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Quantum scattering treatment on the time-domain diffraction of a matter-wave soliton
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We study the dynamics of the matter-wave soliton interacting with a vibrating mirror created by an evanescent
light and provide a quantum scattering picture for the time-domain diffraction of the matter-wave soliton. Under
Kramers-Henneberger (KH) transformation, i.e., in a vibrating coordinate, the vibration of the mirror can be cast
to an effective gauge field. We then can exploit the Dyson series and the quantum scattering theory to investigate
the dynamics of the soliton that moves in the effective gauge field and is reflected by a static mirror. Our analytical
theory can quantitatively deduce the locations and the relative weights of the scattered wave packets, which is
consistent with our numerical simulations of directly solving a nonlinear Schrödinger equation. In particular,
for a two-frequency vibrating case, our theory predicts some interesting multipeak sideband structures in the
diffracted matter-wave distributions, which can be resorted to the resonance of two frequencies. Underlying
mechanisms and possible applications are discussed.
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I. INTRODUCTION

Manipulation of an atomic wave packet is a topic of great
interest and constantly attracts much attention [1]. An atomic
mirror is a feasible way to reflect the wave packets, which
can be achieved by a blue-detuning evanescent optical wave
made from the total internal reflection of a laser beam in a
glass prism [2,3]. More interestingly, when the mirror is vi-
brating periodically [4], it offers a scheme for the time-domain
diffraction of the atomic wave packets [5–7]. Compared with
the spatial atomic diffraction using the periodic potential of a
crystal surface [8], a standing wave of light [9,10], and fabri-
cated periodic structures [11,12], the time-domain diffraction
scheme has an advantage that its diffracted patterns can be
readily manipulated by mechanically adjusting the vibrating
amplitude and frequency of the glass prism, and therefore,
piques great interests both theoretically and experimentally
[5–7,13–15]. Some experiments have been conducted to
realize the time-domain diffraction scheme for Cs atoms [5,6],
neutrons [14], and Bose-Einstein condensate (BEC) of 87Rb
[7]. In the practical experiments, to avoid the diffusion of a
moving wave packet in its free evolution process, a relatively
larger incident velocity of the matter wave is used and the
observed diffraction fringes are in consistence with the semi-
classical theory [4,7].

A recent work [15] proposed and investigated the matter-
wave soliton for the time-domain diffraction scheme, con-
sidering that the matter-wave solitons have been widely
investigated and generated in diverse BEC systems [16–30].
The soliton has the property of the high transmission sta-
bility, i.e., it can keep its initial wave-packet profile for a
long time and not diffuse even with a relative slower moving
velocity [15]. While, for a slowly moving incident soliton,
the condition for the semi-classical theory is no longer valid
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and more sophisticated quantum theory needs to be devel-
oped. In this work, we therefore develop a quantum scattering
approach to address the problem of time-domain diffrac-
tion of matter-wave solitons. We consider a one-dimensional
(1D) BEC soliton interacting with a vibrating mirror created
by an evanescent light. Under Kramers-Henneberger (KH)
transformation, we then can exploit the Dyson series and
the quantum scattering theory to investigate the dynamics
of the soliton that is reflected by the mirror. Our analytical
theory can quantitatively deduce the locations and the rel-
ative weights of the scattered wave packets. Our predicted
locations and weights of diffracted wave packets show a
better agreement with numerical evolution’s results than the
semi-classical approach as well as the perturbative theory.
In particular, when the atomic mirror is vibrating with the
two-frequency form, the diffracted wave packets show mul-
tipeak sideband structures in its momentum distribution. The
underlying mechanism has been uncovered by our scattering
theory.

II. PHYSICAL MODEL AND THEORETICAL
FORMULATION

A. Physical model

We consider a physical process that an atomic wave of
BECs interacts with a vibrating atomic mirror. As shown
in the box of Fig. 1, the quasi-1D BECs initially has a
localized density distribution, moving towards the vibrat-
ing atomic mirror made from the glass prism shined by
a laser beam. When the laser beam is totally reflected
by the inner surface of prism, the evanescent wave gen-
erating an exponentially decaying field appears outside the
surface. The frequency of the laser is blue-detuning with
respect to the atomic levels in BECs. As shown in Fig. 1,
after being reflected by the vibrating mirror, the matter-wave
soliton can split into several soliton-like wave packets, show-
ing the so-called time-domain diffraction phenomenon, in
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FIG. 1. Schematic diagram of the time-domain diffraction of
quasi-1D BECs by a vibrating atomic mirror. As shown in the box,
the atomic mirror is made of a laser beam generating the evanescent
wave (see the red arrows and lines) and a prism connecting with
a spring (see the black broken line). The blue curve denotes the
vibrating trajectory of mirror with time, and the gray arrow denotes
the initial moving directions of soliton. The final density profile of
BECs is shown at the top of the plot.

analogy with the space-domain diffraction of light waves
by a reflection grating [31] or atomic waves by periodic
potentials [8–12].

The dynamics of BECs can be described by the three-
dimensional (3D) Gross-Pitaevskii model [21]

ih̄
∂

∂t
�(r, t ) =

[
− h̄2

2m
∇2 + Vtrap(r)

+ Vmir (x, t ) + g3D|�(r, t )|2
]
�(r, t ), (1)

where m is the mass of the atom, g3D = 4π h̄2as/m is the
nonlinear coefficient, and as is the s-wave scattering length.
The transverse trap potential has the form of Vtrap(r) =
mω2

⊥(y2 + z2)/2, where ω⊥ is the trap frequency. The po-
tential of the atomic mirror is Vmir (x, t ) = V0 e2κ[x−xm (t )],

where V0 and κ are, respectively, the potential’s strength
and decay factor. xm(t ) is its time-dependent position and
is set as a sine form here, xm(t ) = am sin(ωmt ), where
am and ωm are, respectively, the vibrating amplitude and
frequency.

By the ansatz �(r, t )=ψ (x, t )ψ⊥(y, z)e−iω⊥t (where
ψ⊥(y, z)=exp[−(y2 + z2)/2l2

⊥]/(l⊥
√

π ) and l⊥ = √
h̄/mω⊥)

and integrating the atom number’s density on the y and z
directions, the 3D model (1) can be transferred into the 1D

model

ih̄
∂

∂t
ψ (x, t ) =

[
− h̄2

2m

∂2

∂x2
+ Vmir (x, t )

+ g1D|ψ (x, t )|2
]
ψ (x, t ), (2)

where g1D = 2h̄ω⊥as is the strength of 1D nonlinearity. When
as < 0 and Vmir (x, t ) = 0, Eq. (2) supports the bright soliton
solution [32]

ψs(x, t ) = l⊥
ws

√
2|as|

sech

[
x − vs t

ws

]
ei(ksx−μt ), (3)

where vs represents the soliton’s velocity, ws determines its
amplitude and width, ks = mvs/h̄ is the wave number, and
μ = h̄

2m (k2
s − 1/w2

s ) is the chemical potential. The number of
atoms in the soliton is Ns = l2

⊥/ws|as|.

B. KH transformation and gauge potential

The KH transformation can provide a transition approach
between a moving coordinate and a static one [33–36] through
which the time-dependent part of an external potential can be
cast to a gauge potential. The unitary KH transformation has
the form of

ψ ′ = �ψ, � = exp

{
i

h̄

∫ t

0

[
−ẋm(τ ) p̂ + 1

2
mẋ2

m(τ )

]
dτ

}
.

(4)

After it is applied into the model (2), the model becomes

ih̄
∂

∂t
ψ ′(x, t ) =

[
( p̂ − qA)2

2m
+ V0 e2κx

+ g1D|ψ ′(x, t )|2
]
ψ ′(x, t ), (5)

where p̂ = −ih̄ ∂
∂x is the momentum operator and qA = mẋm.q

and A are, respectively, the effective particle’s charge and
the effective vector potential and ẋm = dxm/dt is the instan-
taneous velocity of mirror. It indicates that the vibration of
mirror has been transformed into the gauge potential A, and
the BECs interacts with a static mirror in the gauge potential.
It provides us a different perspective to treat the time-domain
diffraction phenomenon induced by a vibrating mirror. The
idea of artificial effective gauge potentials has been also pre-
sented to manipulate many kinds of microscopic particles, like
neutral atoms [37] and photons [38,39].

C. Quantum scattering theory

We can rewrite the model (5) as

ih̄
∂

∂t
ψ ′(x, t ) =

[
− h̄2

2m

∂2

∂x2
+ VS (x) + V̂D(t )

]
ψ ′(x, t ), (6)
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where VS (x) = V0 e2κx and V̂D(t ) = ih̄ẋm(t ) ∂
∂x + 1

2 mẋ2
m(t ) +

g1D|ψ ′(x, t )|2 are, respectively, the static and dynamical parts
of the potentials. We define two Hamiltonians

Ĥ (t )
SD = − h̄2

2m

∂2

∂x2
+ VS (x) + V̂D(t ), (7a)

Ĥ (t )
D = − h̄2

2m

∂2

∂x2
+ V̂D(t ), (7b)

to describe the systems with and without the static field VS (x),
respectively. Their corresponding time-evolution operators
are

Û (t2,t0 )
SD = exp

[
− i

h̄

∫ t2

t0

Ĥ (t1 )
SD dt1

]
, (8a)

Û (t2,t0 )
D = exp

[
− i

h̄

∫ t2

t0

Ĥ (t1 )
D dt1

]
. (8b)

To apply the quantum scattering theory, as the first-order
approximation, we ignore the nonlinear potential term of
g1D|ψs|2. Using the Dyson expansion [40,41], the two oper-
ators have the following relationship:

Û (t2,t0 )
SD = Û (t2,t0 )

D − i

h̄

∫ t2

t0

Û (t2,t1 )
D V (x)

S Û (t1,t0 )
SD dt1. (9)

Then, one can apply Eq. (9) to calculate the transition proba-
bility amplitude of atomic waves from an initial state ψi into
a final state ψ f (from time t0 to t2),

M (t2,t0 )
f i = 〈

ψ
′(x,t2 )
f

∣∣P̂ Û (t2,t0 )
SD

∣∣ψ ′(x,t0 )
i

〉
, (10)

where P̂ is the even parity operator produced by the reflection
of wave packets, namely, P̂ψ (x, t ) = ψ (−x, t ). It is worth
noting that the time-domain diffraction process happens in
an effective gauge field and an evanescent light field, so
it is always accompanied by the reflection of wave pack-
ets, which differs from the scattering process of particles in
a realistic laser field [40–43]. Considering that the mirror
is static in the new frame, one can conveniently use the
parity operator P̂ to take the contribution of reflection into
account.

Now, the key issue is how to set the wave functions of
the initial and final states. Let us recall the physical process
of the diffraction in the laboratory frame (namely, the frame
before KH transformation): a soliton-type wave packet moves
towards a vibrating mirror and then interacts with it, and
finally, the wave packet is scattered into many discrete wave
packets. There are two main stages in the diffraction process:
the initial stage before the diffraction phenomenon appears
and the final stage after that. In the initial stage of diffraction,
the wave packet is close with the mirror but is not oscillating
with the mirror, so the wave function ψi can be set as the
eigenstate only under the static mirror’s potential [4], ψ

(x,t )
i =

1√
Li

K iki
κ

[
√

2mV0

h̄κ
eκx]e−iωit , where Kn[z] is the modified Bessel

function of the second kind and Li is a constant parameter with
length unit. For the initial state, its atom has the momentum
pi = h̄ki = mvs and the kinetic energy Ei = h̄ωi = p2

i /2m.
Thus, in the frame after KH transformation, the wave function

of initial state is

ψ
′(x,t )
i = �ψ

(x,t )
i = 1√

Li
K iki

κ

[√
2mV0

h̄κ
eκ (x+x(t )

m )

]
e−i(ωit+ϕ(t ) ),

(11)

where the time-dependent phase ϕ(t ) = 1
2h̄

∫ t
0 mẋ2

m(τ )dτ is
produced by the second part of V̂D(t ).

In the final stage of diffraction, the scattered wave packets
are far from the mirror, so the wave function ψ f can be set as
plane waves, ψ

(x,t )
f = 1√

L f
eik f x−iω f t , where L f is a constant

parameter with length unit and its atomic momentum and
kinetic energy are, respectively, p f = h̄k f and E f = h̄ω f =
p2

f /2m. Thus, in the frame after KH transformation, the wave
function of the final state is

ψ
′(x,t )
f = �ψ

(x,t )
f = 1√

L f
eik f (x+x(t )

m )−i(ω f t+ϕ(t ) ), (12)

which is the exact solution of Eq. (6) when the static potential
VS is absent. As we know, the motion of a free and charged
particle in a plane-wave electromagnetic field can be exactly
described by the Volkov state [40,44]. Therefore, considering
the similarity between the effective field V̂ (t )

D and the electro-
magnetic field, the wave function (12) can be regarded as the
Volkov state in the effective field V̂ (t )

D .
Then, we apply Eqs. (9) and (10) to calculate the transition

probability amplitude. When t0 → +∞ and t2 → −∞, we
obtain its limit value as follows:

M (−∞,+∞)
f i = 1√

LiL f

2iπφ2V0

h̄ω⊥

+∞∑
n=−∞

× Jn[2am(k f − iκ )]δ

(

ω

ω⊥

)
, (13)

where φ2 is a function about k f , φ2 = 1
4κ

(
√

2h̄κ√
mV0

)
ik f
κ

+2
�[1 +

i
2κ

(k f − ki )]�[1 + i
2κ

(k f + ki )]. The details of the derivation
can be found in the Appendix.

From Eq. (13), we find that M (−∞,+∞)
f i has the observable

amplitude only when 
ω = 0. It means that the final state
has discrete energy levels E f n = h̄ω f n = h̄(ωi + nωm), and
accordingly, the final wave number is

k f n = −
√

2mω f n

h̄
= −

√
k2

i + 2m

h̄
nωm. (14)

Thus, the transition probability amplitude from the initial state
to the nth final state is

M (QS)
n = M (−∞,+∞)

f i (k f = k f n)

=CM �

[
1 + i

2κ
(k f n − ki )

]
�

[
1 + i

2κ
(k f n + ki )

]

× Jn[2am(k f n − iκ )], (15)

where the superscript (QS) represents the results from the
quantum scattering theory. CM is a dimensionless coefficient

with the form of CM = iπ l2
⊥κ√

LiL f
(

√
2h̄κ√
mV0

)
ik f
κ

whose modulus is

constant with respect to k f .
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FIG. 2. (a1) Amplitude distribution of wave functions on momentum space and (a2) the atom number of the nth wave packet, when
as = as0, κ = 12.59 µm−1, am = 0.03 µm, ωm = 100 kHz, ws = 1 µm, vs = 10 mm/s. (b1)–(f2) Same as plots (a1), (a2) except for (b1), (b2)
am = 0.06 µm, (c1), (c2) ωm = 150 kHz, (d1), (d2) vs = 15 mm/s, (e1), (e2) κ = 6.448 µm−1, and (f1), (f2) as = 2as0. In the plots of amplitude
distribution, the red dots and black curves are the results from numerical simulations and the quantum scattering theory, which correspond to
Eqs. (18) and (19), respectively. In the plots of atom number, the red circles, black squares, green stars, and blue triangles are the results from
numerical simulations, the quantum scattering theory, the perturbative method, and the semi-classical path integral method, respectively.

In the above deduction, the conditions of am � h̄/mvs,√
h̄/mωm, and 1/κ are used, providing the parameter range

where our theoretical analysis is valid.

III. NUMERICAL RESULTS AND DISCUSSION

A. Momentum distribution of atomic wave packets
reflected by a one-frequency vibrating mirror

First, we numerically simulate the nonlinear Schrödinger
model (2) by the split-step Fourier method [45]. The exact
solution (3) of the soliton provides an initial condition for
studying the collision between a soliton and an atomic mirror,

ψ (x, t = 0) = l⊥
ws

√
2|as|

sech

[
x − x0

ws

]
eimvs (x−x0 )/h̄, (16)

where the initial velocity of soliton is controlled by vs and
x0 is a trivial quantity representing its initial position, which
is set as different values so that the collision always happens
when t = 2 ms. Also, the numerical evolution’s wave function
in the momentum space (i.e., the wavenumber space) can be
calculated by the following Fourier transformation:

ϕ(k, t ) = 1√
2π

∫ ∞

−∞
ψ (x, t )e−ikxdx. (17)

Its numerical array when t = 4 ms is used to compare with the
analytical predictions, i.e.,

ϕ
(num)
f (k) = ϕ(k, t = 4 ms), (18)

where the superscript (num) indicates a result from numerical
simulation.

In this paper, we set the typical parameters as follows.
The mass of 87Rb atom is m = 1.445×10−25 kg. According
to Refs. [46,47], the s-wave scattering length is set as as =
as0 or 2as0, where the reference value of s-wave scattering
length is as0 = −8.546×10−11 m; the transversely trapping
frequency is ω⊥ = 2π×159 Hz, so we have l⊥ = 0.855 µm.
According to Ref. [48], one can set the evanescent wave’s
strength and decay factor as V0 = 1.807×10−28 J and κ =
12.59 µm−1. When as = as0, κ = 12.59 µm−1, am = 0.03 µm,
ωm = 100 kHz, and vs = 10 mm/s, the numerical amplitude
distribution of wave function in momentum space is shown
in Fig. 2(a1). Five peaks of different orders can be observed,
which are the typical manifestation of a diffraction phe-
nomenon. By analyzing the momentum position of the peaks,
we find that they are consistent with the result of Eq. (14)
corresponding to the orders n = 0, 1, 2, 3, 4. To compare the
numerical result with our analytic prediction, we find that all
of the wave packets in Fig. 2(a1) approximatively have the
shape of the sech function and their width decreases with n
increasing. It inspires us to assume the wave function with the
following expression:

ϕ
(QS)
f (k) =CN

+∞∑
n=0

M (QS)
n

√
πws|k f n|

ki

× sech

[
πws|k f n|

2ki
(k − k f n)

]
, (19)
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where the wave packet of n = 0 is assumed to have the same
width as the initial one. Meanwhile, before multiplying with
M (QS)

n , the wave packet for every n value is normalized to
ensure they have the same atom number. CN is a dimensionless
coefficient to ensure that the total atom number equals to
the initial one. By comparison, our analytic prediction (see
the black curve) has good agreement with the numerical one
(see the red dots) for the peaks of all orders. Then, we turn
our attention into the atom numbers (or relative weights) of
wave packets of different orders to quantitatively analyze the
accuracy of our predictions. We denote the atom number or
the weight of the nth wave packets by Nn. In both of the
numerical simulations and our quantum scattering method, it
is calculated by

N (num)
n =

∫ kn+

kn−

∣∣ϕ(num)
f (k)

∣∣2
dk, N (QS)

n =
∫ kn+

kn−

∣∣ϕ(QS)
f (k)

∣∣2
dk,

(20)

where kn± = k f (n±1/2). For a clearer observation, we use a
semi-log coordinate to show the atom number Nn of the nth
wave packets. Figure 2(a2) shows the results from the nu-
merical simulation (red circles) and the quantum scattering
method (black squares). With n increasing, the atom number
decreases, and good agreements can be seen between the two
results for wave packets of all orders.

The perturbative and semi-classical path-integral method-
sare also used to analyze the time-domain diffraction of an
atomic wave [4]. Thus, it is interesting to compare the pre-
dictions from the two methods and our quantum scattering
method. For the perturbative method, according to Fermi’s
golden rule, the transition probability amplitude is approxi-
matively [4,49,50]

M (PB)
n ≈ [

M (PB)
1

]|n|

=
[

2πm amωm

h̄κ

√
sinh(π ki/κ ) sinh(π |k f 1|/κ )

cosh(π k f 1/κ ) − cosh(π ki/κ )

]|n|
,

(21)

where M (PB)
1 is the probability amplitude for the atom absorb-

ing the energy h̄ωm. So the atom number of the nth wave
packet can be written as

N (PB)
n = Ns

∣∣M (PB)
n

∣∣2
, (22)

where the superscript (PB) indicates a result from the pertur-
bative method and Ns is the total atom number of BECs. On
the other hand, the transition probability amplitude from the
semi-classical method can be written as [4]

M (SC)
n = Jn

[
2amki

πQ

sinh(πQ)

]
exp

(
−inQ ln

V0

4h̄ωi

)
, (23)

where the superscript (SC) indicates a result from the semi-
classical approach and Q = mωm/(2h̄κki ). Therefore, the
atom number of the nth wave packet can be calculated by

N (SC)
n = Ns

∣∣M (SC)
n

∣∣2
. (24)

By Eqs. (22) and (24), the atom numbers from the pertubative
(green stars) and semi-classical (blue triangles) methods are

shown in Fig. 2(a2). For the perturbative method, log10(Nn) is
decreasing linearly with n increasing, and its slope is equal to
2 log10 |M (PB)

1 |. However, good agreements can be found only
when n is small, and the same conclusion is also obtained for
the semi-classical method.

As the vibrating amplitude is increased to am = 0.06 µm,
the amplitude distribution of the wave function in momentum
space is shown in Fig. 2(b1). More peaks in the diffraction
pattern appear, and our prediction from the quantum scattering
theory shows a small deviation from the numerical result.
Compared to the situation of Fig. 2(a1) where am/(h̄/mvs)
= 0.41, a relatively larger am is used in this case that gives
am/(h̄/mvs) = 0.82. This might be the reason for the small
difference between the theory and numerical simulations as
seen in Fig. 2(b1) since our scattering theory requires am �
h̄/mvs. The deviation can be also seen in the corresponding
distribution of atom number, i.e., Fig. 2(b2). A larger vibrat-
ing amplitude am also indicates a larger deviation between
the perturbative method and the numerical result, as shown
in Figs. 2(a2) and 2(b2). Then, we also change some other
parameters, such as the vibrating frequency ωm, the incident
velocity vs, the decay factor κ , and the s-wave scattering
length as, and show the related results in Figs. 2(c1), 2(c2),
2(d1), 2(d2), 2(e1), 2(e2), 2(f1), and 2(f2), respectively. Good
agreements of our predictions with numerical results can be
also observed in these cases, which indicates the effectiveness
of the quantum scattering theory in these parameter ranges. In
particular, in Figs. 2(d1) and 2(d2), one can see the peak of the
order n = −1 appears when the incident velocity is increased
to vs = 15 mm/s. In this case, a relatively larger vs is used
giving rise to am/(h̄/mvs) = 0.62, which is larger than that of
the case of Fig. 2(a1). This might explain for the small dif-
ference between the quantum scattering theory and numerical
simulations in Fig. 2(d1). Our detailed analysis suggests that
the peak of the order n = −1 emerges when vs >

√
2h̄ωm/m.

Note that the semi-classical method is only applicable under
the condition ki = mvs/h̄ 
 κ provided by Ref. [4].

A recent work [15] numerically studied the dynamics of
a 1D matter-wave soliton colliding with a vibrating atomic
mirror. They also found that the soliton splits into several
wave packets with the discrete momentum corresponding to
quantized kinetic energy after colliding. Our quantum scat-
tering approach can account for the main observations of
Ref. [15], suppose a relative small vibrating amplitude, i.e.,
am � h̄/mvs,

√
h̄/mωm, and 1/κ as was discussed in Sec. II C.

B. Momentum distribution of atomic wave packets reflected
by a two-frequency vibrating mirror

As shown above, our quantum scattering approach was
successfully applied to analyze the time-domain diffraction
of matter waves by an atomic mirror with one-frequency
vibration. Here, in this section, we extend to apply our
study to the case of two-frequency vibration. The motion
equation of atomic mirror with the two-frequency vibration
can be written as

xm(t ) = a1 sin(ω1t ) + a2 sin(ω2t ), (25)

where a1, a2 and ω1, ω2 are the amplitude and frequency of
two vibrating modes, respectively. Substituting the motion
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equation (25) into the transition probability amplitude (A1),
one can obtain

M (−∞,+∞)
f i =CM �

[
1 + i

2κ
(k f − ki )

]
�

[
1 + i

2κ
(k f + ki )

]

×
+∞∑

n=−∞
Jn[2a1(k f − iκ )]Jn′

× [2a2(k f − iκ )]δ

(

ω′

ω⊥

)
, (26)

where 
ω′ = ω f − ωi − nω1 − n′ω2.
Thus, the final state has discrete energy levels

E f nn′ = h̄ω f nn′ = h̄ωi + nh̄ω1 + n′h̄ω2. (27)

Accordingly, the center wave number of the final wave packet
of the order (n, n′) is

k f nn′ = −
√

2mω f nn′

h̄
= −

√
k2

i + 2m

h̄
(nω1 + n′ω2). (28)

The transition probability amplitude from the initial state to
the final state of the order (n, n′) is

M (QS)
nn′ = CM �

[
1 + i

2κ
(k f nn′ − ki )

]
�

[
1 + i

2κ
(k f nn′ + ki )

]

× Jn[2a1(k f nn′ − iκ )] Jn′ [2a2(k f nn′ − iκ )]. (29)

In addition, the predicted wave function in momentum space
can be written as

ϕ
(QS)
f (k) =CN

∑
n,n′

M (QS)
nn′

√
πws|k f nn′ |

ki

× sech

[
πws|k f nn′ |

2ki
(k − k f nn′ )

]
, (30)

which will be used to compare with numerical results.
Considering the two-frequency vibration and setting the

typical parameters, as = as0, a1 = a2 = 0.05 µm, ws = 2 µm,
and vs = 5 mm/s, ω1 = 200 kHz, and ω2 = 100 kHz, we nu-
merically simulate the evolution of BECs and show the
amplitude distribution of the final state in Fig. 3(a). Some
peaks of different orders can be observed. However, different
from the results of one-frequency vibration, the peak ampli-
tude of these wave packets is not monotonically decreasing
with n increasing. Its mechanism can be interpreted by the
resonance of ω1 and ω2. The two frequencies have the res-
onance relation ω1/ω2 = 2, so the amplitude of the peaks is
the superposition of the respective results of two frequencies,
which may break the distribution rule of monotone decreas-
ing. A similar result was also observed in Ref. [15], where the
two frequencies have the resonance of ω1/ω2 = 2/3.

When we choose ω1 = 200 kHz and ω2 = 185 kHz, an
interesting phenomenon termed as multipeak sidebands
emerges, as shown in Fig. 3(b). It indicates that the mul-
tipeak sideband structures may appear in the vicinity of
the resonances. Thus, we furthermore analyze the feature
of diffraction patterns in the frequency range of 0 < ω1 <

200 kHz and 0 < ω2 < 200 kHz. As shown in Fig. 3(c), we
find that the multipeak sideband structures emerge in the
vicinity of resonances (blue shadow regions).

FIG. 3. (a), (b) Typical distributions of diffracted wave packets:
(a) ω1 = 200 kHz and ω2 = 100 kHz and (b) ω1 = 200 kHz and
ω2 = 185 kHz from our numerical integration. (c) Phase diagram
for the resonance regions of ω1/ω2 = 0, 1/2, 1, 2, +∞ (red solid
lines). In the vicinity of the resonance (blue shadow regions), we find
that the multipeak sideband structures emerge. Other parameters are
set as as = as0, κ = 12.59 µm−1, a1 = a2 = 0.05 µm, ω1 = 200 kHz,
ws = 2 µm, and vs = 5 mm/s.

To figure out the formation mechanism of the interest-
ing multipeak sideband structure, we choose three groups
of typical parameters near resonances, i.e., ω2 = 185 kHz,
108 kHz, and 15 kHz with a fixed ω1 = 200 kHz. The results
are, respectively, shown in Figs. 4(a)–4(c). They show that our
prediction of Eq. (30) always agrees well with the numerical
results. When ω2 = 185 kHz, as shown in Fig. 4(a), the obvi-
ous multiorder diffraction pattern appears in the distribution
of the reflected wave packets. Each primary fringe (labeled
by the blue rectangles in Fig. 4) contains a secondary-order
multipeak sideband structure. After comparing Eq. (28) and
the position of peaks in the numerical distribution, the values
of n and n′ are marked. For a better understanding, we can
decompose the multiphoton energy absorption of the matter
wave after reflected into the following form:


E = nh̄ω1 + n′h̄ω2 = (n + n′)h̄
ω1 + ω2

2

+ (n − n′)h̄
ω1 − ω2

2
. (31)

In the above equation, the sum frequency terms determine the
fringes of primary orders and the difference frequency terms
predict the multipeak sideband structure of the secondary
order. Thus, the energy difference between adjacent fringes of
primary orders is h̄ ω1+ω2

2 , while the energy difference between
adjacent peaks in each primary fringe is h̄ ω1−ω2

2 .
When ω2 = 108 kHz, the multipeak sideband structures

can also emerge, as shown in Fig. 4(b). Similarly, we can
decompose the multiphoton energy absorption into


E = (2n + n′)h̄
ω1 + 2ω2

2
+ (2n − n′)h̄

ω1 − 2ω2

2
. (32)

Thus, the energy differences between adjacent fringes of pri-
mary orders is h̄ ω1+2ω2

2 , and the energy differences between
adjacent peaks of secondary orders is h̄ ω1−2ω2

2 . Similarly,
when ω2 = 15 kHz, the multipeak sideband structures can be
seen in Fig. 4(c). The two energy differences are just h̄ω1 and
h̄ω2 due to ω1 
 ω2.
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FIG. 4. Amplitude distribution of the wave function in momentum space when (a) ω2 = 185 kHz, (b) ω2 = 108 kHz, and (c) ω2 = 15 kHz.
The red dots and black solid curves are, respectively, the results from numerical simulations and the quantum scattering theory. Other
parameters are set as as = as0, a1 = a2 = 0.03 µm, ω1 = 200 kHz, ws = 2 µm, and vs = 5 mm/s. The fringes of primary orders are boxed
by the blue rectangles and the corresponding relations between n and n′ are marked. The values of (n, n′) are marked on the peaks of secondary
orders.

Here, we would like notice that the multipeak sideband
structures also appear in the fluorescence spectrum of a two-
level atom in a bichromatic optical field [51–54]. However,
the underlying mechanism is quite different. They originate
from Rabi oscillation of the atom driven by the optical field.

IV. CONCLUSION

Manipulating the motion of matter waves by the atomic
mirror made from an evanescent wave is a research topic
of great significance. We develop a nonperturbative quan-
tum scattering theory to study the time-domain diffraction of
matter-wave solitons interacting with a vibrating atomic mir-
ror. Compared with the previous semi-classical or perturbative
theory, our theory provides an alternative physical picture
and shows a better agreement with numerical results. In par-
ticular, in the case of two-frequency vibration, our theory
predicts the interesting multipeak sideband structures in the
diffraction patterns. These theoretical predictions can be ob-
servable with current experimental techniques. Otherwise, in
our theoretical discussion, the nonlinear atomic interaction is
ignored. Extending our quantum scattering theory approach to
the nonlinear case is challenging, but represents an important
task for interacting quantum gases, and is worthy of further
study.
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APPENDIX: DERIVATION OF THE TRANSITION
PROBABLILITY AMPLITUDE OF EQ. (13)

Here, the calculation of the transition probability amplitude
is shown in detail. One can apply Eqs. (9) and (10) to calculate
the transition probability amplitude and obtain

M (t2,t0 )
f i = 〈

ψ
′(x,t2 )
f

∣∣P̂ Û (t2,t0 )
SD

∣∣ψ ′(x,t0 )
i

〉
= 〈

ψ
′(x,t2 )
f

∣∣P̂ Û (t2,t0 )
D

∣∣ψ ′(x,t0 )
i

〉
− i

h̄

∫ t2

t0

〈
ψ

′(x,t2 )
f

∣∣P̂ Û (t2,t1 )
D V (x)

S Û (t1,t0 )
SD

∣∣ψ ′(x,t0 )
i

〉
dt1

≈ 〈
ψ

′(−x,t0 )
f

∣∣ψ ′(x,t0 )
i

〉 − i

h̄

∫ t2

t0

〈
ψ

′(−x,t1 )
f

∣∣V̂ (x)
S

∣∣ψ ′(x,t1 )
i

〉
dt1.

(A1)
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In Eq. (A1), two approximations are used. One of them is〈
ψ

′(x,t2 )
f

∣∣P̂ Û (t2,t1 )
D = 〈

ψ
′(−x,t2 )
f

∣∣Û (t2,t1 )
D ≈ 〈

ψ
′(−x,t1 )
f

∣∣. (A2)

As V̂ (t )
D has the period T = 2π/ωm, we can obtain

Ĥ (t )
D = P̂ Ĥ (t+T/2)

D and Û (t2,t1 )
D = P̂ Û (t2−T/2,t1−T/2)

D =
P̂ Û (t2−T/2,t2 )

D Û (t2,t1 )
D Û (t1,t1−T/2)

D . When h̄ωm is far larger
than the atomic energy in the dynamical field, one can
deduce that Û (t2−T/2,t2 )

D and Û (t1,t1−T/2)
D approaches to 1 and

obtain Eq. (A2). Accordingly, its approximative condition is
am � h̄/mvs and

√
h̄/mωm. Another approximation is

Û (t1,t0 )
SD

∣∣ψ ′(x,t0 )
i

〉 ≈ ∣∣ψ ′(x,t1 )
i

〉
. (A3)

It is because that ψ
′(x,t )
i can approximatively satisfy the

model (6) when V (x,t )
S ≈ V0e2κ (x+x(t )

m ) and V̂ (t )
D ≈ ih̄ẋm(t ) ∂

∂x +
1
2 mẋ2

m(t ). Accordingly, the approximative condition is am �
1/κ , namely, a relative small vibrating amplitude is required.

Now, let us calculate the transition probability amplitude
(A1). Its first part is

M (t2 )
I =

∫ +∞

−∞
ψ

∗(x,t2 )
f ψ

(x,t2 )
i dx

= 1√
LiL f

ei(ω f −ωi )t2−ik f x
(t2 )
m

×
∫ +∞

−∞
K iki

κ

[√
2mV0

h̄κ
eκ (x+x

(t2 )
m )

]
eik f xdx

= φ1√
LiL f

ei(ω f −ωi )t2−2ik f x
(t2 )
m

= φ1√
LiL f

+∞∑
n=−∞

Jn(2amk f )ei
ωt2 , (A4)

where Jn[z] is the Bessel function of the first kind, and we
define


ω = ω f − ωi − nωm. (A5)

Meanwhile, the relation eiα sin θ = ∑+∞
n=−∞ Jn[α]einθ is used.

The function φ1 about k f is

φ1 = 1

4κ

(√
2h̄κ√
mV0

) ik f
κ

�

[
i

2κ
(k f − ki )

]
�

[
i

2κ
(k f + ki )

]
,

(A6)

where �[z] is the gamma function.
The second part of the transition probability amplitude

(A1) is

M (t0,t2 )
II = i

h̄

∫ t2

t0

∫ +∞

−∞
ψ

∗(x,t1 )
f V0 e2κxψ

(x,t1 )
i dx dt1

= 1√
LiL f

i V0

h̄

∫ t2

t0

ei(ω f −ωi )t1−ik f x
(t1 )
m

×
∫ +∞

−∞
K iki

κ

[√
2mV0

h̄κ
eκ (x+x

(t1 )
m )

]
e(ik f +2κ )xdx dt1

= φ2√
LiL f

i V0

h̄

∫ t2

t0

ei(ω f −ωi )t1−2(ik f +κ )x
(t1 )
m dt1, (A7)

where the function φ2 about k f is

φ2 = 1

4κ

(√
2h̄κ√
mV0

) ik f
κ

+2

�

[
1 + i

2κ
(k f − ki )

]

× �

[
1 + i

2κ
(k f + ki )

]
. (A8)

Next, substituting xm(t ) = am sin(ωmt ) into the above expres-
sion and using the relation eiα sin θ = ∑+∞

n=−∞ Jn[α]einθ , one
can obtain

M (t0,t2 )
II = φ2√

LiL f

i V0

h̄

+∞∑
n=−∞

Jn[2am(k f − iκ )]
∫ t2

t0

ei
ωt1 dt1

= φ2√
LiL f

V0

h̄

+∞∑
n=−∞

Jn[2am(k f − iκ )]
ei
ωt2 − ei
ωt0


ω
.

(A9)

Then, we consider t0 = −t2,

M (−t2,t2 )
f i = M (t2 )

I + M (−t2,t2 )
II

= 1√
LiL f

+∞∑
n=−∞

[
φ1Jn(2amk f )ei
ωt2

+ 2iφ2V0

h̄
Jn[2am(k f − iκ )]

sin(
ω t2)


ω

]
. (A10)

When the interacting time is approaching infinity, the second
part of M f i will be much larger than its first part (A4). After
neglecting its first part, its limiting value can be written as

M (−∞,+∞)
f i = lim

t2→+∞ M (−t2,t2 )
f i = 1√

LiL f

2iφ2V0

h̄

×
+∞∑

n=−∞
Jn[2am(k f − iκ )] lim

t2→+∞
sin(
ω t2)


ω

= 1√
LiL f

2iπφ2V0

h̄ω⊥

+∞∑
n=−∞

× Jn[2am(k f − iκ )]δ

(

ω

ω⊥

)
, (A11)

where we use limt→+∞ sin �t
�

= πδ(�).
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