
systems, cf. Ref. [24].
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