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Recently, anomalous Floquet topological phases without static counterparts have been observed in different
systems, where periodically driven models are realized to support a winding number of 1 and a pair of edge
modes in each quasienergy gap. Here, we focus on cold atomic gases in optical lattices and propose a driving
scheme that breaks rotation symmetry but maintains inversion symmetry of the instantaneous Hamiltonian, and
discover a type of anomalous Floquet topological phase with a winding number larger than 1. By analyzing
the condition of band touching under the constraint of symmetries, we map out the phase diagram exactly by
varying the driving parameters and discuss the quasienergy spectra of typical topological phases, which can
present multiple pairs of edge modes within a single gap. Finally, we suggest to characterize the topology of
such phases by detecting the band inversion surfaces via quench dynamics.
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I. INTRODUCTION

Since the discovery of the quantum Hall effect [1] with
quantized Hall resistance plateaus in two-dimensional (2D)
electron systems in 1980, the study of topological properties
of condensed matter systems has aroused extensive interests.
This wave of research has led to the discovery of versatile
topological systems, including topological insulators [2–5],
topological superconductors [5–7], Weyl semimetals [8,9],
and nodal line semimetals [10,11], etc. The topological na-
ture of such states is characterized by topological invariants.
For a noninteracting 2D lattice system without time-reversal
symmetry, the topological invariant is the well-known Chern
number [12], which not only captures the topology of the
bulk spectrum, but also corresponds to the net number of
one-dimensional topologically protected edge modes at the
system boundaries, i.e., the bulk-boundary correspondence
[13]. Recently, the exploration of topological phases with a
large Chern number (higher than 1) has attracted much atten-
tion [14,15]. On the one hand, it is suggested that a fractional
filling of a topological phase with a large Chern number will
lead to new topological states [16,17]. On the other hand, a
realization of such a large-Chern-number phase can improve
the performance of topological quantum devices and may be
used for multichannel quantum computing. To date, several
topological materials with a large Chern number have been
reported in static systems at thermal equilibrium [18,19].

Another intriguing direction taken in the search for exotic
phases is Floquet engineering, where a system is subjected
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to periodical driving and stroboscopic measurement. Novel
topological phenomena without a static counterpart have been
predicted [20–25], such as the anomalous Floquet topolog-
ical (AFT) phase [22,25], where the Chern numbers of all
quasienergy bands are zero but robust edge modes exist
in the gaps. A modified bulk-boundary correspondence is
established with the winding number defined in the time-
momentum space [22] to characterize the topology of the
quasienergy gaps. Experimental simulation of such exotic
anomalous Floquet topological systems can be found in
acoustic systems [26], photonic crystals [27,28], and cold
atomic gases [29].

Among these physical platforms, the quantum nature
and high controllability of atomic gas make it a powerful
candidate for studying Floquet topological phases. Much the-
oretical [21,23,24] and experimental progress [29,30] has
been reported in this direction. Notable examples include the
AFT phase with a large Chern number [23], where the wind-
ing numbers of different gaps are opposite to each other, and
type-II AFT phases [24,30], which cannot be characterized
by winding numbers. In all these cases, a general principle
is established, stating that the net number of edge states in a
quasienergy gap corresponds to the winding number associ-
ated with that gap [22]. In that sense, the winding number in a
Floquet system plays an equivalent role as the Chern number
in a static system. Therefore, the search for topological quan-
tum phases with a large winding number in periodically driven
systems has great value both conceptually and in application
aspects, but has not yet been discovered.

In this paper, we propose driving schemes for a 2D two-
band model realized by a cold atomic gas with synthetic
spin-orbit coupling in a square Raman lattice [31–35], and
find topological phases with winding numbers ±2. Compared
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FIG. 1. (a) Illustration of the 2D tight-binding model with
nearest-neighbor hopping and spin-orbit coupling (blue arrows), and
on-site magnetic field (red arrow). (b) Parameter selection for dif-
ferent types of Hamiltonians, HAQH, Hx , and Hy. (c) The two-step
quench protocol with period T .

with the scheme to achieve a Floquet topological phase with
a large Chern number [23], our driving protocol breaks C4

rotational symmetry [31,32] and consequently induces more
band-touching points. By tuning the driving parameters and
mapping out the phase diagram, we find multiple Floquet
topological phases with large winding numbers and multiple
pairs of robust edge modes in a single gap. Finally, we propose
to use the stroboscopic time-averaged spin textures in the
quench dynamics to characterize the topological nature of
different phases.

II. TWO-DIMENSIONAL RAMAN LATTICE
UNDER PERIODIC DRIVING

We consider a noninteracting 2D model on a square lat-
tice with spin-orbit coupling and an on-site magnetic field,
as illustrated in Fig. 1(a). This model has been realized by
spin-orbit coupled ultracold atoms trapped in a square optical
Raman lattice [31–35]. Within the tight-binding approxima-
tion, the Bloch Hamiltonian H(q) = h(q) · σ can be expressed

as [34]

H(q) = (
mx + 2t y

so sin qy
)
σx + (

my + 2t x
so sin qx

)
σy

+ (
mz − 2t x

0 cos qx − 2t y
0 cos qy

)
σz, (1)

where q = (qx, qy) is the quasimomentum, t j
0 (t j

so) denotes the
spin-conserved (spin-flip) hopping coefficient with j = x, y
the spatial dimensions, mi is the Zeeman constant, and σi is the
Pauli operator with i = x, y, z in spin space. A special example
of this Hamiltonian has been discussed in Refs. [31–33] with
mx = my = 0, t x

0 = t y
0 = t0, and t x

so = t y
so = tso, such that the

model reduces to an anomalous quantum Hall (AQH) model

HAQH(q) = hAQH(q) · σ

= 2tso sin qyσx + 2tso sin qxσy

+ (mz − 2t0 cos qx − 2t0 cos qy)σz. (2)

The topological nature of this static system is charac-
terized by the first Chern number Cn = i

2π

∫
FBZ dqxdqy

Tr(Pn[∂qx Pn, ∂qy Pn]), where Pn(q) = |ψn(q)〉 〈ψn(q)| and
|ψn(q)〉 are eigenstates of the nth band, and the integration is
conducted within the first Brillouin zone (FBZ) [36,37]. By
changing the relative phase of the two orthogonally polarized
components of the laser [34], two other topologically trivial
systems can be obtained with effective Hamiltonians

Hx(q) = hx(q) · σ

= mxσx + 2t x
so sin qxσy

+ (
mz − 2t x

0 cos qx − 2t y
0 cos qy

)
σz,

Hy(q) = hy(q) · σ

= myσy + 2t y
so sin qyσx

+ (
mz − 2t x

0 cos qx − 2t y
0 cos qy

)
σz. (3)

Typical choices of the parameters for the three cases are
schematically shown in Fig. 1(b).

For a time-dependent Hamiltonian with period T , the
long-time dynamics is described by a periodic evolution op-
erator (with h̄ = 1) UT = T exp[−i

∫ T
0 H (t )dt] with T the

time-ordered operator. The quasienergy εF of the periodically
driven system is given by the the eigenvalue of the effective
Floquet Hamiltonian HF , which is defined by UT as HF ≡
i logUT /T . The nontrivial winding of the quasienergy spec-
trum will lead to the appearance of edge states. However, since
the quasienergy spectrum is repeated in energy with period
2π/T , the Chern number alone is not enough to determine
the number and chirality of the edge states. For instead, a new
topological invariant, the winding number W , is introduced as
[22]

Ws =
∫

dtdqxdqy

8π2
Tr

(
u−1

s ∂t us
[
u−1

s ∂qx us, u−1
s ∂qy us

])
, (4)

where s = 0 or π labels the gap in the quasienergy spectrum,
and the modified time-evolution operator us(q, t ) is

us(q, t ) =
{

U (q, 2t ), t ∈ [0, T/2),

e−iHs (q)2(T −t ), t ∈ [T/2, T ),
(5)

with the bulk time-evolution operator U (q, t ) and Hs(q) =
i
T log−s[U (q, T )]. Notice that the s dependence of us in Eq. (4)
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is rooted from the choice of branch cut e−is of the logarithmic
function log−s in the definition of Hs [22].

If one periodically drives the parameters of a topologically
trivial system, it is possible to obtain an effective Floquet
Hamiltonian with a nontrivial topological nature. For exam-
ple, in the AFT phase [26–29], the winding numbers W0 and
Wπ associated respectively with the gaps at ε = 0 (0 gap) and
ε = π/T (π gap) are both 1 (or −1), leading to quasienergy
bands with zero Chern number but topologically protected
edge states. Alternatively, if one drives the parameters of a
topological system, a new type of topological phase can be
generated, featuring opposite winding numbers W0 = −Wπ =
±1 in the 0 and π gaps [23,24,30]. This phase, later referred
to as the large-Chern-number AFT phase, thus acquires a
Chern number of ±2, and the edge modes in the 0 and π

gaps possess opposite chirality. However, since this driving
scheme and the resulting Floquet Hamiltonian inherit the C4

symmetry of the original static system, the winding of the
quasienergy spectrum is restricted such that the absolute value
of the winding numbers cannot exceed 1.

For simplicity, we consider a two-step quench protocol
[Fig. 1(c)],

h(q, t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1(q) = (
mx1 + 2t y

so1 sin qy, my1 + 2t x
so1 sin qx,

mz1 − 2t x
01 cos qx − 2t y

01 cos qy
)
,

t ∈ [mT, mT + T1),

h2(q) = (
mx2 + 2t y

so2 sin qy, my2 + 2t x
so2 sin qx,

mz2 − 2t x
02 cos qx − 2t y

02 cos qy
)
,

t ∈ [mT + T1, (m + 1)T ),
(6)

where T1 < T is within one period, and m is an integer.
This simple form of driving is chosen to give analytic results
of the effective Floquet Hamiltonian and the band-touching
conditions. For a general choice of driving protocol, one can
rely on a numerical simulation to obtain qualitatively similar
conclusions.

Depending on the value of the parameters, the instanta-
neous Hamiltonians h1 and h2 can be chosen from the three
types of HAQH, Hx, and Hy. Using the notation of h1-h2, the
driving protocol of Eq. (6) can be categorized as follows:

(I) Hx-Hx, orHy-Hy,

(II) HAQH-HAQH,

(III) Hx-Hy,

(IV) Hy-HAQH, orHx-HAQH.

The Floquet Hamiltonian obtained by class-I driving is topo-
logically trivial. The conventional AFT phase (with Chern
number 0) and the large-Chern-number AFT phase (with
Chern number ±2) can be realized in class-III [29] and
class-II [23,30] systems, respectively. In particular, the driving
scheme of class-II does not destroy the symmetry of the origi-
nal static system, hence the Floquet effective Hamiltonian also
inherits the same symmetry and can only support a winding
number of ±1 [24]. In contrast, class-III and class-IV schemes
are composed of static models with different symmetries,
and the resulting Floquet Hamiltonian can have a different
symmetry than the static model. As we will see below, the

change of symmetry can lead to a rich phase diagram with
exotic topological phases.

III. TOPOLOGICAL PHASE DIAGRAM

The topological phase transition in a Floquet system is ac-
companied by the closing and reopening of quasienergy band
gaps. For the periodically driven two-band system considered
here, the spectrum is periodic in the quasienergy domain and
the band touching can take place at quasienergies εF = 0
and π/T . Under the two-step quenching protocol, the evo-
lution operator reads UT (q) = e−ih2(q)·σT2 e−ih1(q)·σT1 with T2 =
T − T1. Using the Euler form of the Pauli matrix, e−ih·σt =
cos (|h|t ) − i sin (|h|t )h · σ/|h|, we can obtain the Floquet ef-
fective Hamiltonian HF = hF · σ with hF = εF r/|r| and

cos (εF T ) = cos |T1h1| cos |T2h2|
− h1 · h2

|h1| · |h2| sin |T1h1| sin T2h2, (7)

r = h1

|h1| sin |T1h1| cos |T2h2|

+ h2

|h2| sin |T2h2| cos |T1h1|

− h1 × h2

|h1| · |h2| sin |T1h1| sin |T2h2|. (8)

By substituting the quasienergy εF = 0, π/T at the band-
touching point into Eq. (7), we get the band-touching
condition

h1 · h2

|h1 · h2| = ±1, and T1|h1| ± T2|h2| = mπ, (9)

with m an even (odd) integer for εF = 0 (π/T ), or

Tl |hl | = mlπ, (10)

where ml=1,2 are integers satisfying m = m1 + m2 being even
for εF = 0 and odd for π/T .

The Chern number of the lower quasienergy band can be
obtained by C =W0 − Wπ = 1

4π

∫
BZ d2q hF

|hF |3 · (∂qx hF ×∂qy hF )
[38], while the Chern number of the upper band satisfies
C′ + C = 0. The Chern number takes an integer value and
changes at the phase boundary by

�C =
∑

k

χ (qk ), (11)

where χ (qk ) = sgn[(∂qx hF × ∂qy hF ) · δhF ]|q=qk
and qk is the

kth band-touching point. By substituting the condition |r|2 +
cos2 (εF T ) = 1 guaranteed by the unitarity of UT (q), the ex-
pression hF = εF r/|r|, and the band-touching condition, we
get [39]

χ (qk ) = sgn
[(

∂qx r × ∂qy r
) · δr

]∣∣
q=qk

. (12)

In the following, we discuss the phase diagram for the class-III
and class-IV driving schemes with the aid of the aforemen-
tioned topological invariants.

For the class-III driving scheme Hx-Hy, the two instanta-
neous Hamiltonians can be written without loss of generality
as

h1 = (
mx, 2t x

so sin qx, mz1 − 2t x
01 cos qx − 2t y

01 cos qy
)
,

h2 = (
2t y

so sin qy, my, mz2 − 2t x
02 cos qx − 2t y

02 cos qy
)
. (13)
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For simplicity, in the following we take mx = my = 0 and
t j
01 = t j

02 = t0. According to Eq. (9), we conclude that
the band-touching points must locate at the four high-
symmetry points 
(α, β ) = {
(0, 0), X1(0, π ), X2(π, 0),
M(π, π )} with α, β = 0, π . Using Eq. (8), we have
∂qx r(α, β ) = 2e−iα (−Ax, Bx, 0), ∂qy r(α, β ) = 2e−iβ

(By, Ay, 0), and r(α, β ) = (0, 0, rz ), where Ax =
− t x

sohz
1

|h1|·|h2| sin |T1h1| sin |T2h2|, Ay= t y
sohz

2
|h1|·|h2| · sin |T1h1| sin |T2h2|,

Bx = t x
so

|h2| sin |T2h2| cos |T1h1|, By = t y
so

|h1| sin |T1h1| cos |T2h2|,
and rz = sin (T1hz

1 + T2hz
2). Furthermore, from Eq. (9)

we know that |T1hz
1 + T2hz

2| = mπ , thus δrz =
(−1)m sgn[δT1hz

1 + δT2hz
2]. With that, Eq. (12) can be reduced

to

χ (α, β )III = (−1)m+1e−i(α+β ) sgn[ f ]sgn[δT1hz
1 + δT2hz

2],
(14)

where f = AxAy + BxBy. When m is even or odd, we have
χ (α, β )III = �W0 or −�Wπ , respectively. Here, �W0 and
�Wπ are respectively the change of winding numbers at εF =
0 and π/T by crossing the phase transition.

Another kind of band-touching point is determined by
Eq. (10). From Eqs. (8) and (10), we have

∂q j r(qc) = (−1)m1+m2

[
T1∂q j |h1(qc)| h1(qc + δq j )

|h1(qc + δq j )|

+ T2∂q j |h2(qc)| h2(qc + δq j )

|h2(qc + δq j )|
]
,

δr = (−1)m1+m2 [δT1h1(qc) + δT2h2(qc)], (15)

where j = x, y and qc denotes the band-touching point satis-
fying Eq. (10). If m1 �= 0 and m2 �= 0, hl (qc + δqx ) = hl (qc +
δqy) = hl (qc), the vectors ∂qx r(qc), ∂qy r(qc), and δr(qc) are all
in the same plane spanned by h1(qc) and h2(qc). Thus, one
can easily get χ (qc) = 0 [39]. On the other hand, if m1 =
0, one has h1(qc1

± + δqx ) �= h1(qc1
± + δqy), and the vectors

∂qx r, ∂qy r, and δr are not all in the same plane. The band-
touching points are then given by qc1

± = (α,±qc1
y ) with qc1

y =
arccos mz1−2t x

01eiα

2t y
01

. The case of m2 = 0 can be analyzed analo-

gously, leading to the band-touching points qc2
± = (±qc2

x , α)

with qc2
x = arccos mz2−2t y

02eiα

2t x
02

. Combining Eqs. (12) and (15),
we obtain

χ (±qc1
x , α)III = (−1)m2 sgn

[
t x
sot y

sot x
01eiα

]
δT2,

χ (α,±qc2
y )III = (−1)m1 sgn

[
t x
sot y

sot y
02eiα

]
δT1. (16)

When m2 is even (odd), χ (±qc1
x , α)III = �W0 (−�Wπ ). If m1

is even (odd), we get χ (α,±qc2
y )III = �W0 (−�Wπ ). To sum

up, we can determine the phase diagram.
In Fig. 2, we present a typical example of the topologi-

cal phase diagram for a class-III driving system by varying
T1 and T2, where the in-plane Zeeman fields mx = my = 0,
the spin-orbit coupling intensities t x

so = t y
so = 0.2, the hopping

coefficients t x
01 = t x

02 = t y
01 = t y

02 = 0.4, and the out-of-plane
Zeeman fields mz1 = 0.6 and mz2 = −0.8. To get a connection

with the cold atom experiment, the recoil energy Er = h̄2k2
0

2m of
the optical lattice is used as the natural energy unit, where k0

is the wave number of lattice beams and m is the atomic mass.

FIG. 2. The phase diagram of a Floquet system under the class-
III driving scheme. Red, blue, and pink lines are the phase boundaries
determined by Eq. (9). The red lines correspond to the band-touching
points at the 
 point, the blue lines correspond to the M point, and
the pink lines to the X point. The white and black lines are the
phase boundaries given by Eq. (10), and are associated with the

band-touching points qc2
± = (±qc2

x , π ) with qc2
x = arccos

mz2+2t y
02

2t x
02

and

qc1
± = (0,±qc1

y ) with qc1
y = arccos

mz1−2t x
01

2t y
01

, respectively. The solid

lines indicate that the Floquet bands close at the 0 gap (m is even),
and the dashed lines indicate that the Floquet bands close at the π gap
(m is odd). The colors used to fill different regions denote different
Chern numbers. The parameters of the two instantaneous Hamilto-
nians considered here are mx = my = 0, t x

so = t y
so = 0.2, t x

01 = t x
02 =

t y
01 = t y

02 = 0.4, mz1 = 0.6, and mz2 = −0.8 in units of Er .

Different topological phases characterized by (C,W0,Wπ ) are
shown. A stark observation is that there exist phases (e.g., the
one labeled by “C”) with winding numbers as high as ±2,
which thus lead to a Chern number up to ±4. These exotic
phases are induced by the new band-touching points given by
the condition Eq. (10). In addition, we also find AFT phases
(labeled by “A”) and large-Chern-number AFT phases (“B”).
It is worth noting that here we assume the same hopping rates
in the x and y directions, i.e., t0

x = t0
y . Under this condition,

quasienergy bands touch at the high-symmetry points X1 =
(0, π ) and X2 = (π, 0) simultaneously at the purple line of
Fig. 2, leading to a topological phase transition with a winding
number change of 2. If the geometric symmetry is broken
with t0

x = t0
y , this purple topological transition line will split

into two lines corresponding respectively to X1 and X2, with a
topological number change of only 1 [40]. On the other hand,
a winding number change of 2 can also occur even when the
lattice symmetry is broken. For example, at the black or white
dashed transition lines of Fig. 2, Floquet bands touch at qc1

± or
qc2

± simultaneously, owing to the symmetry of the quasienergy
spectra. Thus, the winding number change is always 2 regard-
less of the geometric symmetry of the underlying lattice.
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FIG. 3. Structure of quasienergy spectrum for (a) the AFT phase
and (b) the Floquet topological phase with |C| = 2. (c) Quasienergy
spectrum of the Floquet topological phase with large winding num-
bers |W0| = |Wπ | = 2 under open boundary conditions. The edge
modes with positive (negative) chirality are represented in red (blue).
Dashed and solid lines represent the edge modes located at different
boundaries. The durations of two-step driving are T1Er = 2.95 and
T2Er = 1, and other parameters are the same as in Fig. 2.

To understand the mechanism of the topological phase
with a large winding number, it is instructive to compare
with the class-II driving scheme under which this exotic
phase cannot be found [24]. For class-II driving HAQH-HAQH,
we conclude from Eq. (9) that the band-touching points
also locate at the high-symmetry points 
(α, β ). Since the
instantaneous Hamiltonians both have C4 symmetry with
t x
so1 = t y

so1 and t x
so2 = t y

so2, we find Ax = Ay and Bx = By,
and χ (α, β )II = (−1)m+1e−i(α+β ) sgn[δT1hz

1 + δT2hz
2]. On the

other hand, Eq. (10) does not bring other new band-touching
points as restricted by C4 symmetry. The symmetry require-
ment thus limits the choice of topological number, so that
the absolute value of the winding number cannot be greater
than 1, i.e., |W0/π | � 1. It is also worth noting that class-II
driving also cannot produce the AFT phase with C = 0 and
W0 = Wπ = 1 [30], as shown in Fig. 3(a), but can give a phase
with a large Chern number C = 2 and W0 = −Wπ = 1, as
shown in Fig. 3(b).

For the class-IV driving scheme Hy + HAQH or Hx +
HAQH, we can employ a similar analysis on the band-
touching points to map out the phase diagram. As an example,
we consider the Hy + HAQH scheme with instantaneous
Hamiltonians,

h1 = (
2t y

so sin qy, my, mz1 − 2t x
0 cos qx − 2t y

0 cos qy
)
,

h2 = (
2tso sin qy, 2tso sin qx, mz2 − 2t0 cos qx − 2t0 cos qy

)
,

(17)

0 0.5 1 1.5 2

-1

0

1

2

FIG. 4. Topological invariants of Floquet topological phases
driven by a class-IV driving scheme Hy-HAQH. The red dashed
(blue solid) line represents the winding number associated
with the 0 gap (π gap). Here, Hy(q) = 2t y

so sin qyσx + myσy +
(mz1 − 2t x

0 cos qx − 2t y
0 cos qy )σz with (t y

so, t x
0 , t y

0 , my, mz1) = (0.2,

0.4, 0.4, 0, −0.8)Er , and HAQH(q) = 2tso sin qyσx + 2tso sin qxσy +
(mz2 − 2t0 cos qx − 2t0 cos qy )σz with (tso, t0, mz2 ) = (0.2, 0.4,

0.6)Er . The duration of the second phase is fixed at T2 = 0.9/Er .

and parameters my = 0, tso = t y
so, t x

0 = t y
0 = t0, and mz1 �=

mz2. The band-touching points given by Eq. (9) are still the
highly symmetric points 
(α, β ), and the ones determined by

Eq. (10) are qc
± = (±qc

x, α) with qc
x = arccos mz1−2t y

0 eiα

2t x
0

. The
change of topological numbers χ (qk ) caused by the closing
and reopening of Floquet bands at the band-touching point qk
can be obtained from Eq. (12). In Fig. 4, we show the winding
numbers of the Floquet topological phases encountered by
changing T2 with a fixed T1 = 0.9/Er . Notice that the winding
number of the π gap can reach 2.

IV. QUASIENERGY SPECTRUM
AND TOPOLOGY DETECTION

For a static system, a state with a large Chern number can
be characterized by its novel spectrum of the lowest band,
which can host multiple pairs of in-gap edge modes. How-
ever, for a Floquet system with infinite numbers of duplicated
quasienergy bands, a large Chern number does not guarantee
the existence of multiple in-gap modes. Owing to the exis-
tence of a π gap at εF = π/T and the identity C = W0 − Wπ ,
it is possible for a phase with a Chern number 0 or 2 to have
a unit winding number and a single pair of in-gap modes
for all gaps. In Figs. 3(a) and 3(b), we show the spectra of
an AFT phase (with C = 0) and a large-Chern-number AFT
phase (with C = 2) under an open boundary condition, and
find that the two cases both have only one independent edge
mode within each gap. As a comparison, the topological phase
with a large winding number has a very different quasienergy
spectrum. In Fig. 3(c), we present the quasienergy spectrum
for a system under class-III driving, with parameters chosen
as in Fig. 2 and durations T1Er = 2.95, T2Er = 1. The choice
of parameters is within the red region labeled by “C” with
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FIG. 5. (a) The z component of the equivalent magnetic field
and (b) the Floquet band structure of the “C” phase. (c)–(e) The
stroboscopic time-averaged spin textures. The solid (dotted) lines
represent BISs in the 0 gap (π gap). The parameters used are the
same as in Fig. 3(c).

topological numbers (C,W0,Wπ ) = (4, 2,−2). Obviously
there are two pairs of in-gap modes with the same chirality
within each gap, in exact correspondence to the value of W0,π .

The nontrivial band topology of the Floquet topological
phase can be characterized by mapping the band inversion
surfaces (BISs) [41,42], which are embodied in the dynam-
ical spin pattern of momentum space by quenching from an
initially fully polarized state [34,35]. For the system we are
considering, BISs are rings in quasimomentum space satisfy-
ing hz

F (q) = 0. In Fig. 5(a), we plot the z component of the
equivalent magnetic field hF (q) of the Floquet band for the
“C” phase with large winding numbers, where the BISs in the
0 gap (π gap) are denoted by solid (dotted) lines. For example,
the BIS (dotted line) lying closest to the 
 point corresponds
to the innermost band-touching points located in the π gap,
while the BIS (solid line) closest to the M point corresponds
to the band-touching points located in the 0 gap and at the
corners of the Brillouin zone, as can be seen in Fig. 5(b).

To reveal the BISs in experiments, we propose to start from
a fully spin-polarized state |↑〉 and observe the time evolu-
tion after quenching to the phase about to be detected [30].
The BISs are formed by the points satisfying {q|〈σi〉 = 0,∀i},
where 〈σi〉 is the stroboscopic time-averaged spin texture with

〈σi〉 = lim
N→∞

1

N

N∑
n=0

〈σi(q, t = nT )〉. (18)

For the C phase of most interest, we show the stroboscopic
time-averaged spin textures in Figs. 5(c)–5(e), from which
four BISs, two 0 BISs and two π BISs, can be clearly ob-
served. The topological number ν of each BIS is determined
by the winding of the dynamic field g(q) = (gy, gx ) along the
BIS [41], where gi = −∂q⊥〈σi〉/Nq with q⊥ being the momen-
tum perpendicular to the BIS and pointing from hz

F < 0 to
hz

F > 0, and Nq denotes the normalization factor. The winding
numbers W0,π associated with different gaps can be calculated
by summing over ν’s of the BISs located therein. Therefore,
through the stroboscopic time-averaged spin textures, we can
conclude that the topological numbers of both 0 BISs are
+1, and the topological numbers of both π BISs are −1,
thus leading to the topological numbers of the C phase as
(C,W0,Wπ ) = (4, 2,−2).

V. CONCLUSION

We propose to realize Floquet topological phases with a
large winding number (higher than 1) in periodically driven
systems. By considering a two-step driving scheme in a two-
dimensional model with spin-orbit coupling and a Zeeman
field, we calculate the quasienergy spectrum and analytically
obtain the locations of band-touching points for different
choices of instantaneous Hamiltonian parameters. We find
that if the driving scheme is composed of instantaneous
Hamiltonians with different spatial symmetries, new Floquet
topological phases with a winding number as large as ±2
can be observed. The presence of such exotic phases is
rooted from the different symmetry groups of the effective
Floquet Hamiltonian, and is unique for periodically driven
systems without any static counterpart. Further, we show
that the topology of such Floquet topological phases can be
characterized experimentally by detecting the stroboscopic
time-averaged spin textures in quench dynamics. We stress
that the model considered can be readily realized in cold
atoms trapped in an optical Raman lattice [31–35].
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