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An impurity particle interacting with a Bose-Einstein condensate (BEC) leads to the formation of a quasipar-
ticle known as the Bose polaron. We investigate the properties of the two-dimensional Bose polaron, applying a
variational ansatz that contains up to three Bogoliubov excitations of the BEC. Similar to its three-dimensional
counterpart, we observe the existence of two quasiparticle branches, namely, the attractive and the repulsive
polarons, at different coupling strengths. We find that their energies agree well with recent quantum Monte Carlo
calculations. In particular, we observe that the inclusion of three excitations is crucial to capture the attractive
polaron energy towards the regime of strong attraction, where the quasiparticle properties are dominated by
few-body correlations. We also calculate the attractive polaron effective mass and residue, where we find
significant differences between considering a weakly interacting Bose medium and taking the noninteracting
limit, signaling enhanced impurity dressing by excitations in the latter case. By contrast, the spectral weight
of the metastable repulsive polaron is largely insensitive to the interactions in the BEC and the number of
Bogoliubov excitations. Our model may be experimentally realized in dilute atomic vapors and atomically thin

semiconductors.
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I. INTRODUCTION

The interaction of an impurity particle with a quantum
mechanical medium, the so-called quantum impurity prob-
lem, plays a key role in understanding quantum many-body
physics. One example is the polaron, originally proposed by
Landau and Peker [1], that is formed by a mobile electron
dressed by a cloud of virtual phonons in an ionic crystal. The
concept of the polaron has since been widely extended: In the
case of ultracold atomic gases, the presence of an impurity
atom in a Bose-Einstein condensate (BEC) gives rise to the
formation of the Bose polaron, where the impurity becomes
dressed by Bogoliubov excitations of the BEC [2]. Here, one
can take advantage of a magnetically tunable Feshbach reso-
nance that enables the precise control of the coupling strength
between the impurity and the medium, thus allowing one to
investigate the polaron quasiparticle properties, as recently
demonstrated in experiments [3-5]. This poses an intriguing
test for theoretical modeling, and indeed the Bose polaron
has been studied using a variety of theoretical methods, rang-
ing from field-theoretical diagrammatic approaches [6,7] and
variational methods [8—14], to quantum Monte Carlo (QMC)
methods [15,16], renormalization group theory [17], and a
high-temperature virial expansion [18].

A particularly interesting aspect of the Bose polaron is its
relationship to few-body bound clusters involving the impu-
rity and several bosons from the medium. Unlike the widely
studied Fermi polaron [19-21] (an impurity immersed in a
fermionic medium) the Bose polaron does not feature any
transitions in its ground state, and thus the polaron can con-
tinuously change its character from a weakly dressed impurity
to a state that has strong few-body correlations. In a three-
dimensional (3D) system, where three particles can bind to
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form Efimov trimers [22], it was shown in Ref. [11] that,
in the case of the equal-mass system, the behavior of the
Bose polaron at strong interactions is characterized by the size
of the ground-state trimer and that the polaron energy is a
universal function of the Efimov three-body parameter [23]
for sufficiently low boson densities. The existence of Efimov
trimers depends strongly on dimensionality, being absent in
the ideal two-dimensional (2D) case [24,25] and suppressed
under realistic transverse confinements [26]. This means that,
unlike the 3D Bose polaron, the properties of the 2D Bose
polaron do not depend on the introduction of a three-body
parameter [27], and are instead fully characterized by the in-
terparticle spacing of the medium relative to the characteristic
lengthscales of the interactions such as the impurity-boson
and boson-boson scattering lengths. However, the system sup-
ports the formation of two- and three-body bound states at
any scattering length [24,28,29], unlike the 3D case, and one
might therefore wonder how these bound states affect the po-
laron. The 2D Bose polaron was previously investigated using
the Frohlich model [30,31], a variational approach for light-
matter-coupled polarons [32], a mean-field approach [33], a
non-self-consistent 7 -matrix approximation approach [34],
QMC [35], and renormalization group theory [36]. However,
the detailed connection between few- and many-body physics
for the 2D Bose polaron in an ultracold atomic gas remains
unexplored.

In this paper, we investigate the properties of the 2D Bose
polaron by applying a variational ansatz that contains up to
three Bogoliubov excitations of the BEC. Similarly to the
3D Bose polaron [20], we observe two distinct quasiparticle
branches: the attractive and repulsive polarons characterized
by negative and positive energies, respectively. For a large
range of weak to intermediate attractive interaction strengths,
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we observe that including three excitations of the BEC as
well as interactions within the BEC is necessary to accurately
reproduce QMC results [35] for the attractive polaron energy.
Furthermore, this level of approximation gives qualitative
agreement also for the quasiparticle residue and effective mass
of the attractive polaron. Including additional excitations of
the medium would likely substantially improve the agreement
in the strongly interacting regime where the interparticle spac-
ing is comparable to the size of the impurity-boson bound
state. For the repulsive polaron, we find that the energy is
well reproduced already with a single excitation; however, the
residue behaves very differently to that in the QMC, indicating
that the metastability of the repulsive polaron plays an impor-
tant role and requires further study.

This paper is organized as follows. In Sec. II we describe
our model of an impurity in a 2D BEC and outline our varia-
tional approach. In Sec. III we discuss the polaron properties
including our results for the energy, residue, and effective
mass, and compare these with results from QMC [35]. We
conclude in Sec. IV.

II. MODEL AND VARIATIONAL APPROACH
A. Model

We consider an impurity particle immersed in a weakly in-
teracting uniform two-dimensional Bose gas, where we focus
on the zero-temperature case such that the system features
a BEC [37]. We model the system using a two-channel de-
scription of a Feshbach resonance [38], similarly to how the
Bose polaron was described in the three-dimensional case in
Refs. [9,11]. Measuring the energy with respect to that of the
BEC, the Hamiltonian is given by (setting 7 and the area to 1)

H = Z [Ekﬂ;:/gk + EkCltCk + (Eﬁ + U())dldk]
k
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Here, bl and cli correspond to the creation operators of a

boson and the impurity, respectively, with momentum k. ex =
2. . . . . .

é‘—m is the corresponding smgle-pgrtlcle energy dispersions,

where we assume that the impurity and bosons have equal

masses m. dli corresponds to the creation operator of a closed-

channel molecule, which is formed from the impurity and a
boson when they interact, and we have € = %. The bare
detuning vy corresponds to the energy of the closed channel
relative to the open impurity-boson channel.

In writing the Hamiltonian, we applied the Bogoliubov
theory of the weakly interacting Bose gas [39], where we have
noag < 1 in terms of the (positive) 2D boson-boson scattering
length apg and the condensate density ny. The Bogoliubov

dispersion is given by

Ex = Vex(ex +21), 2

4mng/m

(1 mal) [40]. The bare bo-
B
son operator by is related to the Bogoliubov operator via the

with the chemical potential © =

Bogoliubov transformation

by = Bk — v, 3)

with the coherence factors

1/ex+ 1 1/ex+n
= (=241 = /(== _1) @
K ( )’ vk 2( Ex > @

The presence of the impurity adds the scattering length
arp to the system, which characterizes the interactions be-
tween the impurity and the medium. We assume that both
the boson-boson and impurity-boson interactions are contact,
s-wave interactions. This assumption is valid since the average
interparticle distance and the thermal wavelength far exceed
the range of the underlying van der Waals interactions. In
applying the Bogoliubov theory of the weakly interacting
Bose gas, we already implicitly assumed that the boson-boson
interactions are short ranged.

To be specific, the second line in Eq. (1) describes the
interactions between the impurity and a boson with coupling
constant g, which proceed via the formation of a closed-
channel molecule. The coupling constant g and the bare
detuning vy can be related to the most general form of the
low-energy s-wave 2D scattering amplitude [41]

4

k) = :
Pt = (Ra2y) + R k2 + i
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where R;p is the 2D range parameter. Calculating the scatter-
ing amplitude within the two-channel model (1) and carrying
out the renormalization procedure [29], we obtain the scatter-
ing amplitude and range parameter [42]

4
Ryp = ‘/ mz_gz’ (6)

where A is an ultraviolet momentum cutoff on the relative
impurity-boson momentum. For the results presented in this
paper, we take Ryp — 0, which corresponds to taking the limit
of g - oo and A — oo while adjusting vy to keep a,p finite.
This limit is well defined and corresponds to considering a
single-channel model. We note that, although the interacting
part of the Hamiltonian in Eq. (1) is written in terms of the
bare boson operator, it is always related to the Bogoliubov
operator via the Bogoliubov transformation in Eq. (3).

Importantly, the impurity-boson interaction always fea-
tures a bound state in our two-dimensional setting. This
so-called dimer state corresponds to the pole of the scattering
amplitude, i.e., fi)l = 0. In the limit of Ry,p — 0, the dimer
binding energy ep takes the form ep =1 /ma%D. Likewise,
there exists a three-body bound state consisting of the im-
purity and two bosons [24], with energy Er = —2.39¢p in
the limit R,p — 0 and ag — 0. Larger multibody clusters are
also predicted to exist in this system [43].

In the experiment, the quasi-2D geometry may be achieved
by applying a harmonic confining potential to a 3D atomic gas
along the direction perpendicular to the 2D plane [44]. In this
case, the scattering properties of the 3D system can be mapped
to the quasi-2D system [42]. The 2D limit is achieved when
the size of the two-body bound state, average interparticle
spacing, and thermal wavelength are all much larger than the
confinement length.

1 27w
ap = Xe g,
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B. Variational Ansatz

To investigate the properties of the polaron, we consider a
variational state that describes the impurity and its dressing by
up to three Bogoliubov excitations of the medium. Consider-
ing for simplicity a variational state of zero total momentum,
this takes the form

W) = o) + [¥1) + [¥2) + [¥13), (7

where |1{y) denotes a state with N Bogoliubov excitations

[¥0) = agch| D),

Y1) = (Z el Bi + yodg‘) D),
k

1 i
) = | 5D el B, Bl + D By | 19),

kika k

1 .
_ T f ot at
[V3)= g Z ak1k2k3C_k]_k2_k3/3klﬁkzﬁk3

kikok;

1 . -
5 2 Veod i i B B [ 10). ®)
k]kz

Here, |®) corresponds to the weakly interacting 2D BEC. The
first line of Eq. (8) describes the bare impurity, while the
second line is a superposition of the impurity dressed by a
single Bogoliubov excitation, and a term where the impurity
has bound a particle from the BEC to form a closed-channel
dimer. The third (fourth) line describes a superposition of
the impurity dressed by two (three) Bogoliubov excitations
and a closed-channel dimer dressed by a single (two) Bo-
goliubov excitation(s). In this paper, we refer to calculations
with the variational state up to N = 1 boson as two-body
correlations, N = 2 as three-body correlations, and N = 3 as
four-body correlations. o, ok, Ok, k, > Ok koks»> Y0 V> and Vi k,
are variational parameters that are normalized according to
(U|W) = 1. These are determined by considering the station-
ary condition (dW|(H — E)|W) = 0, where the derivative is
taken with respect to each variational parameter, yielding a set
of coupled linear integral equations for the variational parame-
ters. These equations are identical to those that were originally
derived in Refs. [9,11] in the three-dimensional case, and
therefore their explicit form is relegated to Appendix A.

In the case of the 3D Bose polaron, the variational ansatz
in Eq. (7) was shown in Ref. [9] to capture the physics asso-
ciated with the exotic three-body Efimov bound states [45].
Although Efimov trimers do not exist in the 2D system, we
still have a trimer bound state at any scattering length, where
the trimer binding energy can be calculated by taking the
few-body limit, ny — 0, of the coupled equations in Eq. (A1).

C. Impurity spectral function

Of particular interest in experiments is the spectral re-
sponse of the impurity in the medium. To form the polaron,
a radio frequency (RF) pulse is used to transfer the impurity
from a noninteracting (auxilliary) state into the interacting
state. The transition probability is proportional to the impurity

spectral function

Aw) =Y [(Wolp)) 8w — E)), ©)
J

where |W,) denotes the noninteracting polaron state |Wy) =
c$|<1>>. Here, |¢;) denotes the eigenstates of the Hamiltonian
in Eq. (1) truncated to the Hilbert space described by the
variational ansatz in Eq. (7), and E; denotes their correspond-
ing eigenvalues. To incorporate a broadening of the spectrum
due to the finite duration of the RF pulse in experiment, we
convolve the spectral function with a Gaussian of Fourier
width o

, , 1 — w202
Iy(w)= | do'A(w — &')——e [ (10)
2oy
Inserting Eq. (9) in Eq. (10), we obtain the broadened impurity
spectral function

1
I(w) = ;|<wo|¢j>|2 T

2oy

0B (1)

As we shall see, this spectral function allows us to capture the
peaks of the attractive and repulsive polarons as well as the
continuum of states across a range of coupling strengths. In
the present work, we use a Fourier broadening o,y = 0.4n/m,
which is comparable to the Aarhus experiment of the 3D
polaron [3] and gives reasonable numerical convergence in the
spectral response similarly to the 3D case [13].

III. POLARON PROPERTIES

We now discuss the quasiparticle properties of the 2D Bose
polaron. In our variational approach, we obtain the energy
spectrum by expressing the coupled equations in Eq. (Al)
as an eigenvalue equation and numerically evaluating the
eigenvalues and eigenvectors on a discrete grid [46]. This
also allows us to obtain the quasiparticle residue Z, i.e., the
squared overlap between interacting and noninteracting states.
To evaluate the polaron effective mass m*, we extend our
variational ansatz to the Bose polaron with a finite momentum
(see Appendix C).

Note that the variational ansatz with one Bogoliubov ex-
citation (i.e., two-body correlations) is formally equivalent
to the non-self-consistent 7-matrix approximation (NSCT).
Indeed a very recent work [34] applied NSCT to the 2D
Bose polaron and obtained results similar to our lowest-order
ansatz. However, our full variational ansatz includes three-
and four-body correlations as well as bound states that go
beyond this diagrammatic approach.

In the following, we compare our results with those from
QMC [35] and perturbation theory [31]. In particular, the
energy, residue, and effective mass within the weak-coupling
perturbative limit | In(,/npazp)| > 1 take the forms [31]

E 2

—_ : 12
In (/nopazp) (12)

-1

zz[l—i—lﬂ(*/"—‘)a'g)} , (13)
2 1n” ({/noazp)

mo_ 1 In(a) .

no/m

=1+ ,
m* 4107 (/ipazn)

respectively.
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FIG. 1. Energy of the Bose polaron as a function of the coupling
strength In(,/moazp). (a) The blue, purple, and green lines show
the results obtained from two-, three-, and four-body correlations,
respectively, for the ideal BEC with u = 0. The red dots and gray
dash-dotted line show the results obtained from QMC [35] and
perturbation theory [31], respectively, with p = 0.136ny/m. (b) A
closeup of the weak-coupling attractive polaron in (a), where the ad-
ditional green dashed line shows the result obtained from four-body
correlations for a weakly interacting BEC with y = 0.136ny/m. The
variational energy obtained from two-body correlations at this w is
indistinguishable from the corresponding result for « = 0 on this
scale.

A. Polaron energy

In Fig. 1(a), we display the polaron energy with u =0
(corresponding to taking the limit of a noninteracting BEC,
i.e.,, ag — 0%). Similarly to the 3D polaron, we observe
two branches: the ground-state attractive branch and the
metastable repulsive branch. As discussed in Appendix A, the
polaron energy in the case of two- and three-body correla-
tions is obtained by solving the coupled integral equations in
Eq. (A1), while the attractive polaron energy incorporating
four-body correlations is instead obtained from the reduced
coupled equations in Eq. (A2). These two approaches are
completely equivalent.

We first consider the attractive branch. In the weak-
coupling regime where the size of the bound state greatly
exceeds the interparticle spacing, In(,/noazp) > 1, we ob-
serve that our variational results from two-, three-, and
four-body correlations are in excellent agreement with both
QMC [35] and perturbation theory [31] (which were both
calculated at p = 0.136np/m). Our variational results begin
to deviate with increasing coupling strength, as multibody
correlations become more important. However, even in the
strong-coupling regime where axp ~ n, 1 2, our variational
results from four-body correlations are still in good agreement

with QMC, which is reminiscent of the case for the 3D Bose
polaron [11,13,47].

While at a qualitative level all methods agree well for
weak to moderate interaction strengths, we can gain further
insight by taking a closer look at the results in this regime,
as shown in Fig. 1(b). First, we see that perturbation theory
is well reproduced already by the variational ansatz limited to
two-body correlations, which we find are nearly completely
independent of w. Incorporating up to four-body correlations,
we see that the Bose gas chemical potential matters more in
this case. This is to be expected since including higher-order
correlations is necessary to capture the correction due to Lee-
Huang-Yang-type quantum fluctuations, as demonstrated in
the 3D case [9,48]. Specifically, we observe that the inclusion
of four-body correlations and a finite p allows us to almost
perfectly reproduce the QMC results found in Ref. [35] in
this regime, highlighting the importance of incorporating the
chemical potential. However, the polaron energy is dominated
by few-body correlations in the strong-coupling regime and
it is currently an open question whether one would need
to include the interboson repulsion beyond the Bogoliubov
approximation to obtain exact agreement with the last point
of QMC for the attractive branch. Certainly, this repulsion
will eventually need to be included for very tightly bound
attractive polarons.

We now turn to the repulsive branch energy, as shown in
Fig. 1(a), where we obtain the energy by finding the peak
of the spectral function at positive energy. While the line
shape of the spectral response plays a small role, we find
that the repulsive polaron energy is quite insensitive to the
Fourier broadening. Similarly to the attractive branch, we
see that our variational results from two- and three-body
correlations have excellent agreement with QMC and pertur-
bation theory in the weak-coupling regime, In(,/noazp) <
—1. Towards the strong-coupling regime, the polaron energy
becomes comparable to the lifetime of the polaron, indi-
cating that the repulsive polaron ceases to correspond to a
well-defined quasiparticle. This results in the small differ-
ence in the corresponding repulsive polaron energies around
In(y/noazp) ~ —1.

In Fig. 2, we show the spectral response obtained from
Fig. 2(a) two-body correlations and Fig. 2(b) three-body
correlations. In both figures we observe that the repulsive
branch gets broadened towards the strong-coupling regime,
indicating a higher uncertainty of the polaron energy and an
associated shorter lifetime. Thus, decay processes including
many-body dephasing [49] and relaxation into the lower-lying
continuum of states dominate in this regime. In Fig. 2(b), we
also observe the emergence of an additional excited state of
the attractive polaron. While the lower attractive branch cor-
responds to a single eigenstate involving the impurity dressed
by up to two excitations of the medium, the upper attractive
branch corresponds to a continuum of states involving the
impurity dressed by at most one excitation, moving with re-
spect to another excitation. Indeed, the upper attractive branch
starts from the ground-state energy of two-body correlations;
however, due to the small density of states at small relative
momentum, the peak appears slightly shifted compared with
the peak in Fig. 2(a).
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FIG. 2. Spectral response of the impurity in the BEC obtained
from (a) two-body correlations and (b) three-body correlations with
= 0. The spectral response for a weakly interacting BEC with u =
0.136ny/m is not included as it is almost identical to that for the
ideal BEC, with slight broadening in the excited attractive branch for
three-body correlations.

It is an interesting and currently open question how the
exact spectral function of the Bose polaron behaves in the
strong-coupling regime. While we have seen that the repul-
sive polaron changes little upon adding a second excitation
of the medium (and therefore it is unlikely to change much
if one could do an exact calculation), we believe that each
extra excitation included in our ansatz will result in an extra
attractive polaron branch, similar to what is seen in the differ-
ence between Figs. 2(a) and 2(b). In the case of an infinitely
heavy impurity in a 3D noninteracting BEC, it was shown
analytically [50] that the attractive polaron spectrum becomes
very smooth at unitarity, and features multiple branches for
positive scattering lengths when there is a bound state. Since
in two dimensions there is always a bound state, it is therefore
reasonable to assume that there will be multiple branches
also in the exact solution, although the precise role of the
boson-boson repulsion would need to be elucidated.

B. Residue

The residue Z quantifies the squared overlap of the interact-
ing state with the noninteracting state. Thus, for the attractive
polaron which consists of only a single state, the residue reads

Z = |ao)?. (15)

For the repulsive branch which corresponds to a continuum
of states, we define the residue as the sum of all states with
positive energy, Z = > JE;=0 |a(()] )|2. We find that this defi-
nition matches well with previous calculations for a single
Bogoliubov excitation [34].

In Fig. 3(a), we display the attractive polaron residue ob-
tained from our variational approach including two-, three-,

N
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FIG. 3. Residue of (a) the attractive Bose polaron and (b) the
repulsive Bose polaron as a function of the coupling strength
In(y/noazp). The blue, purple, and green solid lines show the results
obtained from two-, three, and four-body correlations, respectively,
for the ideal BEC with u = 0. The red dots and gray dash-dotted
line show the results obtained from QMC [35] and perturbation
theory [31], respectively, with u = 0.136ny/m. The purple and green
dashed lines show the results from three and four-body correlations,
respectively, for a weakly interacting BEC with v = 0.136ny/m (for
the attractive polaron obtained from two-body correlations and for
the repulsive polaron, we do not see a visible difference between
= 0and pu = 0.136n/m on this scale).

and four-body correlations. For the case of the ideal BEC, we
observe a clear difference between our results in the weak-
coupling regime, In(,/npasp) > 1. The residue in the case of
two-body correlations remains close to 1, while in the case
of three- and four-body correlations, it appears significantly
lowered. There are two reasons for this: First, the existence
of bound few-body states enhance impurity dressing by the
excitations of the medium, and second the infinite compress-
ibility of the ideal BEC means that the impurity can excite
an arbitrary number of low-energy excitations, thus leading
to the so-called orthogonality catastrophe [11,51,52]. While
this effect cannot be captured within our variational approach
(being limited to few-body correlations), it still suppresses the
residue when considering three- and four-body correlations.
Unlike the case of the polaron energy, we find that the
residue strongly depends on the medium chemical poten-
tial, which changes the compressibility of the BEC. Indeed,
upon including a small chemical potential, we observe in
the weak-coupling regime that the residue obtained from
three- and four-body correlations approaches values closer
to those from two-body correlations, QMC, and perturbation
theory. Most notably, in the weak-coupling regime, the three-
and four-body correlations now match, indicating that they
well describe the leading-order perturbative corrections to the
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mean-field result, similarly to the 3D case [9,48]. This is in
contrast to the QMC results, which appear to overestimate the
residue in this limit. However, in the strong-coupling regime,
the residue is almost completely unaffected by the chemical
potential of the BEC and is instead determined by strong
few-body correlations. These will, in turn, be affected by the
short-range boson-boson repulsion in a manner beyond the
Bogoliubov approximation.

For the repulsive polaron shown in Fig. 3(b), we find that
the result is nearly completely independent of the medium
chemical potential and is insensitive to the number of ex-
citations, unlike the attractive case. However, we see that
our variational results strongly deviate from QMC and per-
turbation theory. This suggests that the metastability of the
repulsive polaron might play a strong role in the behavior
of the spectral weight since this is not accounted for in the
QMC which assumes that the repulsive polaron is an excited
eigenstate. We also note that our calculations yield attrac-
tive and repulsive polaron residues that nearly sum to 1, as
expected, while QMC finds that substantial spectral weight
shifts elsewhere in the spectrum. This discrepancy warrants
additional future studies.

C. Effective mass

Thus far, we considered states with zero total momen-
tum, which is relevant for the spectrum at zero temperature.
However, our approach also contains information about the
behavior at small momentum p and thus the dynamical re-
sponse of the system. For the case of the attractive polaron,
where there is a well-defined quasiparticle, the polaron energy
can be expanded as

p2

+0(p"), (16)
2m*

E(p) =E0) +

where m* is the polaron effective mass. This modified mass
arises from the interactions between the impurity and the
medium, which affects the mobility of the impurity. We cal-
culate the polaron effective mass using our variational ansatz,
as outlined in Appendix C.

Figure 4 shows the effective mass of the attractive polaron
obtained from two- and three-body correlations. Similarly to
the residue of the attractive polaron in the weak-coupling
regime, the effective mass obtained from three-body correla-
tions in the case of the ideal BEC appears substantially larger
than the results from two-body correlations. This signals en-
hanced impurity dressing by excitations of the medium, which
can be compensated by including weak interactions in the
BEC (corresponding to a small chemical potential). Doing this
is seen to yield a match with perturbation theory in the weak-
coupling regime and a qualitative agreement with QMC for
In(\/noazp) 2, 4. Towards the strong-coupling limit, the ef-
fective mass in our variational ansatz converges to m* = (N +
1)m, where N is the number of bosons included in the evalu-
ations, and thus cannot capture the dressing by many bosons
seen in the QMC. However, while our ansatz does not describe
the ground state in this regime, our calculation might instead
effectively describe an excited metastable polaron with a spec-
tral weight greater than that of the true ground-state polaron

m/m*

[
10 12 14

-2 0 2 4 6 8
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FIG. 4. Effective mass m* of the attractive Bose polaron as a
function of the coupling strength In(,/nyazp). The blue and purple
lines show the results obtained from two- and three-body correla-
tions, respectively, for the ideal BEC with u = 0. The red dots and
gray dash-dotted line show the results obtained from QMC [35]
and perturbation theory [31], respectively, with u = 0.136n,/m. The
purple dashed line shows the results from three-body correlations for
a weakly interacting BEC with . = 0.136n,/m (the corresponding
result for two-body correlations at this p is not included as it is
indistinguishable from the result for © = 0 on this scale).

[whose residue vanishes in this regime according to QMC, as
shown in Fig. 3(a)].

IV. CONCLUSION

In conclusion, we extensively examined the properties of
the 2D Bose polaron using a variational approach that incor-
porates up to three excitations of the medium. We showed that
considering four-body correlations and a weak BEC chemi-
cal potential is crucial to achieve agreement with the results
obtained from QMC calculations. Particularly in the weak-
coupling regime, our variational approach, accounting for
four-body correlations in the presence of a weakly interacting
BEC, exhibits excellent agreement with QMC results for the
polaron energy. However, as we approach the strong-coupling
regime, discrepancies arise between the energy values ob-
tained from our variational approach and QMC due to strong
few-body correlations. Furthermore, we found that the residue
and effective mass of the attractive polaron strongly depend on
the level of correlations we incorporate in our ansatz, as well
as the interactions within the BEC. However, the residue of the
repulsive branch is remarkably insensitive to the number of
Bogoliubov excitations and appears to be strongly influenced
by the metastable nature of the repulsive polaron.

Our results can potentially be probed in ultracold atomic
gas experiments, similarly to how the 2D Fermi polaron was
previously investigated [53-55]. The Bose polaron may also
be investigated in 2D semiconductor microcavities with exci-
ton polaritons (bound electron-hole pairs strongly coupled to
light). Here, exciton-polariton “impurities” in a given circular
polarization are dressed by a medium of exciton polaritons
in the opposite polarization [32]. Indeed, this intriguing ex-
tension of traditional polaron physics was recently realized
in a MoSe, monolayer [56]. While the interplay between
polaron physics and the drive and dissipation present in these
systems is still an open question, these emerging experimental
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platforms offer exciting opportunities to probe and further
investigate the properties and behavior of the Bose polaron.
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APPENDIX A: COUPLED INTEGRAL EQUATIONS

The stationary condition (dW|(H — E)|W) = 0 with respect to the variational parameters oG5 gy O ks X ok Yoo Vo and

ik, Yields seven coupled equations [9,11]

Eag = gJ/noyo — 8 ), vk
k

(E — ex — Ex)ag

= gucyo + 8/MYk—8 Y Vqla-

q

(E — Exx,)ok,k, = 8V, Uk, + Vi Uk, )8/ M0V ks »

(E — Ei kok; )0k Kok =

gV, Uiy + Vioks Uk, + Viiks Uk, )

(E = vo)yo = gv/nocto + 8 ) ki,
k

(E - € —vo — Ex) ¥ = 8v/noo — gukato + gZ Uk Ok 5

d
(E ~ Ktk T Y0

— Ex, — Ei) Vilo = 83/M0%k, — 8(0t, Uk, + i lik,) + gz Ok Kok Uk »

K’

(AD)

k3

where Ey x, = Ex, + Ex, + €k, 4k, and Ex ik = Ex, + Ex, + Ei; + €14k, +k; -
Using the first four equations to remove the « parameters, we obtain the reduced coupled equations

TN E, 0y = —Vo + \/_Z <

Uk

T UE - B, KW = x/n_0<

E—ék—Ek

Uk + no
E) T E e —EX

A Uk VqYig
Ek E ) Z E — €k — Ek ’

kq
ukuqu vkvqu
3 (e )

UqVikq
rumy (E —
q

T YE — Ex, — Ex,, k1 + ko) Yk, =
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E — Exx,

i

. VqVkq
E — €k —Ek ’

Vo Vk, Vi, ) UK Vi Y0
E — Ek]kz E — Ekz — Ekz E — Ek] — Ek]

Uk, VqVkoq

Uk, UqVkaq
+
Z (E Ex, koq

where we define the medium 7 matrix 7 (E, K)

E - Ek2>} + (k; < kz)], (A2)

2p2

2D (E n d) m I —FE Z u,zl n 1
— eg—€) ——In[— ) — .
PR T 4g 7 e —~\E—Eq—6rq  26q—E

We can obtain the quasiparticle properties from either of Eqs. (A1) or (A2). In our present work, the attractive and repulsive
polaron energy and residue for two- and three-body correlations are obtained from Eq. (A1), while the attractive polaron energy
and residue for four-body correlations are obtained from Eq. (A2). The attractive polaron energy and residue in the case of two-
and three-body correlations can also be obtained from Eq. (A2), and we have checked that the two cases yield exactly the same
results in the limit of A — oo and vy — o0.

T E, k) =

(A3)
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APPENDIX B: RESIDUE
To evaluate the residue of the attractive polaron from Eq. (A2), we define

gZ Zk Uk 82 Zk’ Uy Ok’ £ gz Zk3 Ok koks Uks
- k k;

s k = s =
E — vy E — ¢l — vy — Ex E—¢l 4, —vo—Ex —E

1 ky

& =

, (BI)

which remain finite in the limit vy — oco. Assuming that the variational parameters are normalized according to (W|W¥) = 1, the
residue of the attractive polaron is given by Z = |ag|*. Carrying out the renormalization procedure, this takes the form

2 2 2
[ /nobo vk /Moo vk ux€o + /Mokk — 3y Vabkq
Z_< E -2 E ) [( E _ZT) +Z( E —ex — Ex

k k k

N Z (uklisz + i, bk, + \/%Ek]b)z n Z (141<|r§1(2k3 + uk, &k, + uk3§k|k2) 50 n Z Ek Z Sk,k2:| . B2)
Kyloks

E — E E — E
kika kik, kikoks Kk

APPENDIX C: EFFECTIVE MASS

To evaluate the polaron effective mass, we extend our variational ansatz to include a finite momentum p

o) = |+ 2l EEPICHES ST ED W (IR
k

klkz

where we consider the terms up to three-body correlations for simplicity. The impurity momentum breaks rotational symmetry
and the variational parameters now depend on the angle between the total momentum and each wave vector of the Bogoliubov
excitations. Taking the stationary condition, we obtain the modified coupled integral equations

(E(p) — ep)ag” = g/movy” — gy vn?,
k

(E(p) — ex—p — E)ay” = guyy” + gy/mon .
(E(p) — Ex, — Ex, — 6k1+k2—p)a|((p1)(2 = g(ylif”ukz + J/(p) ),
(E(p) — 63 —0)% ® = ¢ /n a(p) + gZuka

(Ep) = € = v — BJRY = gv/moey?’ — goee” +8 ) meony, (€2)
k/
where E(p) is the energy dispersion of the Bose polaron with a total momentum p.
For a small momentum p, the energy dispersion can be expanded as

2
E(p) = P

(C3)

where m* is the polaron effective mass. In principle, the effective mass can be obtained by solving Egs. (C2) and (C3) at
various momenta. However, this procedure is numerically cumbersome due to the absence of rotational symmetry. We avoid
this problem by employing the perturbative approach introduced in Ref. [57] (see also Ref. [11]). Since the coupled integral
equations in Eq. (C2) are all linear, they can be expressed as the eigenvalue problem

X(E(p), pln) =0, (C4)

where |1) denotes the ordered set of variational parameters ?’, o, al({pz(z, weP, and %P, Without loss of generality, we

assume that the momentum p is oriented along the x axis. The energy dispersion of the ground-state polaron corresponds to the
zero-crossing of the lowest (or highest, depending on the sign convention of the operator X)) eigenvalue of X. Assuming that the
momentum p is small, the Taylor series of X up to O(p?) reads

2

N N N 2 1

X(E(p),p) =Xo + pX, + 5 (pr + %XE> +0(p), (CS)
where we define the operators

Xo =X(E(0),0), X X X rX ¢, = X (C6)
0 = K b 2 = = 5 E g
! 3p p= i 3P2 p= oE p=0
E=E(©0) E=E(0) E=E(0)
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Treating the operators proportional to p in Eq. (C5) as small perturbations to Xy, i.e., the coupled integral equations for a p = 0
impurity, the lowest eigenvalue A(p) of X (E(p), p) can be expressed as

Mp) = Ao+ Aip+ dap® + O(p). (C7)

The first- and second-order corrections A; are calculated from perturbation theory

o= 01X, =0, (C8)
1 5 1, [(nD1X,1n @) 2
N ()} (0) § : P
)"2 = ) <7’) |<pr + m*XE) |)’] ) + £ AE)O) _ )\4((),) s (C9)

where Ag ) and In) denote the ith eigenvalue and its corresponding eigenvector of X,, and i = 0 indicates the ground state.
Recalling that the ground-state energies of the polaron with p = 0 and p # 0 are given, respectively, by the zero-crossing of the
lowest eigenvalues of Xy and X (E(p), p), we can set xg” = 0 and A(p) = 0. In calculating the first-order correction A; = 0, we

take the s-wave average of the expectation value. Thus, we conclude that A, = 0 and obtain the inverse effective mass

1 . _ 2 NN .
— = "1%eln”) ‘[Z X - <n<°>|xpp|n<°>>}

>0 70

= V1R ) 201 918,0%5 0%, 1n @) — (118,10 )],

where 0 =1 — [n@)(n©@).
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