
PHYSICAL REVIEW A 109, 013322 (2024)

Quantum phases of the biased two-chain-coupled Bose-Hubbard ladder
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We investigate the quantum phases of bosons in a two-chain-coupled ladder. This bosonic ladder is generally
in a biased configuration, meaning that the two chains of the ladder can have dramatically different on-site
interactions and potential energies. Adopting the numerical density-matrix renormalization-group method, we
analyze the phase transitions in various parameter spaces. We find signatures of both insulating-to-superfluid and
superfluid-to-insulating quantum phase transitions as the interchain tunneling is increased. Interestingly, tuning
the interaction to some intermediate values, the system can exhibit a reentrant quantum phase transition between
insulating and superfluid phases. We show that for infinite interaction bias the model is amenable to analytical
treatment, predictions of which concerning the phase boundary are in great agreement with numerical results.
We finally clarify some critical parameters which separate the system into regimes with distinct phase-transition
behaviors, and we briefly compare typical properties of the biased and unbiased bosonic ladder systems. Our
paper enriches Bose-Hubbard physics.
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I. INTRODUCTION

Strongly correlated bosons, especially those moving in the
periodic potentials, have always been a research interest for
both experimentalists and theorists, as they are related to a
variety of quantum phenomena [1,2]. The simplest model
describing such systems is the Bose-Hubbard (BH) model,
which incorporates the contributions from the kinetic energy
of individual atoms and the repulsive interactions between
them [3–12]. Although originally developed in the context of
4He liquid [3], it has been demonstrated that the BH model
can be feasibly implemented with ultracold atoms trapped in
optical lattices [13–16]. Utilizing the unprecedented degree of
controllability of the laser fields, all the characteristic param-
eters of the BH model can be tuned in the optical lattice with
high precision [15,16]. Relying on this, the quantum phase
transition from a superfluid (SF) to a Mott insulator (MI),
which is the most important prediction of the BH model, has
been experimentally realized in one [17], two [18], and three
dimensions [19]. Since then, lots of related studies have been
performed on the extensions of the BH model, by considering,
for example, diverse forms of interactions [20–22] and gauge
fields [23]. These extensions stimulate the development of
new directions bridging condensed-matter physics, stochastic
physics, and quantum optics.

In this context, bosons confined to low-dimensional lat-
tices merit special attention, since the correlations built up
in these systems are considerably enhanced by the interac-
tions between atoms [24]. Among various low-dimensional
lattice models, the two-chain-coupled BH ladder is of
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particular importance [25–27], since it serves as an interme-
diate geometry in one-dimensional (1D) and two-dimensional
lattice systems [28]. This provides beneficial insights about
the characteristics of the SF-to-MI transition in going from
one to two dimensions. As a matter of fact, the BH lad-
der has been experimentally simulated in different artificial
systems [29–31], stimulating immense interests of research
towards various aspects of this model, such as chiral currents
[29,32–36], quantum magnetism [37–41], and topological
states [42–47]. The BH ladders considered in these studies,
however, are mostly limited to the symmetric case where
both the on-site interactions and potential energies are iden-
tical for the two chains. Notice that general ladder systems
should also involve the configurations where the two chains
have distinctly different system parameters. Actually, letting
the two chains of the ladder be asymmetric, with respect
to either the interactions or potential energies, may impose
major impacts on various properties of the system [48–52].
More importantly, this “biased” ladder structure also underlies
the physics behind a large class of systems, such as dressed
dipolar molecules [53,54] or Rydberg gases [55–57] in op-
tical lattices and low-dimensional magnetic materials under
external fields [58,59].

Motivated by this, in this paper, we investigate the ground-
state properties of a biased bosonic ladder at half filling. By
saying “biased,” we mean that the two chains constituting
the whole ladder can have dramatically different on-site in-
teractions and potential energies. We first provide an analysis
of the quantum phases in the limit of infinite interaction
bias, where the on-site interaction is infinite for one chain
and finite for the other. It is found that, as the interchain
tunneling is increased, either the MI-to-SF or the SF-to-MI
quantum phase transition can occur depending on the value of
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FIG. 1. (a) Schematic picture of the ladder system. The two
chains constituting the ladder are designated as spin up and spin
down, respectively. The interspin and intraspin hopping amplitudes
are denoted, respectively, as t and h. (b) Possible implementation of
the bosonic ladder in optical superlattices. The optical double well is
generally tilted by an energy difference �. The boson tunneling rates
along different directions simulate the hopping rates t and h.

interactions. More interestingly, tuning the finite interaction
to some intermediate values, the system may even exhibit a
reentrant quantum phase transition between MI and SF. By
mapping the finite interaction into an effective canonical Kerr
nonlinear form, we analytically derive the phase boundary
between MI and SF, which agrees well with the numerical
results. With the knowledge of the system under infinite in-
teraction bias, we then discuss the more general parameter
regime where the interactions of both chains of the ladder are
finite. We map out the ground-state phase diagrams in various
parameter spaces, and characterize several critical parameters
which separate the system into regimes with distinct phase-
transition behaviors. Finally, we briefly compare the typical
properties of the biased and unbiased bosonic ladder systems.

The numerical calculations in this paper are performed
using state-of-the-art density-matrix renormalization-group
(DMRG) numerical methods [60,61], with which various
physical observables can be precisely obtained. In our nu-
merical simulations, we set the cutoff of the single-site atom
number as ncutoff = 6. We set lattice size up to L = 56, for
which we retain 600 truncated states per DMRG block and
perform 20 sweeps with a maximum truncation error of
≈10−9.

II. MODEL AND METHOD

As illustrated in Fig. 1(a), the system in consideration is a
bosonic ladder with two coupled chains, which we denote as
spin up and spin down, respectively. The interspin tunneling
is allowed along the rung. We assume the bosonic ladder is
typically biased, i.e., atoms with different spins experience
different potential energies and local interactions. Such a sce-
nario can be effectively engineered in spin-dependent optical
lattices [62] or optical superlattices [29,63], where the spin
index distinguishing different chains can be represented by
either the hyperfine sublevels or optical wells, according to
different experiment implementations [see Fig. 1(b) for illus-
tration]. The Hamiltonian describing this system reads (h̄ = 1

throughout)

Ĥ = −t
∑

〈i, j〉,σ
b̂†

i,σ b̂ j,σ − h
∑

j

(b̂†
j,↑b̂ j,↓ + H.c.)

+�
∑

j

(n̂ j,↑ − n̂ j,↓) +
∑
j,σ

Uσ

2
n̂ j,σ (n̂ j,σ − 1) (1)

where the field operator b̂ j,σ (b̂†
j,σ ) annihilates (creates) a

bosonic atom with spin σ (=↑,↓) at the lattice site j. While
atoms with the same spin can hop between adjacent sites 〈i, j〉
with the intraspin hopping rate t , an interspin field along the
rung of the ladder couples atoms with different spins at rate
h. The energy bias �, which we assume to be positive in this
paper, tends to polarize the atoms along the rung of the ladder
and Uσ denotes the on-site repulsive interaction of atoms with
spin σ (=↑,↓). In this paper, we focus on the commensu-
rate ladder with total atomic density ρ = N/2L = 1/2. Here,
N = N↑ + N↓ is the total number of bosons on the two-chain
ladder, each of which has length L. This amounts to setting
the total system size to be 2L. In the following discussion, we
set the energy scale by taking t = 1, and we also take � = 10
unless otherwise specified.

The Hamiltonian (1) can be viewed as a natural extension
of the single-component 1D BH model incorporating the spin
degree of freedom, which is controlled by both the transverse
and longitude magnetic fields. Without the interspin tunneling
h, the ladder decouples and reduces to two independent BH
chains. A finite energy bias � (>0) then polarizes the bosons
to the spin-down chain with commensurability of one boson
per site, leaving the spin-up chain empty. In this case, the
physics is entirely governed by the usual 1D BH model, which
has been extensively explored [3–8]. With a nonzero interspin
tunneling h, however, the two BH chains are coupled together,
meaning that the characteristic parameters of each individual
chain may impact the ground-state properties of the compos-
ite system in a collective manner. This becomes especially
interesting if the on-site interactions of the two chains are
tuned quite different. Without loss of generality, let us assume
U↑ > U↓ and take a preanalysis on the behavior of the BH
chain with spin down. In this case, the on-site interaction
may be effectively enhanced through a high-order tunneling
process triggered by h [64], favoring the formation of MI,
whereas the particle filling factor may deviate from unity
at the same time, which in turn promotes the SF behavior.
The seemingly opposite tendency of the ground-state property
makes the roles of the parameters in the biased bosonic ladder
less intuitive and to be quantitatively clarified.

The MI and SF phases can be directly identified by cal-
culating the charge gap δL, defined as the difference between
the energies needed to add and remove one particle from the
system, i.e.,

δL = μ+
L − μ−

L , (2)

μ+
L = EL(N + 1) − EL(N ), (3)

μ−
L = EL(N ) − EL(N − 1), (4)

where EL(N ) is the the ground-state energy for L sites and N
particles, and the chemical potentials μ+

L and μ−
L characterize
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the energy cost to add and remove one particle, respectively.
The insulating phase is signaled by the opening up of δL in the
thermodynamic limit N, L → ∞ with fixed density ρ, consis-
tent with the zero compressibility κ (=∂ρ/∂μ) of an insulator
[65]. In the SF phase, however, the charge gap δL closes and
the system becomes compressible in the thermodynamic limit.

Since δL keeps finite for any finite systems, in or-
der to pinpoint the MI-to-SF transition in the parameter
space, we should extrapolate to the L → ∞ limit by uti-
lizing proper finite-size scaling. Notice that the transition
between MI and SF phases at commensurate fillings is shown
to be of Berezinskii-Kosterlitz-Thouless type [25,26,48],
around which the charge gap closes exponentially as δ ∼
exp(−b/

√
Uσ − Uc) where b is a constant. To precisely

determine the transition point, in the critical region, one
may employ the following finite-size-scaling relation for the
charge gap [10,66]:

LδL ×
(

1 + 1

2 ln L + C

)
= F

(
ξ

L

)
(5)

where F is a scaling function, C is an unknown constant to be
determined, and ξ is the correlation length which is related to
the charge gap at the critical point as ξ ∼ δ−1. The scaling
function F turns out to be system size independent in the SF
region because of the divergence of the correlation length.
Hence, plots of the rescaled gap Lδ∗

L = LδL[1 + 1/(2 ln L +
C)] as function of ξ/L for different values of L and Uσ should
collapse onto a unique curve representing F . This provides
a formal approach to obtain the parameters b, C, and Uc.
For the single-component 1D BH model, the best collapse
of the data for Lδ∗

L versus ξ/L occurs at C → ∞ [10], and
we have numerically checked that the latter still holds for
the present model with finite h. We then immediately have
δL = δ∗

L, indicating that in the SF region LδL should not
change with varying system size L (i.e., δL vanishes linearly
as the system size increases to infinity). In other words, in the
critical region, we can safely extrapolate the charge gap to the
thermodynamic limit with satisfactory accuracy by fitting it to
a linear function in terms of 1/L.

III. RESULTS

In the following, we systematically study the ground-state
properties of the biased bosonic ladder. Before providing the
results of general parameters, we first put the interaction bias
to infinity, i.e., we consider the bosonic ladder consisting of
one chain with infinite on-site interaction and the other with
finite on-site interaction. The physics in this limit serves as
a beneficial starting point to understand the essential mecha-
nism behind different kinds of phase transitions.

A. Infinite interaction bias: U↑ − U↓ = ∞
Without loss of generality, we fix the on-site interaction

of the spin-up BH chain to be infinity, U↑ → ∞, and that of
the spin-down chain to be finite. This amounts to imposing a
hard-core constraint on each site of the spin-up chains, where
only one boson is allowed to occupy.

Before showing the full phase diagram, we can gain some
useful insights into the system by inspecting certain limits.
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FIG. 2. The charge gap δL , extrapolated to L → ∞, as a function
of h with (a) U↓ = 0.0, (b) U↓ = 2.0, (c) U↓ = 3.6, and (d) U↓ =
20.0. The other parameters are � = 10 and U↑ = ∞.

As mentioned in Sec. II, the simplest limit is the zero inter-
spin tunneling h = 0, under which the ground state is fully
described by the 1D BH model with unit filling. It is well
known that the 1D BH model with unit filling shows a SF-
to-MI transition at Uc/t ≈ 3.3 [6–12]. The physics becomes
richer when h is turned on. In this case, if we further set the
on-site interaction U↓ to be zero, the system closely resem-
bles that of two-level atoms inside cavity arrays for which
the Jaynes-Cummings-Hubbard (JCH) model works [67–70].
This can be seen clearly if we map the field operators of the
hardcore bosons to those of quantum spins by b̂ j,↑ −→ σ−
and b̂†

j,↑ −→ σ+, where σ− and σ+ are spin-1/2 lowering
and raising operators, respectively. Therefore, the Hamilto-
nian describing the tunneling process between the two BH
chains becomes Jaynes-Cummings type, in which the spin-
down bosons act as interaction-free photons bridging adjacent
lattice sites. It follows directly from the JCH physics that,
by increasing h, the spin-down bosons behave more localized
and consequently undergo a phase transition from SF to MI at
some critical tunneling strength hc [67,68].

Anther interesting limit which is opposite to the JCH
regime is U↓ → ∞, implying a hard-core constraint on both
chains. It has been analytically demonstrated that, for the sym-
metric hard-core BH ladder with � = 0, the critical tunneling
strength hc decreases down to zero [71]. As a finite energy
bias � usually tends to increase the band gap, we expect the
system keeps insulating irrespective of the specific value of h.

We now start to show the numerical results of general
parameters. In order to clarify the effect of the interspin
tunneling on the SF-to-MI transition, we vary h from zero
to some large value and calculate the corresponding charge
gap δL, which ought to be extrapolated to the L → ∞ limit.
From the knowledge of the 1D BH model, the system stays
at the SF phase (MI phase) for U↓ � 3.3 (U↓ � 3.3) and
h = 0, and potential phase transitions can take place when
increasing h. Figure 2(a) plots the charge gap δL as a function
of h for U↓ = 0. It can be seen that, starting from zero, the
charge gap gradually opens up when h exceeds the critical
value hc = 12.5(1), evidencing a SF-to-MI transition, as can

013322-3



JINGTAO FAN, XIAOFAN ZHOU, AND SUOTANG JIA PHYSICAL REVIEW A 109, 013322 (2024)

0.00 0.05 0.10
-0.7

-0.5

-0.3

μ−

μ+

μ

1/L

(a)

0.00 0.05 0.10
-3.9

-3.6

-3.3

μ−

DMRG
Fit

μ

1/L

(b)
μ+

FIG. 3. The finite-size scaling of chemical potentials μ+
L and μ−

L

for (a) h = 3.0 and (b) h = 8.0. The other parameters are � = 10,
U↓ = 3.6, and U↑ = ∞.

be inferred from the JCH physics [68]. The critical tunneling
strength hc decreases as we increase the on-site interaction
U↓, as shown in Fig. 2(b). In Fig. 2(d), we exemplify another
limit where the on-site interaction is considerably strong by
setting U↓ = 20. It can be found that, in this case, the gap
δL stays open irrespective of the value of h, meaning the
system remains a MI. Something interesting happens when
the on-site interaction U↓ is tuned slightly larger than Uc.
As illustrated in Fig. 2(c), we plot δL versus h for U↓ = 3.6.
With the increase of h, the gap first closes at h = 2.0(1) and
then reopens at h = 5.1(1), indicating that the phase transition
appears twice. That is, the system starts from the MI, and
subsequently traverses the SF phase, ending up in the MI
eventually. Figures 3(a) and 3(b) show finite-size scaling of
the DMRG data of the charge gap, by linear and quadratic
fittings, for two representative points located in the SF and
MI phases, respectively. This reentrant MI phase transition
induced by the interspin tunneling strength h does not exist
in the symmetric bosonic ladder with U↑ = U↓ and � = 0,
and is thus exclusive for the biased ladder here.

With the understanding above, we map out the phase di-
agram in the U↓-h plane in Fig. 4. The phase boundary has
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Uc

♦

U
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h
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SF

♦
Uc1

FIG. 4. The phase diagram in the U↓-h plane for � = 10 and
U↑ = ∞. The red solid line with square symbol (black solid line)
denotes The MI-SF phase boundary obtained by the DMRG calcula-
tion [Eq. (8)]. The values of hm (i.e., the location of the maximum
of the CF; see the main text) for each U↓ are also pinpointed in
the phase diagram by the blue solid line with circle symbol. For
comparison, location of the minimum of Ueff, determined by Eq. (9),
is plotted by the green dashed line. The shaded area, bounded by
critical interactions Uc = 3.30(2) and Uc1 = 3.91(2), characterizes
the parameter region where the MI-to-SF-to-MI transition can occur.

been extrapolated to the L → ∞ limit by the finite-size scal-
ing. It is to be seen clearly that, while increasing the on-site
interaction U↓ always drives the system to the MI phase, the
role of the interspin tunneling h can be somehow opposite,
i.e., it can trigger both the MI and SF phases, depending
on the value of U↓. Notice that the MI in the BH model is
essentially stabilized by the direct interaction between bosons,
whereas bosons with different spins are dressed together here,
forming composite polaritons. We therefore expect that some
effective interaction between polaritons, which plays the key
role of inducing different behaviors of the phase transition,
may emerge.

To see this clearly, we map the local contribution of the
Hamiltonian (1) into an effective Kerr nonlinearity by a simple
energy mismatch argument. As detailed in Appendix A, the
local energy of Hamiltonian (1) consists of two polaritonic
modes the eigenenergies of which are

ω±
n = U↓

2
n(n − 2) + 1

2
(� + U↓)

± 1

2

√
(nU↓ − U↓ − �)2 + 4nh2 (6)

where n is the excitation number. Since we are only interested
in the low-energy physics, the focus in the following will be
on the lower branch ω−

n . We define the effective Hubbard
interaction Ueff as the energy cost incurred by forming a
two-particle polaritonic excitation (with energy ω−

2 ) from two
single-particle polaritonic excitations (with energy 2ω−

1 ) in
neighboring lattice sites [69,70], i.e.,

Ueff = ω−
2 − 2ω−

1

= 1

2
(U↓ − �) +

√
�2 + 4h2

−
√

(U↓ − �)2 + 8h2

2
. (7)

With this understanding, we can obtain an analytical expres-
sion of the phase boundary between the MI and SF phases by
equating the effective interaction Ueff with the critical interac-
tion strength of the 1D BH model with unit filling, namely,

Ueff = Uc = 3.3. (8)

As shown in Fig. 4, the curve defined by Eq. (8) agrees well
with the numerical results obtained by the DMRG calcula-
tion. It should be emphasized that, in deriving Eq. (7), we
have implicitly assumed that the ground-state property of the
whole lattice system is mainly governed by its low-energy
local physics. This requires that (i) the energy scale owned
by each local lattice site is considerably larger than the kinetic
energy of bosons, namely, at least � � 1 or h � 1, and (ii)
the density fluctuations are weak enough so that only the
lowest-lying excitations of individual lattice sites need to be
taken into consideration. This guarantees the effectiveness
of Eq. (8) in predicting the MI-to-SF phase boundary, since
the density fluctuations are extremely suppressed in the MI.
Equation (7) provides further guidance to the driving force
inducing different phase transitions. An interesting finding is
that Ueff exhibits nonmonotonic behavior as h increases from
zero. As illustrated in Fig. 5(a), with the increase of h, the
effective interaction Ueff decreases first to a minimum and
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FIG. 5. (a) The effective Hubbard interaction Ueff as a function of
h for different U↓ with � = 10 and U↑ = ∞. (b) The CF calculated
for different system sizes. Note that the result of L → ∞ is obtained
by extrapolation using the finite-size scaling. hm specifies the loca-
tion of the maximum of the CF. The inset shows the finite-size scaling
of hm (blue symbols and line) and the CF at h = 3.4 (black symbols
and line). It is shown that hm does not change with the system size.
The other parameters are � = 10, U↓ = 3.6, and U↑ = ∞.

then increases monotonically [see blue line], which explains
the MI-to-SF-to-MI transition found in Fig. 4. The location
of the minimum of Ueff can be easily deduced by requiring
∂Ueff/∂h = 0, yielding a trivial solution h = 0 and a nontrivial
solution:

h =
√

�2 − (� − U↓)2

2
. (9)

It is straightforward to show that Eq. (9), within its range of
values, minimizes Ueff. The curve obtained from Eq. (9) is
depicted in Fig. 4. Notice that, whereas Ueff is minimized by
h = 0 when U↓ = 0, consistent with the JCH physics [67,68],
a nonzero U↓ shifts the location of the interaction minimum
(i.e., h = 0) to some finite value. Within this picture, an upper
bound of U↓, beyond which no SF phase would exist, can be
obtained. This is immediately achieved by substituting Eq. (9)
into Eq. (8), which is then solved by

U↓ = Uc1 ≡ � + Uc −
√

�2 − U 2
c . (10)

It becomes clear that the parameter region of U↓ within which
the MI-to-SF-to-MI transition can occur is Uc < U↓ < Uc1 .

An experimental measurable quantity that is able to mirror
the effective interaction is the condensate fraction (CF), de-
fined as the number of bosons in the condensate with respect
to the total number of bosons [65,72]. It has been shown
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FIG. 6. The phase diagram in the U↑-h plane with � = 10 and
(a) U↓ = 3.0, (b) U↓ = 3.6, (c) U↓ = 5.0, and (d) U↓ = 15.0.

that the condensate fraction of Bose gases monotonically de-
creases as the local interaction increases [65]. For the bosonic
ladder considered here, the CF is defined as the largest eigen-
value of the matrix 〈b̂†

i,σ b̂ j,σ ′ 〉 divided by the total number
of bosons [72]. Figure 5(b) shows the CF as a function of h
for U↓ = 3.6 and different system sizes. The values of L →
∞ are obtained by the standard finite-size scaling [the inset
of Fig. 5(b)]. It is demonstrated that the CF increases first,
reaching its maximum at h = 3.4(1), and then decreases. The
location of the maximum of CF, designated as hm, depends
sensitively on the value of U↓. As shown in Fig. 4, we plot
hm for varying U↓, which exhibits the same behavior as that
obtained from Eq. (9). The agreement between hm and Eq. (9)
signals that the picture of the effective interaction Ueff works
in a wide range of parameters, even inside the SF phase where
the density fluctuation is somehow enhanced.

B. Finite interaction bias: U↑ − U↓ < ∞
Having understood the physics of the bosonic ladder under

infinite interaction bias, we are now in the stage to explore
the more general parameter regime where the interactions of
both chains of the ladder are finite. Here we are particularly
interested in the influence of finite spin-up interaction on
various quantum phases. By calculating the charge gap δL with
extrapolation to the thermodynamic limit, we obtain the phase
diagrams in the U↑-h plane in Figs. 6(a)–6(d) with different
U↓. As shown in Fig. 6(a), in which the spin-down interaction
is fixed as U↓=3.0 (<Uc), the SF region is confined by a
smooth phase boundary, which extends up to U↑ → ∞ and
h → ∞. A phase transition from the SF to MI may occur
when increasing U↑ (h) for some fixed h (U↑). Increasing
the spin-down interaction slightly larger than Uc, for example
U↓ = 3.6, the MI can emerge for small h, penetrating the SF
region, as illustrated in Fig. 6(b). Importantly, as h approaches
infinity, the spin-up interaction delimiting different quantum
phases decreases and saturates to some critical value Uc2.

In fact, through an analysis of the polaritonic modes, the
MI-to-SF phase boundary in the h → ∞ limit can be de-
rived as U↑ + U↓ = 4Uc ≈ 13.2 (see Appendix B for details).
Setting U↑ = U↓ = U , we immediately reproduce the result
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FIG. 7. (a) The phase diagram in the U↑-h plane with U↓ = 3.6
and � = 0. (b) The phase diagram in the U -h plane with U = U↑ =
U↓ and � = 10.

of the symmetric case, i.e., U = 2Uc ≈ 6.6, obtained by the
bosonization method [26]. Under this framework, the critical
interaction Uc2 is straightforwardly written as

Uc2 = 4Uc − U↓. (11)

As marked in Fig. 6(b) by blue dashed line, the critical in-
teraction Uc2 defined above separates the phase diagram into
two distinct parameter regimes. For the U↑ > Uc2 side, there
may exist the interesting MI-to-SF-to-MI phase transition
we explored in Sec. III A, whereas for U↑ < Uc2, the MI-to-
SF phase transition can appear only once by monotonically
varying h.

Adopting the description of the effective interaction in-
troduced in Sec. III A, we anticipate that if U↓ is increased
to be larger than Uc1, a finite upper bound of U↑, beyond
which the SF phase disappears, can emerge. This is confirmed
by the phase diagram in Fig. 6(c), where we take U↓ = 5
[> Uc1 = 3.91(2)]. As expected, the SF phase is destroyed for
U↑ � 11, in contrast to the behavior shown in Figs. 6(a) and
6(b). Increasing U↓ further such that U↓ > 4Uc, the critical
interaction Uc2 touches zero, meaning that the SF disappears,
at least when h is sufficiently large. The phase diagram with
U↓ = 15 (>4Uc) is plotted in Fig. 6(d), from which we find
that the area of SF completely vanishes.

Up to now, our focus has been basically on the parameter
regime where both the interactions and potential energies of
the two chains are asymmetric. The individual effect incurred
by one of the two asymmetric ingredients, i.e., either the inter-
action asymmetry or the potential energy asymmetry, has not
been elucidated. Here we complement this study by plotting
two additional phase diagrams, each of which has only one
asymmetric ingredient. The phase diagram in the U↑-h plane
with zero energy bias (� = 0) and fixed spin-down interaction
(U↓ = 3.6) is plotted in Fig. 7(a). The phase diagram in this
case shares the same structure with that in Fig. 6(a), albeit
with shrunken SF area. It is also understood that no MI phase
can be found for sufficiently small h, contrasting the behavior
in Fig. 6(b), since a zero � always closes the charge gap for
lattices with noninteger filling at h = 0. As shown in Fig. 7(b),
by requiring the interactions of the two chains to be equal,
setting U = U↑ = U↓, we map the phase diagram in the U -h
plane with finite energy bias � = 10. With the increase of h,
the critical interaction of the SF-to-MI transition monotoni-
cally increases, asymptotically up to Uc2 = 6.60(4), showing
a distinct behavior compared to cases with asymmetric inter-
actions.

IV. DISCUSSION AND CONCLUSION

We first briefly discuss the precision of the transition points
located in the obtained phase diagrams. For h = 0, our model
reduces to the usual 1D BH model with unit filling, the tran-
sition point Uc of which has been obtained through widely
different techniques with considerably high precision [6–12].
Our DMRG calculation accompanied with a linear finite-size
scaling of the gap in the critical region produces Uc = 3.30(2)
(see Fig. 4 and caption). The obtained Uc here is in great
agreement with the recent estimations [e.g. Uc = 3.279(1) in
Ref. [10] and Uc = 3.311(1) in Refs. [11,12]]. As mentioned
at the end of Sec. II, the linear scaling relation in the critical
region extends to regimes with h �= 0, and we therefore expect
the transition points obtained in the whole phase diagram can
reach sufficiently high precision.

As mentioned in Sec. II, the considered model can be di-
rectly implemented with ultracold atoms inside optical lattices
under various experiment designs. For example, the bosonic
ladder can be prepared by growing optical superlattices, which
form a double-well structure along one direction [29,63]. The
tunneling strength h, on-site interactions U↑/↓, and energy
bias � can be independently controlled by properly tuning
the geometry of the optical double well. Alternatively, one
can employ spin-dependent optical lattices [62], where atoms
with different hyperfine states experience different lattice po-
tentials. In this scenario, � and h are respectively controlled
by the detuning and Rabi frequency of an additional coupling
laser, and the on-site interactions U↑/↓ can be tuned via Fes-
hbach resonances or the lattice depths experienced by atoms
with different spins. In spite of the research interests in the
model in its own right, our results offer beneficial insights
into engineering effective interactions on demand by dressing
different atomic internal states [55,64]. That said, our model
constitutes only a subset of the rich physics in the BH ladder
with coupled chains, and many interesting extensions are to
be applied in the future. For example, with a ladder structure,
the hopping process of atoms may carry nontrivial Peierls
phases, giving rise to synthetic gauge fields [73]. These gauge
fields may not only affect the MI-to-SF transitions dramati-
cally [23] but also induce various chiral currents [29,32–36].
Another direction is to fit the system into the grand-canonical
description by introducing a tunable chemical potential [3,48].
This may provide new perspectives on the magnetic or charge
correlations in Mott lobes with different filling factors.

In conclusion, we have theoretically studied the ground-
state properties of the BH ladder with half filling in a
biased configuration by using state-of-the-art DMRG nu-
merical methods. It is found that the interchain tunneling
can drive both the MI-to-SF and SF-to-MI quantum phase
transitions, depending on the value of interactions. A reen-
trant quantum phase transition between MI and SF has also
been predicted by setting the on-site interactions to inter-
mediate values. Under appropriate conditions, the model is
shown to be amenable to analytical treatment, predictions of
which concerning the phase boundary are in great agreement
with numerical results. Armed with this knowledge, we have
mapped out the full phase diagram and characterized some
critical parameters, separating the system into regimes with
distinct phase-transition behaviors.
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APPENDIX A: POLARITONIC MODES
OF THE LOCAL HAMILTONIAN

In this Appendix, we derive Eq. (6) in the main text. To that
end, we rearrange the Hamiltonian (1) as

Ĥ =
∑

j

Ĥ ( j)
L − t

∑
〈i, j〉,σ

b̂†
i,σ b̂ j,σ (A1)

where

Ĥ ( j)
L = −h(b̂†

↑b̂↓ + H.c.) + �(n̂↑ − n̂↓)

+
∑

σ

Uσ

2
n̂σ (n̂σ − 1) (A2)

describes the local physics at lattice site j. Note that we have
omitted the subscript j in the right-hand side of Eq. (A2)
for simplicity. The Hamiltonian (A2) can be spanned by the
Fock basis |n↓, n↑〉, where n̂σ is the occupation number for
bosons with spin σ (=↑,↓). In the U↑ → ∞ limit, a hardcore
constraint on the spin-up bosons can be imposed, meaning
that we only need to retain the states |n, 0〉 and |n − 1, 1〉
with the total occupation n = n↓ + n↑. The polaritonic modes
of Hamiltonian (A2) are therefore admixtures of |n, 0〉 and
|n − 1, 1〉, and the eigenenergies are readily diagonalized as

ω±
n = U↓

2
n(n − 2) + 1

2
(� + U↓)

± 1

2

√
(nU↓ − U↓ − �)2 + 4nh2. (A3)

APPENDIX B: EFFECTIVE LOW-ENERGY DESCRIPTION
IN THE h → ∞ LIMIT

Here we provide an effective low-energy description of the
model in the h → ∞ limit. We first introduce two branches of
quasimodes b̂ j,+ and b̂ j,− defined as

b̂ j,+ = 1√
2

(b̂ j,↑ + b̂ j,↓), (B1)

b̂ j,− = 1√
2

(b̂ j,↑ − b̂ j,↓). (B2)

Under the transformations of Eqs. (B1) and (B2), the Hamil-
tonian (1) is rewritten as

Ĥ =
∑

j

Ĥ ( j)
L − t

∑
〈i, j〉

(b̂†
i,+b̂ j,+ + b̂†

i,−b̂ j,−) (B3)

where the local Hamiltonian reads

Ĥ ( j)
L =

(
U↓
8

+ U↑
8

)
[(n̂ j,+ + n̂ j,−)2 + (b̂†

j,+b̂ j,− + b̂†
j,−b̂ j,+)2

− 2(n̂ j,+ + n̂ j,−)] +
(

U↓
4

− U↑
4

)
[(b̂†

j,+b̂ j,−

+ b̂†
j,−b̂ j,+)(n̂ j,+ + n̂ j,− − 1)] + �

2
(n̂ j,+ + n̂ j,−

− b̂†
j,+b̂ j,− − b̂†

j,−b̂ j,+) + h(n̂ j,+ − n̂ j,−). (B4)

It follows from Eq. (B4) that the low-energy physics is
dominated by bosons on the “−” polaritonic branch in the
h → ∞ limit. We thus anticipate an effective low-energy the-
ory which is purely described by field operators of the “−”
polaritonic branch. The simplest way to achieve this is to
average the Hamiltonian (B3) with respect to the vacuum state
of the “+” polaritonic branch, yielding

Ĥeff =
∑

j

[(
�

2
− h

)
n̂ j,− + Ũ

2
n̂ j,−(n̂ j,− − 1)

]

− t
∑
〈i, j〉

b̂†
i,−b̂ j,− (B5)

where Ũ = (U↓ + U↑)/4. Notice that the effective description
in the Hamiltonian (B5) becomes accurate when h approaches
infinity. More importantly, the Hamiltonian (B5) is written
in the same form of the 1D BH model with effective on-
site interaction Ũ . It follows that the physics of our ladder
system in this limit can be effectively described by the 1D
BH model with simple substitution of system parameters.
Given this, the SF-to-MI phase boundary is readily obtained as
Ũ = Uc ≈ 3.3.
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