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Spectrum and quench-induced dynamics of spin-orbit-coupled quantum droplets
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We investigate the ground state and dynamics of one-dimensional spin-orbit coupled (SOC) quantum droplets
within the extended Gross–Pitaevskii approach. As the SOC wave number increases, stripe droplet patterns
emerge, with a flat-top background, for larger particle numbers. The surface energy decays following a power-law
with respect to the interactions. At small SOC wave numbers, a transition from Gaussian to flat-top droplets
occurs for either a larger number of atoms or reduced intercomponent attraction. The excitation spectrum shows
that droplets for relatively small SOC wave numbers are stable, otherwise stripe droplets feature instabilities as a
function of the particle number or the interactions. We also witness rich droplet dynamical features using velocity
imprinting and abrupt changes in the intercomponent interaction or the SOC parameters. Characteristic responses
include breathing oscillations, expansion, symmetric and asymmetric droplet fragmentation, admixtures of single
and stripe droplet branches, and erratic spatial distributions suggesting the triggering of relevant instabilities.
Our results reveal the controlled dynamical generation and stability properties of stripe droplets that should be
detectable in current cold-atom experiments.
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I. INTRODUCTION

Cold atoms constitute fertile platforms to unravel a di-
versity of many-body phenomena, such as supersolidity [1],
quasiparticles [2,3], Anderson localization [4,5], and self-
bound states of matter, e.g., quantum droplets (QDs) [6,7].
The latter appears as the result of the competition between
repulsive mean-field interactions and attractive quantum fluc-
tuations in one-dimension (1D) being the focus of our study.
The lowest-order quantum correction is represented by the
Lee-Huang-Yang (LHY) term [8], which in turn leads to the
concept of the extended Gross–Pitaevskii equation (eGPE)
[6,7,9] describing self-bound states; see also Refs. [10–13] for
beyond-LHY effects. Historically, QDs have been first exper-
imentally observed in dipolar gases [14–16] and much later
in mixtures thereof [17,18]. Meanwhile, they were realized
in binary short-range homonuclear [19,20] and heteronuclear
[21,22] bosonic settings.

In this latter case, which we also explore herein, the main
focus of research has been to examine the ground-state droplet
configurations with respect to the involved atom number and
mean-field interactions [7]. For instance, it was explicated
that a decreasing intercomponent attraction or larger particle
number leads to a transition from Gaussian (or soliton-like)
droplet distributions to flat-top (FT) ones [3,6,7]. Specifi-
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cally, when FT is reached by loading more atoms renders
the configuration wider while maintaining the same peak
density manifesting droplet incompressibility. Another inter-
esting feature of droplets is their well-defined surface tension,
which, together with their kinetic energy, plays a crucial
role in achieving their stability when the former dominates
[7,23,24]. Moreover, basic properties of their underlying exci-
tation spectrum [25,26], triggering of modulational instability
events [27,28] and the impact of nonlinear excitations such
as dark solitons [29,30] and vortices [31,32] were discussed.
Very recently, other generically unstable bound states called
bubbles [26,29] existing at more negative chemical potentials
have been identified. On the other hand, notable examples of
the droplet dynamical response include their collision prop-
erties in one [23,26], two [33], and three dimensions (1D,
2D, and 3D) [24]. It was showcased that mainly slow-moving
droplets merge, and fast ones feature quasi-elastic collisions.
Especially in 1D, they can even fragment [23], while their
interactions can be explained through an effective particle
picture [26]. Additionally, scattering processes of 1D droplets
against a potential well in terms of their velocity and particle
number were analyzed [34].

The majority of the above investigations were based on
the reduction of the genuine two-component mixture into an
effective single-component one (justified under specific sym-
metry conditions [6,7]) but also in the absence of spin-orbit
coupling (SOC). To appreciate the role of intercomponent
interactions, the first steps towards the two-component sys-
tem have been taken recently without [11,35] and with SOC
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[36–40]. An immediate additional feature that SOC brings
into play is the formation of stripe patterns [41–43], which
here build upon the droplet background as it was shown for
varying mean-field interactions in Ref. [38]. For instance,
in 2D Sachdeva et al. demonstrated the transition from the
supersolid stripe phase to the zero-momentum droplet upon
increasing the Rabi coupling for fixed SOC wave number
[44]. This characteristic poses fundamental questions related
to the underlying excitation spectrum that remains elusive
and could allow us to infer the structural stability of SOC
droplets. In this context, also alterations between phononic
and rotonic-like excitations could be revealed. Along the same
lines, the behavior of the surface energy of the stripe droplet
is not yet understood. Another intriguing direction concerns
the dynamical response of these droplet configurations. For
vanishing mean-field interactions, where soliton structures
take place [37], it was argued that their dynamics, following
velocity perturbations or interaction quenches, exhibit breath-
ing oscillations, moving states, spin flipping or generation
of secondary solitons. For finite interactions, the droplet was
shown to be more stable against perturbations [38]. It is, how-
ever, still open whether, for finite interactions, other response
regimes can be entered, such as droplet fragmentation or spon-
taneous generation of stripe droplets due to the interplay of
different energy contributions. In the present work, we tackle
these issues by employing a 1D symmetric SOC bosonic
mixture, which one could describe within a corresponding
two-component eGPE model.

We find that, for large SOC wave numbers and finite in-
teractions, stripe QDs occur, and their density background
saturates to a FT for increasing atom number. On the other
hand, at small wave numbers, it is possible to tune the tran-
sition from Gaussian to FT droplet distributions for larger
(smaller) atom numbers (due to intercomponent attraction)
[23]. The kinetic energy shows an interaction-dependent max-
imum at the transition threshold, while the surface energy
decays in a power-law fashion as a function of the relative
interaction ratio for both stripe and standard droplets. The sta-
bility of the configurations is studied through their excitation
spectrum, constituting a central result of our work. In the case
of small SOC wave numbers, Gaussian and FT droplets are
stable irrespective of the atom number or the magnitude of the
interactions. This result is in line with the spectral stability
of symmetric droplets appearing in short-range interacting
bosonic mixtures [25,26]. However, further increasing the
SOC wave number where stripe droplets with FT background
occur instabilities arise with respect to both the atom number
and the intercomponent attraction.

The dynamical response of the SOC droplets is dictated
by the interplay of the involved energy contributions. We
mainly consider four distinct situations: (i) initial velocity
imprinted on the droplet components as well as quenches
on (ii) the intercomponent attractive coupling, (iii) the Rabi
coupling, and (iv) the SOC wave number. Focusing on veloc-
ity perturbations, we exemplify that, irrespective of the SOC
wave number and for increasing velocity, the droplet either
performs breathing motion or breaks into moving droplets
since the attractive SOC energy term prevails. The interaction-
dependent character of the breathing frequency and critical
velocity (moving droplets) are also analyzed. Specifically,
the breathing frequency is smaller for stripe droplets, and

the FT region features a power-law decay with the inverse
of the particle number. Turning to intercomponent interac-
tion quenches, we show that, for larger quench amplitudes:
(i) reducing the attraction leads either to droplet expansion
or splitting into two counterpropagating fragments, and (ii)
increasing the attraction gives rise to a droplet breathing or
breaking into several fragments. Moreover, sudden modifica-
tions on the Rabi coupling are associated with the generation
of a stripe droplet and asymmetric droplet fragmentation pro-
cesses. Finally, quenches on the SOC wave number enforce
the nucleation of both single and stripe droplet branches or
erratic spatial distributions that manifest the unstable nature
of the dynamics due to the strongly attractive SOC term.

The structure of this work proceeds as follows: In Sec. II,
we describe the bosonic mixture and the eGPEs used to
capture SOC QDs. Next, we discuss the SOC ground-state
quantum droplet (QD) configurations for different parametric
variations together with the underlying excitation spectrum
identifying the stability properties in Sec. III. Section IV nar-
rates the dynamical response of the droplets utilizing velocity
perturbations but also quenches on the interaction or SOC
parameters. We conclude and elaborate on future research
directions in Sec. V. Appendix A provides the matrix elements
of the linearized eigenvalue problem. In Appendix B, we
describe the dependence of the droplet breathing frequency in
terms of the SOC characteristics, and in Appendix C we show-
case the generation of stripe droplet branches after quenching
the SOC wave number.

II. BEYOND MEAN-FIELD MODEL FOR
SPIN-ORBIT-COUPLED DROPLETS

We consider a 1D pseudo-spin-1/2 bosonic gas experi-
encing strong transverse confinement such that the motion in
these directions is frozen [41]. The involved spin states feature
the same intracomponent repulsion g↓↓ = g↑↑ ≡ g and inter-
component attraction of strength g↑↓ which enables to enter
the droplet regime in the presence of quantum fluctuations.
The corresponding coupled set of eGPEs in dimensionless
units [36–38] reads

i∂tψ↑ =
[

− 1

2
∂2

x − ikL∂x + δg

2
(|ψ↑|2 − |ψ↓|2) + g|ψ↑|2

+ g↑↓|ψ↓|2 − g3/2
LHY

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↑ + �ψ↓,

(1a)

i∂tψ↓ =
[

− 1

2
∂2

x + ikL∂x + δg

2
(|ψ↓|2 − |ψ↑|2) + g↓↑|ψ↑|2

+ g|ψ↓|2 − g3/2
LHY

π

√
|ψ↑|2 + |ψ↓|2

]
ψ↓ + �ψ↑.

(1b)

Here, ψ↑ (ψ↓) denotes the 1D wave function of the spin-up
(down) component, kL is the spin-orbit wave number, and �

refers to the Rabi coupling frequency among the aforemen-
tioned spin states. The assumption of equal intracomponent
repulsions and atom number per component leads to |ψ↑| =
|ψ↓|. For this reason, we choose to discuss below the features
of the total wave function of the SOC system. Moreover,
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the strength of the LHY first-order quantum correction is
gLHY = g while δg = g↑↓ + g is the mean-field balance point.
Additionally, we employ the following condition on the sys-
tem wave function [23]:∫ ∞

−∞
[|ψ↑|2 + |ψ↓|2]dx = 2N, (2)

where 2N is the normalization constant. It determines the
normalized number of particles in the droplet (see also the
discussion below).

The energy of the system is measured in terms of h̄ω⊥,
with ω⊥ being the trap frequency in the transverse direction.
In this sense, the characteristic length scale is set by the
transverse harmonic-oscillator length a⊥ = √

h̄/(mω⊥) and
time is expressed in units of ω−1

⊥ . Also, g = 2Na↑↑/a⊥ and
g↑↓ = 2Na↑↓/a⊥, where a↑↑ (a↑↓) refers to the 3D intra-
component (intercomponent) s-wave scattering length which
is tunable via Feshbach resonances [20]. N denotes the total
particle number. The SOC wave number and intensity (Rabi
coupling) are rescaled as kL → k̃La⊥ and � → �̃/ω⊥, respec-
tively, while the wave function as ψ↑,↓ = ψ̃↑,↓

√
a⊥. Here, the

tilde quantities represent the dimensionfull ones.
Experimentally, our setup is realizable with a

binary mixture consisting of the hyperfine states
|↑〉 ≡ |F = 1, mF = −1〉 and |↓〉 ≡ |F = 1, mF = 0〉
of 39K [19,24,45]. The validity of the 1D geometry is
ensured by employing strong transverse confinement of
frequency ω⊥ = 2π × 800 Hz resulting in a⊥ = 0.568 µm,
while along the axial direction either a box potential or a
relatively suppressed confinement (e.g., ωx = 2π × 50 Hz)
can be used [19]. Moreover, the total particle number
in the droplets herein is assumed to take values in the
interval N ≈ [104, 106], which is achieved by varying
the normalization constant of Eq. (2) within the range
N = [1, 300]. On the other hand, by choosing the scattering
length values a↑↑ = a↓↓ = 0.5367a0/N , where a0 is the
Bohr radius, a nearly negligible mean-field interaction
(i.e., δg ≈ 0) is attained, leading to a dimensionless
intracomponent coupling g = gLHY = 1. Turning to a
finite δg, the intercomponent interaction takes values
g↑↓ = [−0.99,−0.6], allowing for δg = [0.01, 0.4] that
can be obtained with a↑↓ = 1/N[−0.5313a0,−0.322a0].

The Rabi coupling frequency � depends on the intensity
of the underlying Raman lasers [46,47] and can be typi-
cally adjusted in the experiment within the interval �̃ =
2π × [0.8, 24] kHz. The latter corresponds to a dimensionless
Rabi coupling frequency � = [1, 30]. Additionally, the wave
number of the spin-orbit coupling (kL) is tunable via either
the laser’s geometry or wavelength [41,42,46]. Below, we
consider values of the dimensionless SOC wave number kL =
[0.1, 3], which are related to variations of the laser wavelength
from λL = 25.23 µm to 841 nm [46].

To address the ground-state properties of the SOC droplet
setting described by Eqs. (1a) and (1b), we employ an
imaginary time propagation method using a split-step Crank-
Nicolson scheme [48–50]. In the adopted dimensionless units,
the considered box size corresponds to L = 307 with spatial
resolution dx = 0.025, and for the dynamics, a fixed time step
dt = 10−5 is utilized. A Gaussian initial ansatz is used with
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FIG. 1. Density deformation of a nonmodulated QD with � = 1
and kL = 0.5. The total density is presented for (a) fixed mean-field
interactions δg/g = 0.1 and varying normalized atom number N and
(b) for constant N = 10 and different δg/g. The droplet transforms
from the Gaussian-like configuration to a FT one for larger N fea-
turing a saturation peak density in the FT regime. The transition
threshold value dictated by N decreases for larger δg/g. However,
increasing δg/g while N held constant leads to a decrease of the
peak density and a flattened profile, e.g., in the case of N = 10 for
δg/g � 0.3.

antisymmetric profiles between the components, i.e., ψ↑(x) =
−ψ↓(−x).

III. SPIN-ORBIT-COUPLED DROPLET CONFIGURATIONS
AND THEIR SPECTRUM

A. Different droplet and stripe phases

As explicated above, it is known that QDs of binary short-
range bosonic mixtures, in the absence of SOC, assemble in
different phases upon variations of the system parameters,
namely, the atom number [23,51], the mean-field interac-
tions [11,25], but also the trap strength [30]. For instance,
using fixed interactions and a larger particle number, the QD
experiences a transition from a quasi-Gaussian soliton-like
structure to a FT configuration [23]. On the other hand, it was
recently demonstrated that the presence of SOC is responsi-
ble for spatial undulations, so-called stripes, of the droplet
for different interactions and keeping the remaining system
parameters fixed [38]. Below, we analyze emergent ground-
state properties of SOC droplets, especially focusing on the
interplay between the involved mean-field interactions and the
normalized atom number.

Initially, we study the ground-state density behavior of
QDs for varying normalized atom number but fixed interac-
tion strengths, i.e., δg/g = 0.1 with g = 1, and g↑↓ = −0.9,
as well as constant Rabi coupling � = 1, and SOC wave
number kL = 0.5, see Fig. 1(a). Notice that the choice of
small kL = 0.5, satisfying k2

L < �, ensures a nonspatially
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FIG. 2. (a) The total chemical potential μ and (b) the total kinetic energy with respect to N for different interaction strengths δg/g (see
legend), with the other parameters being the same as in Fig. 1. The chemical potential shows a decreasing trend for larger N in the quasi-
Gaussian droplet regime and saturates above a threshold value Nc, beyond which a FT structure occurs. The aforementioned saturation value
of μ becomes larger for increasing δg/g. The Eki attains its maximum at the transition Nc. (c) The behavior of the surface energy Es in terms
of δg/g is shown. Upon fitting, it is found that the surface energy satisfies Es ∼ (δg/g)−2.47. The green-dotted line with empty squares presents
the difference of Es among the cases with SOC wave numbers kL = 0.5 and kL = 2. The black-solid line represents the many-body results
reported for a binary short-range droplet using quantum Monte Carlo simulation (QMC) by Parisi and Giorgini [51]. The observed deviations
with the eGPE predictions are partly attributed to the presence of SOC (in the current setup) but also to residual beyond-LHY correlations that
are taken into account within QMC.

modulated (i.e., absence of stripe) structure in the droplet and
thus the emergent configurations are similar to those in the
absence of SOC [37,38,50]. Indeed, the QD shows a transi-
tion from a quasi-Gaussian shape for small N , e.g., N = 10,
towards a FT profile for larger N . Specifically, increasing
N leads to a gradual broadening of the width and the peak
amplitude of the QD. After a certain normalized particle num-
ber threshold being here N � 100, the FT (peak density) of
the QD saturates, and solely the width increases. The latter
behavior is a manifestation of the incompressible nature of
the QD [6,7,9], while the above-mentioned threshold value
depends, of course, on δg/g.

Next, we examine the impact of the effective mean-field
interaction parameter, namely, δg/g, on the QD shape. The
remaining system parameters are held fixed as in the previ-
ous case while N = 10 is considered. Figure 1(b) presents
the respective QD density profiles for different δg/g, where
since g = 1 a larger δg/g refers to a decreasing magnitude
of intercomponent attraction g↑↓. It can be readily deduced
that for relatively small δg/g, for instance, δg/g = 0.05, the
relevant density distribution is Gaussian-like. However, as
δg/g acquires larger values or equivalently, the intercompo-
nent attraction becomes smaller in magnitude, and the QD size
tends to increase, accompanied by simultaneous reduction of
the peak density. The latter saturates for further increasing
δg/g, see for example, δg/g = 0.4, displaying a FT shape that
persists for larger values of δg/g where only the width of the
QD keeps expanding. Overall, we once more observe that the
droplet undergoes a transition from a quasi-Gaussian to a FT
profile while attaining an intermediate broader Gaussian state,
either for larger N and fixed δg/g or by increasing δg/g for
constant N .

The appearance of the three above-described structural
regimes for distinct N indicates the decisive competition be-
tween the individual energy contributions. In general, the
existence of a self-bound state can be attributed to the balance
between destabilizing and stabilizing terms in the system. For
example, the attractive SOC and LHY terms attempt to desta-

bilize the droplet, while the repulsive mean-field and kinetic
energies could assist its stability. Indeed, at low N , the kinetic
energy dominates over the mean-field energy, resulting in a
narrow Gaussian-shaped QD. Meanwhile, at intermediate N ,
the mean-field energy surpasses the kinetic energy, leading to
broader Gaussian-like droplets. Following a further increase
of N , there is a corresponding increase in the repulsive mean-
field energy and vanishing kinetic energy, ultimately leading
to a FT QD structure [23].

We confirm these intriguing characteristics of the distinct
droplet states by examining the competition of the system’s
energy terms. As a first step, we provide in Fig. 2 the total
chemical potential and the underlying kinetic energy of both
components as a function of N . It is evident that μ becomes
more negative for larger N , and, eventually, depending on the
value of δg/g, it tends to a constant value [Fig. 2(a)]. For
instance, in the case of δg/g = 0.05, the saturation of μ takes
place at a higher N as compared to δg/g = 0.1. This implies
that, for larger N , the system attains a stronger bound state.
Conversely, the kinetic energy initially increases as long as
the QD refers to a narrow Gaussian; it reaches a maximum
when the droplet acquires a broader Gaussian distribution and
decreases in the FT region [Fig. 2(b)].

To further understand the modifications of the QD distribu-
tion, it is quite relevant to explore the so-called surface energy
term. Recall that at large δg/g, the droplet reaches a FT profile
with its density maximum being insensitive to larger δg/g,
and only its width becomes wider. The surface energy of the
QD, in 1D, can be estimated through the standard liquid drop
model, namely, expressing the total energy per particle within
the large-N limit [23,51] as follows:

E

N
= Ev + Es

N
. (3)

The first term Ev represents the bulk energy, and the second
one is the correction due to the finite atom number, which
scales as 1/N and depends on the surface energy coefficient
Es. Determining the energy per particle, E/N , for fixed δg/g
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FIG. 3. (a) Total density profiles of the quantum stripe droplet
at δg/g = 0.1 for several values of N (see legend). The droplet con-
figuration accommodates a larger number of stripes as N increases,
and eventually, its background flattens. (b) The number of resulting
stripes as a function of the normalized atom number N for various
interactions δg/g (see legend). Other system parameters are g = 1,
� = 1, and kL = 2.

yields that it obeys a linear trend with increasing 1/N . Since
the slope of E/N is proportional to Es, we next determine the
latter with respect to δg/g for the SOC wave number kL = 0.5
as well as kL = 2 (stripe phase) of the droplet, see Fig. 2(c). It
is found that Es features a power-law dependence on δg/g with
an exponent of −2.47. This behavior signals the reduction of
Es in the FT region and is attributed to the respective incom-
pressible character. The difference of Es between kL = 0.5 and
kL = 2 is significant at relatively small δg/g, and it decreases
for δg/g > 0.25, where the FT background becomes more
prominent, see in particular the green-dotted line with empty
squares in Fig. 2(c).

Subsequently, we employ a larger SOC wave number, such
as kL = 2, which enforces significant spatial undulations in
the droplet density and thus allows us to access the stripe
phase [37]. For simplicity, we use � = 1, and examine the
ground state of the stripe QD as a function of N for a fixed
δg/g = 0.1, as depicted in Fig. 3(a). Apparently, the SOC
wave vector utilized imprints stripe patterns in the droplet
density almost irrespective of N . However, the number of
these stripes crucially depends on N and, in particular, in-
creases for larger N , as shown in Fig. 3(b) as well. This is
expected, as an increasing N leads to a wider background,
which can naturally host more stripes. Interestingly, beyond
an interaction-dependent normalized particle number thresh-
old (e.g., for δg/g = 0.1, it refers to N � 100), the peak
density of the central stripes attains that of the bulk density
and remains unaltered for larger N . Similar to the nonmodu-
lated droplet phase, only the width (size) of the bulk density
increases for higher N , while the central distribution features

FIG. 4. The real (upper panels), Reω, and the imaginary (lower
panels), Imω, parts of the first twenty lower-lying eigenvalues of
Eq. (5) as a function of N for (a), (b) kL = 0.5 and (c), (d) kL = 2
(stripe phase). Here, the parameters δg/g = 0.1 and � = 1 are kept
fixed. Apparently, when kL = 0.5 the eigenvalues remain purely real,
indicating the dynamical stability of the SOC droplet. However,
imaginary contributions of the eigenvalue exist for kL = 2 indepen-
dently of N , suggesting the dynamical instability of the stripe droplet.

a flattened behavior. Therefore, the number of stripes in the
droplet continues to increase. This is explicitly shown in
Fig. 3(b) for distinct interactions. Accordingly, the number of
stripes is also enhanced at a given N (especially for N > 10)
for larger δg/g, which favors a more spatially extended back-
ground.

B. Excitation spectrum of the spin-orbit-coupled droplet phases

To extract the excitation spectrum and analyze the stability
properties of the previously discussed SOC droplet solutions,
we perturb the latter according to

	 j (x, t ) = e−iμ j t [ψ j (x) + u j (x)e−iωt + v∗
j (x)eiω∗t ]. (4)

In the above expression, ψ j and μ j denote the complex
ground-state wave function and chemical potential of the
j = (↑,↓) component. Furthermore, uj and v j denote the
Bogoliubov amplitudes (i.e., the resulting eigenvectors), while
ω refers to the eigenfrequency of the perturbation. Upon sub-
stituting the ansatz of Eq. (4) into the eGPE [Eq. (1)], we
obtain the following linearized eigenvalue problem:

L

⎛
⎜⎜⎝

u↑
v↑
u↓
v↓

⎞
⎟⎟⎠ = ω

⎛
⎜⎜⎝

u↑
v↑
u↓
v↓

⎞
⎟⎟⎠, (5)

where the matrix

L =

⎛
⎜⎜⎝

f1 Y1 Z1 Z2

−Y ∗
1 − f ∗

1 −Z∗
2 −Z∗

1
Z∗

1 Z2 f2 Y2

−Z∗
2 −Z1 −Y ∗

2 − f ∗
2

⎞
⎟⎟⎠.

We provide the explicit values of the matrix elements in
Appendix A. Using the normalization condition

∫
(|u j |2 −

|v∗
j |2)dx = 1, we obtain the eigenspectrum by numerically

solving det(L) = 0. Figure 4 shows the variation of the
real and the imaginary parts of few low-lying eigenvalues ω

with respect to N for different SOC wave numbers, namely,
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FIG. 5. (upper panels) Real, Reω, and (lower panels) imaginary,
Imω, parts of the eigenvalues of Eq. (5) with varying δg/g for (a),
(b) kL = 0.5, and (c), (d) kL = 2. In all cases N = 10 and � = 1. For
kL = 0.5 the spectrum remains purely real, implying the dynamical
stability of the droplet for all δg/g, while for kL = 2 the presence of
imaginary eigenvalues evinces the dynamical instability of the stripe
droplet.

kL = 0.5 [Fig. 4(a)] and kL = 2 [Fig. 4(b)], with fixed � = 1.
Focusing on kL = 0.5, we observe that the eigenvalues remain
purely real (with the imaginary part being zero) regardless of
N , i.e., for both the Gaussian and the FT droplet phases. This
behavior affirms the dynamically stable nature of the droplet
which has been shown already for the binary short-range
interacting droplet setting without SOC [25,26,30]. However,
for the stripe droplet phase (kL = 2), the eigenvalues exhibit a
non-negligible imaginary contribution for all N [cf. Figs. 4(c)
and 4(d)], indicating the involvement of dynamical instabili-
ties in this case. In a similar vein, analyzing the eigenvalues
for kL = 0.5 and kL = 2 by keeping the normalization of the
droplet fixed (N = 10) and varying δg/g, we find that the
eigenvalues remain purely real in the former case and are
complex in the latter phase, as depicted in Fig. 5. Interestingly,
an increase in δg/g results in the decrease of the magnitude of
the real and imaginary parts of the eigenvalue for kL = 0.5
and kL = 2, respectively. This feature of ω for increasing δg/g
can be attributed to the accompanied decrease of the chemical
potential also realized for the binary droplet in the absence
of SOC [26]. A more detailed analysis of the underlying
instabilities and their effects as well as their dependence on
the remaining system parameters is a fruitful prospect for
future work. Finally, notice here that also the case of nonzero
quasimomenta can be taken into account with multiplying the
term ≈eikx in the linearization ansatz of Eq. (4) which will
reveal the presence of the zero-momentum and plane wave
[52–54] besides the stripe one that we find in the present
analysis.

IV. DYNAMICS OF SPIN-ORBIT-COUPLED
QUANTUM DROPLETS

Having analyzed the ground-state properties of the droplet
phases under the influence of SOC, we next proceed to study
the dynamical response of these entities subjected to different
external perturbations. These include (i) imprinting an initial
velocity to the droplet through a uniform change in the phase

of its ground-state wave function, (ii) following a quench
of the mean-field interaction parameter, or (iii) applying a
quench to the Rabi coupling. The time evolution of both the
standard droplet and the striped one is examined. As in the
recently studied case [37] of vanishing mean-field interactions
(δg = 0), dominant emergent features are breathing motion
and dynamical fragmentation of the droplet into multiple frag-
ments as well as droplet splitting for increasing magnitude of
its initial velocity.

A. Impact of the initial velocity: Transition from breather to
fragmented droplets

Here, we explore the response of droplets subjected to a
phase shift on the ground-state wave function of the indi-
vidual components, namely, ψ (x, t = 0) = ψ↑ exp (−ivx) +
ψ↓ exp (+ivx). As a case example, an FT droplet containing
N = 120 atoms and characterized by � = 1, kL = 0.5, g = 1,
and g↑↓ = −0.9 (δg/g = 0.1) is employed. The resultant dy-
namics of such a droplet are presented in Figs. 6(a)–6(c) for
different velocities, namely, v = 0, v = 0.17, and 1. In the
case of v = 0, the droplet remains unperturbed throughout
the evolution, thus confirming its stable nature [Fig. 6(a)].
However, for finite velocities, the droplet response is dras-
tically modified [see Figs. 6(b) and 6(c)]. For instance, at
v = 0.17, the phase perturbation triggers internal excitations
of the droplet that are predominantly of breathing type, as can
be seen in Fig. 6(b). Interestingly, the breathing droplet splits
into two parts around t ≈ 40, which then recombine at t ≈
180 into a single droplet. In the vicinity of the droplet split-
ting, the kinetic-energy contribution dominates. Afterwards,
t ≈ 180, the single excited droplet separates again into two
oppositely moving and not equal mass droplets. Notice here
that a smaller normalized atom number which is related to a
quasi-Gaussian droplet undergoes solely a breathing motion.
A further increase of the initial velocity, e.g., v = 1 depicted
in Fig. 6(c), leads to a dynamical fragmentation process of the
FT droplet. Indeed, the fragmented density parts here consist
of four outer counterpropagating droplets featuring breathing-
like oscillations and an inner quasistationary droplet residing
around x = 0. The number of fragmented droplets depends
strongly on the involved normalized particle number, e.g., it is
three for N = 80 and five for N = 120.

Turning to the effect of velocity perturbations on the
stripe droplet state we observe a somewhat modified response
[see Figs. 6(d)–6(f)]. Here, the employed ground-state stripe
droplet waveform is characterized by N = 200, � = 1, and
kL = 2, while the interaction parameters are the same as in the
above discussion. For these parameters, the respective ground-
state configuration turns out to contain nineteen stripes. As
expected, for v = 0, the stripe droplet (independently of N)
is unchanged in both size and shape in the course of the
evolution verifying the stability of the state [Fig. 6(d)]. How-
ever, for finite velocities (e.g., v = 0.5), the droplet stripe
experiences internal excitations corresponding to the vibra-
tional motion of the participating stripes [see Fig. 6(e)]. This,
in turn, results in an overall breathing motion of the entire
background accompanied by the emission of density portions
that become more pronounced for a higher number of atoms.
This dynamical response will be referred to in the following
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FIG. 6. Total density evolution of different SOC QDs subjected at t = 0 to velocity perturbations (a), (d) v = 0, (b) v = 0.17, (c), (f)
v = 1, and (e) v = 0.5. The droplets are characterized by SOC wave number (a)–(c) kL = 0.5 for N = 120 and (d)–(f) kL = 2 for N = 200.
They are initiated in the ground state where g = 1, g↑↓ = −0.9 (δg/g = 0.1), and � = 1. When v = 0, the QD propagates undistorted, while
for finite velocity, it features a gradual transition from a breather [panel (e)] to moving [panels (c), (f)], i.e., multiple fragmented ones due to
the dominant kinetic term contribution. The number of fragmented QDs increases for larger N . The color bar indicates the total density.

as breather-like droplet; it occurs also for the standard droplet
described above (not shown). Importantly, upon considering
higher velocities, namely, v = 1 here, there is a transition
to the so-called fragmented droplet dynamical stage as can
be clearly seen in Fig. 6(f). This fragmentation process is
associated with the dominance of the attractive SOC energy
term, and it means that the initial droplet breaks into several
smaller ones whose specific number and behavior are dictated
by the particle number. For instance, when N = 200 at short
evolution times (t < 20), the strong perturbation causes stripe
collisions and coalescence. As a result, there is a burst of
density emission (radiation) from the “surface” of the droplet
accompanied by the nucleation of four counterpropagating
stripe droplets featuring breathing excitation. These outer
moving droplet stripes retain their nature for long evolution
times. In contrast, for N = 180 (not shown), the perturbation-
induced initial stripe collisions lead to the droplet breaking
into three parts, with the central one resembling a breather
stripe droplet and the outer ones traveling outwards.

The transition from the breather to the fragmented or mov-
ing droplet regime is naturally characterized by a critical
velocity vc above which this structural deformation occurs.
This critical velocity is determined by identifying the velocity
at which the total energy at t > 0 attains its minimum value
for a given set of parameters. Recall that the total energy of
a stripe ground-state droplet decreases for a larger number of
stripes. The behavior of vc for kL = 0.5 (droplet) and kL = 2
(stripe droplet) as a function of the normalized atom number
N for δg/g = 0.05, 0.1 is depicted in Figs. 7(a) and 7(b),
respectively. In both cases, i.e., striped or not droplet, vc has an
increasing trend with N , showing a maximum at the normal-
ized particle number at which the transition from the broader
Gaussian to the FT droplet state takes place. Eventually, vc de-
creases as the FT regime is reached. For example, in the case
of kL = 0.5 for δg/g = 0.05 (δg/g = 0.1), the critical velocity
exhibits a maximum around N ≈ 30 (N ≈ 10) and afterwards
decreases. This particular feature indicates that the droplet at
the maximum value of vc is more stable against velocity per-
turbations as compared with droplets of different sizes [23].

B. Droplet breathing frequency

Next, we explore the parametric dependence of the droplet
breathing frequency on the involved atom number and in-
teractions. The breathing frequency ωb f is identified in the
spectrum of the time-evolved width of the droplet wave packet
[11], i.e., 〈ψ |x2(t )|ψ〉, after a weak velocity perturbation with
v = 0.05. The cases of both the quasi-Gaussian with kL = 1
[Fig. 8(a)] and the stripe droplet with kL = 2 [Fig. 8(a)] are
studied for completeness. It is apparent that ωb f exhibits
similar characteristics in both regimes. In particular, indepen-
dently of δg/g, the breathing frequency features an overall
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(a) δg/g = 0.05
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(b) δg/g = 0.05
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FIG. 7. Critical velocity vc of the droplet above which it dy-
namically transforms from a breather to a fragmented (moving) one
with respect to N and different δg/g (see legends). The droplet is
characterized by � = 1 and a SOC wave number (a) kL = 0.5 (non-
modulated solution) and (b) kL = 2 (stripe state). The vc decreases
with increasing N reaching an interaction-dependent maximum
where the droplet is more stable against velocity perturbations. Here
vc corresponds to the minimum of the total energy.
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FIG. 8. (a) Behavior of the droplet breathing frequency (ωb f ) with respect to N for (a) kL = 1 and (b) kL = 2 as well as different interactions
δg/g (see legends). The ground-state droplet characterized by g = 1 and � = 1 is perturbed with the initial velocity v = 0.05. The dotted lines
provide a guide to the eye illustrating the behavior of ωb f ∼ N−1 at large N where FT droplets form. Also, ωb f is generically smaller for stripe
droplets as can be inferred by comparing panels (a) and (b). (c) ωb f as a function of δg/g for distinct N and kL (see legend).

increasing trend with N until it reaches a maximum and sub-
sequently decreases at larger N . The value of N , at which ωb f

maximizes, appears to be smaller for stronger δg/g. Also, ωb f

is higher for lower δg/g and fixed N , meaning that FT struc-
tures possess a smaller ωb f in accordance with observations
for non SOC droplet configurations [13,51]. Furthermore, the
decreasing behavior of ωb f at large N is to a good approx-
imation inversely proportional to the atom number, namely,
it scales as N−1, see also the respective fitted black-dotted
lines. This is consistent with the fact that the droplet displays
phonon-like excitations once it reaches a FT background, as it
was also reported in Ref. [23].

Another interesting observation is that the magnitude of
ωb f for a specific N and δg/g is lower when increasing kL, as
can be deduced by comparing Figs. 8(a) and 8(b). To further
elucidate this issue, we select N = 5 and N = 30 for both
kL = 1 and kL = 2 and investigate ωb f in terms of δg/g, as
shown in Fig. 8(c). Evidently, for N = 5, the breathing fre-
quency decreases almost linearly with δg/g, irrespective of kL.
However, for large N , ωb f shows a nonmonotonic behavior. It
is higher at smaller δg/g and reduces at a faster rate with δg/g
when compared with the N = 5 case. Also, at large values of
δg/g, ωb f is larger for N = 5 than for N = 30, independently
of kL, since, as explained above, Gaussian structures with
smaller widths have an enhanced ωb f .

C. Intercomponent interaction quench dynamics of the
spin-orbit-coupled quantum droplet

Our next focus is to explore the nonequilibrium dynamics
of the droplet after a sudden change of the interaction param-
eter δg/g. To be more concrete, we keep the intracomponent
repulsion constant at g = 1, and we quench the intercom-
ponent interaction g↑↓ to either larger or smaller attractive
strengths compared with the original value of g↑↓ = −0.9,
corresponding to δg/g = 0.1. The response of the system is
exemplary monitored through the total density of the SOC
setting with kL = 2 and � = 1. Similar patterns to those pre-
sented below also occur for kL = 0.5.

Initially, we examine the effect of quenches towards larger
values of δg/g, which essentially correspond to less attractive
intercomponent couplings, as shown in Figs. 9(a)–9(c). In the

ground state of the system, this means that the solution tends
to the FT regime, as illustrated, for instance, in Fig. 1(b).
Naturally, this type of quench, due to the reduced postquench
attraction, leads, generally, to an overall expansion of the
stripe droplet, but the explicit patterns depend on the specific
interaction value. This is evident for all three (δg/g)f values
presented in Figs. 9(a)–9(c). In particular, a relatively large
postquench amplitude, e.g., (δg/g)f = 0.2, results in a con-
tinuum expansion of the droplet in terms of its width and a
reduction of its amplitude since the FT is dynamically attained
[Fig. 9(a)]. Here, the kinetic and attractive SOC energy terms
are the most prominent ones and thus responsible for the ob-
served dynamics. Notice that such a droplet expansion can be
equally observed in short-range attractive interacting bosonic
mixtures, as reported in Ref. [11].

However, a slightly smaller quench amplitude, e.g.,
(δg/g)f = 0.13 or 0.12, is accompanied by richer dynamical
patterns [see Figs. 9(b) and 9(c)]. Besides the expansion of
the background, a droplet-splitting process takes place, which
is less pronounced for interactions closer to the original ones.
The splitting events are caused by the progressively domi-
nant contribution of the attractive LHY energy term over the
remaining ones in time. For instance, at (δg/g)f = 0.13, we
observe the generation of three droplets from the initial struc-
ture. The two outer ones are counterpropagating, having equal
velocities, and they simultaneously experience breathing mo-
tion, while the inner droplet remains at the center, showing
splitting and merging events [Fig. 9(b)]. We remark that, in
the process, excitations also propagate from the surface to the
bulk. Accordingly, for a comparatively smaller increment of
the interactions, e.g., (δg/g)f = 0.12, solely two counterprop-
agating droplets with relatively smaller velocity are emitted
[Fig. 9(c)]. These emitted droplets, being closer to each other,
especially as compared with the ones in the (δg/g)f = 0.13
quench, feature an attraction soon after their creation. This
behavior is in line with one of the closely placed short-range
droplets whose effective attractive force can be explained by
constructing an effective particle picture [26].

On the other hand, applying interaction quenches towards
lower (δg/g)f values or equivalently more attractive inter-
component interactions than the prequench one favors, in
general, the dynamical fragmentation of the stripe droplet,
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FIG. 9. Temporal evolution of the stripe droplet density following an intercomponent interaction quench from (δg/g)in = 0.1 to different
values of (δg/g)f (see legends). The initial ground state is prepared with � = 1, kL = 2, N = 280, g = 1, and g↑↓ = −0.9 (δg/g = 0.1).
Quenching to less attractive intercomponent interactions leads to droplet expansion [panel (a)] and splitting [panels (b), (c)]. In contrast,
for quenches to stronger attractions, the droplet either performs a breathing motion [panel (d)] or fragments [panels (e), (f)]. The explicit
postquench interaction values correspond to (a) g↑↓ = −0.8 (δg/g = 0.2), (b) g↑↓ = −0.87 (δg/g = 0.13), (c) g↑↓ = −0.88 (δg/g = 0.12),
(d) g↑↓ = −0.91 (δg/g = 0.09), (e) g↑↓ = −0.94 (δg/g = 0.06), and (f) g↑↓ = −0.99 (δg/g = 0.01). Similar features can also be observed for
kL = 0.5. The color bar refers to the total density of the SOC droplet.

see Figs. 9(d)–9(f). Referring to the respective ground-state
configuration, the waveform of the postquench interaction
is a Gaussian with reduced width. Specifically, for small
quench amplitudes, the stripe droplet experiences a breath-
ing motion with the individual stripes featuring vibrational
modes [Fig. 9(d)]. This response changes drastically for larger
postquench attractions where at short times, the destructive
interference of the involved stripes generates radiation and
structures resembling dark solitons at the vicinity of x = 0.
These structures suffer further collisions leading to even-
tual fragmentation into multiple highly localized droplets,
a process that is more pronounced for smaller (δg/g)f , see
Figs. 9(e) and 9(f). Such violent fragmentation events are in-
herently related to the prevailing strong attractive LHY energy
contribution. We remark that at these suppressed δg values,
where mean-field interactions cancel out, and solely quantum
fluctuations are present, the system is close to the LHY fluid
[55], which has been experimentally realized [56] in the ab-
sence of SOC and occurs at δg = 0. A similar droplet breaking
mechanism into multiple ones was also found to occur in the
context of dipolar droplets [57].

D. Effect of Rabi coupling

A natural next question that arises concerns the impact
of the SOC parameters, i.e., the Rabi coupling and the wave
number, on the dynamical stability of the QD. Here, we first
consider sudden changes of the Rabi coupling and, in par-
ticular, divide our analysis into two parts: (i) examine the
time-evolution upon quenching from � = 0 to a finite one
�f > 0 and (ii) quench � from a finite value to a larger one.
We remark that keeping all other system parameters constant
and increasing � is associated with a decrease of the ground-
state energy towards more negative values.

The resulting dynamics of the QD total density after apply-
ing a quench of the Rabi coupling from � = 0 to distinct finite
values are demonstrated in Fig. 10. The QD is initially in its

ground state, where g = 1, g↑↓ = −0.95 (δg/g = 0.05), � =
0, kL = 2, and N = 300. We note in passing that quenches in
� for smaller N mainly result in breathing-like oscillations of
the droplet and will not be discussed below. The droplet is left
to freely evolve for a finite time, and subsequently, at t ≈ 20,
� is quenched. As expected, until t = 20, the QD maintains
its shape [Figs. 10(a) and 10(b)] since it corresponds to the
unperturbed ground state of the system. However, around
t ≈ 20, the QD structurally deforms due to the modified �,
and, in particular, stripes build upon the density background
resembling a stripe QD.

In the case of a postquench �f = 1, the emergent striped
pattern appears to be robust in the course of the evolution
[Fig. 10(a)]. Namely, it retains its overall structure with the in-
dividual stripes performing weak amplitude oscillations after
their nucleation and later on remaining quasistationary. This
density pattern is reminiscent of the respective ground-state
configuration for � = 1 and kL = 2. For completeness, the
response of stripe droplets to � quenches is discussed in
Appendix C.

In sharp contrast, a larger Rabi coupling, e.g., �f = 5,
leads to a more complex evolution in terms of the fate of
the generated configurations. Indeed, after the quench, we
observe a fragmentation of the QD into several counterprop-
agating ones outwards and a central one, see Fig. 10(b). It
is worth noting that the outer droplets appear to accelerate
over time (see the bending behavior of each density branch),
and the inner one moves at an almost constant velocity. Ad-
ditionally, as time progresses, most outer droplets merge, and
the central one maintains a constant velocity accompanied by
weak-amplitude breathing-like oscillations. This final config-
uration is completely different from what is expected at the
ground-state level of the system and appears to possess lower
energy than the ground state. Specifically, the breaking into
multiple droplets is attributed to the energetically unstable
nature of the ground state for large values of �, which is
otherwise dynamically stable. A similar fragmentation behav-

013321-9



SONALI GANGWAR et al. PHYSICAL REVIEW A 109, 013321 (2024)

0 15 30 45 60
t

−15

0

15
x

(a)

0

40

80

0 15 30 45 60
t

−20

0

20 (b)

0

40

80

120

0 150 300 450 600
t

−60

0

60 (c)

0

12

24

0 80 160 240 320
t

−60

0

60

x

(d)

0

12

24

36

0 40 80 120 160
t

−60

0

60 (e)

0

12

24

−100 −50 0 50 100
x

0

10

20

30

|ψ
|2

(f)20

80

100

FIG. 10. Dynamics of the QD following quenches of the Rabi coupling �. Density evolution of the QD after a sudden change of � = 0
at t = 20 to (a) � f = 1 and (b) � f = 5. The initial ground state is characterized by g = 1, g↑↓ = −0.95 (δg/g = 0.05), � = 0, kL = 2, and
N = 300. The quench triggers either the dynamical generation of a quantum stripe droplet [panel (a)] or a fragmented droplet configuration
[panel (b)]. Time evolution of the quenched droplet density starting from � = 1 to (c) � f = 4, (d) � = 11, and (e) � = 30. (f) Characteristic
density profiles at different time instants (see legend) of panel (e). The remaining parameters are g = 1, g↑↓ = −0.9 (δg/g = 0.10), kL = 0.5,
and N = 180. The quench gives rise to an unstable evolution associated with multiple droplet-breaking events into asymmetrically moving
QDs. Emitted radiation accompanies the dynamics, especially for larger � f . The color bar corresponds to the total density of the droplet.

ior was observed in binary short-range droplets in Ref. [27],
triggered by the modulational instability phenomenon.

On the other hand, the quench-induced droplet response
changes drastically for postquench Rabi couplings satisfying
�f > k2

L. This is demonstrated below in the general case of
an initially finite Rabi coupling � �= 0. Figures 10(c)–10(e)
depicts the time-evolved QD densities regarding quenches
at t = 0 from � = 1 to higher values, e.g., � f = 4, 11, 30.
Here, the initial state is characterized by � = 1, kL = 0.5, and
N = 180, while the interactions are g = 1 and g↑↓ = −0.9
(δg/g = 0.10). Interestingly, it is found that this quenching
process gives rise to a quite different structural deformation
of the original QD compared with the previous case. This is
attributed to the dominant Rabi energy term, which is more
negative than the previous quench scenario from � = 0 to a
finite �f .

At the initial stages of the evolution, the QD features in-
ternal excitations which, after a finite amount of time, lead
to the breaking of the droplet into multiple ones whose ar-
rangement and time of creation depend crucially on �f . For
instance, at � f = 4, the underlying instability gets activated
around t ≈ 450, triggering the breaking of the droplet into two
outgoing ones possessing equal and opposite velocities, which
keep on increasing with time as depicted in Fig. 10(c). On the
contrary, a relatively larger postquench Rabi coupling, such
as � f = 11, is associated with three asymmetric breaking
events with respect to x = 0, and an eventual erratic dy-
namical droplet arrangement, see Fig. 10(d). Indeed, the first
splitting occurs at t ≈ 120, where a heavy and slow-moving
droplet emerges, traveling to the left, and a lighter one with
arguably much larger velocity accelerates towards the right
edge. Note the earlier time of the fragmentation process than
the one for � f = 4 [Fig. 10(d)]. Afterwards, this latter heavy
droplet suffers a subsequent fragmentation around t ≈ 180,
where left- and right-moving daughter droplets arise. Another
splitting event generating two droplets takes place at t ≈

250, and this splitting process continues for larger evolution
times.

Along the same lines quenches, see Fig. 10(e), to even
larger � f = 30 result in a similar fragmentation procedure
occurring at faster timescales, e.g., at t ≈ 20 where the
original droplet breaks into three droplets. Namely, the two
outer droplets accelerate towards the left and right edges,
respectively, and a central droplet with zero velocity. Here,
a non-negligible density emission accompanies this process.
Moreover, the droplet at the center undergoes at later times
t ≈ 80 a further splitting where again three highly localized
moving droplets appear asymmetrically while simultaneously
emitting additional small density portions. The emitted den-
sity parts accumulate during the dynamics and, eventually, at
longer timescales, the spatial distribution becomes highly de-
localized. The above-described density delocalization caused
by an instability of the droplet upon quenching � is better
visualized in the corresponding density snapshots provided in
Fig. 10(f) for � f = 30. Notice that the energy of the ground
state for � = 4, 11, 30 is higher than that of the postquench
state during the evolution, which is probably an admixture
of excited states. For this reason, the source of the observed
instability here can be attributed to the presence of an energet-
ically unstable ground state [58].

E. Response to spin-orbit-coupling wave-number modifications

Finally, we analyze the droplet dynamics after quenching
the SOC wave number kL, as shown in Fig. 11. Assuming g =
1, δg/g = 0.1, � = 1, N = 180, and an initial kL = 0.5, the
droplet resides in the FT region with no spatial undulations.
In this case, the unstable droplet dynamics manifest differ-
ently as compared with the � quench shown in Figs. 10(a)
and 10(b). Focusing on the quench to kL = 1.28 [Fig. 11(a)],
we observe that the original droplet breaks into distinct ones
already at short timescales t ≈ 20. This is a consequence
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FIG. 11. Total density evolution (see the color bar) of the SOC droplet upon quenching the SOC wave number from kL = 0.5 to (a) (kL ) f =
1.28 and (b) (kL ) f = 2. (c), (d) Profiles of the total density of panel (b) at specific time instants (see legends). Depending on the quench
amplitude, the droplet fragments either into an admixture of counterpropagating single and stripe droplets [panel (a)] or solitary wave patterns
exhibiting an overall strong delocalization [panel (b)]. The interactions of the droplet are g = 1 and g↑↓ = −0.9 (δg/g = 0.1), while the Rabi
coupling is fixed to � = 1 and N = 180.

of the prevailing contribution of the SOC attractive term.
Namely, two outer droplets move towards the left and right
edges, two travel with opposite velocities towards x = 0, and
a heavier one remains at the center, shrinking in size. During
this process, further emission events from the outer droplets
occur, and later on, a collision of the central droplet with its
neighboring droplets is observed around t ≈ 40. This collision
subsequently leads to the generation of a multitude of stripe
droplets, i.e., density branches containing stripes. Soon after
their nucleation, these stripe droplet patterns feature internal
collisions, due to their excited nature, which give rise to mass
transfer phenomena among the individual stripes. After this
collisional stage (t > 150), the individual droplet branches
possess a definite shape. Specifically, there are two outer
counterpropagating droplet pairs, each with a single stripe
droplet and almost equal velocities, two slower oppositely
moving droplet stripe branches, and a central single droplet
that remains more or less stationary. All the above-mentioned
droplet fragments feature breathing-like excitation. This latter
phenomenon results in mass exchange among the droplets
within the slow-moving stripe branches.

Increasing the quench amplitude, e.g., to (kL ) f = 2, is as-
sociated with a faster breaking (around t ≈ 5) of the initial
droplet and a more prominent eventual delocalization of the
droplet density, as shown in Fig. 11(b). In contrast to the
previous scenario, stripe droplet branches do not form, which
is attributed to the larger quench amplitude causing more
excitations into the system. The central droplet appears to
be the most excited and experiences a pronounced breathing
behavior. Here, the long-time localized density branches show
solitary wave characteristics in shape, as we have confirmed
by fitting them to bright soliton solutions [59]. To demon-
strate the spatial delocalization of the droplet distribution,
Figs. 11(c) and 11(d) illustrate corresponding density pro-
files at different instants. It becomes clear that, initially, the
unstable behavior develops near the surface of the droplet
[Fig. 11(c)], and, over time, it spreads in space leading to sev-
eral highly localized symmetric density branches with respect
to x = 0, featuring a delocalized background due to multiple

emissions (radiation), see Fig. 11(d). The above-discussed
unstable behavior of the SOC droplet following the quench
in kL can be attributed, at least partially, to the dynamically
unstable phase (for � < k2

L) of the droplet in the final state as
suggested by the excitation spectrum presented in Fig. 4. We
also note the absence of dynamical instability for quenches at
which the final-state satisfies � > k2

L. This is in line with the
observations made in the respective excitation spectrum.

V. SUMMARY AND PERSPECTIVES

We have studied the stationary properties and nonequilib-
rium dynamics of droplet configurations appearing in SOC
1D bosonic mixtures. To describe these many-body bound
states of matter, we rely on the eGPE approach that accounts
for the lowest-order quantum LHY correction. The stationary
configurations are investigated for varying mean-field interac-
tions, number of atoms, and SOC parameters. It is explicated
that for small SOC wave numbers, a transition from a Gaus-
sian to a FT structure takes place for either increasing atom
number or decreasing intercomponent attraction with all other
parameters fixed. However, using a larger SOC wave number
and finite interactions, we showcase the appearance of stripe
patterns upon the droplet distribution and the eventual satura-
tion of the background density to a FT. To further understand
the aforementioned transition behavior, e.g., in terms of the
atom number, we calculate the system’s chemical potential
and kinetic energy. The latter attains its maximum value at
the transition threshold, with the respective particle number
being smaller for decreasing the magnitude of intercomponent
attraction. Furthermore, we estimate the surface energy of the
droplet, which is found to obey a power-law dependence on
the relative interaction ratio, and it is the same independent of
the stripe character of the droplet.

Importantly, by exploiting the excitation spectrum of the
above-described droplet configurations, we can infer their sta-
bility properties. For instance, at small SOC wave numbers,
Gaussian-shaped and FT droplets are stable in terms of dif-
ferent parametric variations of the intercomponent attractive
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interaction and the atom number. In sharp contrast, for larger
SOC wave numbers, we find that stripe droplets are unstable
configurations as dictated by the emergence of complex eigen-
values in the excitation spectrum independently of the particle
number or intercomponent attraction.

The droplet dynamics are analyzed for different quench
protocols, namely: (i) imprinting an initial velocity, (ii) utiliz-
ing intercomponent interaction quenches, and (iii) considering
sudden changes of either the SOC wave number or the Rabi
coupling. The emergent patterns are attributed to the pre-
vailing nature of specific energy contributions in each case.
For velocity perturbations, we find that the droplet undergoes
breathing-like oscillations for small postquench velocities
or breaks into several moving droplets for larger amplitude
quenches. This phenomenology occurs independently of the
SOC wave number, i.e., the striped nature of the droplet
structure, and it can be traced back to the dominant character
of the attractive SOC energy term. The critical velocity for
the transition from the breathing to the moving droplet is
maximal around the particle number threshold at which the
ground-state transits from a Gaussian to FT. A similar trend is
also evident in the breathing frequency of the droplet, which is
generally smaller for stripe droplets. It increases with the atom
number reaching a maximum at the transition from Gaussian
to FT droplets and afterwards satisfies a power-law decrease
inversely proportional to the particle number. The latter sig-
nals the phononic spectrum of FT droplets, irrespective of the
SOC wave number.

The droplet response following intercomponent interaction
quenches is also diverse. In the case of reduced attraction,
the droplet either expands or splits into two counterpropa-
gating fragments. Performing quenches to stronger attractions
results in a breathing droplet, and for larger quench ampli-
tudes, the droplet breaks into several fragments whose number
increases with larger attraction. Employing quenches of the
Rabi coupling leads to a structural deformation from a smooth
droplet to a striped one for relatively small quench ampli-
tudes. Additionally, asymmetric droplet fragmentation occurs
for increasing postquench Rabi coupling, where the latter
exceeds the SOC wavenumber. Interestingly, abrupt changes
of the SOC wave number again allow the breaking of the
original droplet due to the dominance of the attractive SOC
contribution. This can lead to admixtures of single and striped
droplet branches or erratic spatial distributions for larger wave
numbers.

There are several interesting future research directions that
can be pursued based on our results. It would be particu-
larly relevant to investigate the correlation properties [3] of
the discussed stripe droplet configurations and engineer an-
tiferromagnetic two-body configurations. On the other hand,
considering the same 1D geometry, it would be worth identi-
fying the different families of solutions that exist for relevant
parametric variations, including the SOC wave number and
Rabi coupling. Another extension is to employ the generic
two-component setup by breaking the underlying SU(2) sym-
metry to reveal the different phases that can arise bearing
miscible, immiscible and more complex arrangements of the
spin components. Certainly, the generalization of our analysis
to two dimensions aiming to understand the excitation spec-

trum of the stripe patterns and their relation with supersolids
[1] is an intriguing perspective.
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APPENDIX A: MATRIX ELEMENTS OF THE
BOGOLIUBOV–DE GENNES EQUATION

In this Appendix, we provide the explicit matrix elements
of the eigenvalue problem used in Sec. III B to obtain the
excitation spectrum of the SOC droplet solutions. The case
of equal intracomponent interactions, g↑↑ = g↓↓ ≡ g, is con-
sidered. The individual matrix elements of Eq. (5) exploiting
the symmetries of the system read

Y1 =
[
δg

2
+ g − α

]
ψ2

↑, Y2 =
[
δg

2
+ g − α

]
ψ2

↓, (A1)

Z1 =
[
δg

2
− g − α

]
ψ↑ψ∗

↓ − �, Z2 =
[
δg

2
− g − α

]
ψ↑ψ↓,

(A2)

and

f1 = − 1

2
∂2

x − ikL∂x + (2g + δg − 3α)|ψ↑|2

+
(

δg

2
− g − 2α

)
|ψ↓|2 − μ↑, (A3)

f2 = − 1

2
∂2

x + ikL∂x +
(

δg

2
− g − 2α

)
|ψ↑|2

+ (2g + δg − 3α)|ψ↓|2 − μ↓, (A4)

where α = g3/2
LHY/[2π (|ψ↑|2 + |ψ↓|2)1/2]. The chemical po-

tentials of the individual components assume the forms [37]

μ↑ = 1

N↑

∫ [
1

2

∣∣∣∣∂ψ↑
∂x

∣∣∣∣
2

+ H̃↑ +
(

kL

∂ψ I
↑

∂x
+ �ψR

↓

)
ψR

↑

−
(

kL

∂ψR
↑R

∂x
− �ψ I

↓

)
ψ I

↑

]
dx, (A5a)

μ↓ = 1

N↓

∫ [
1

2

∣∣∣∣∂ψ↓
∂x

∣∣∣∣
2

+ H̃↓ −
(

kL

∂ψ I
↓

∂x
− �ψR

↑

)
ψR

↓

+
(

kL

∂ψR
↓

∂x
+ �ψ I

↑

)
ψ I

↓

]
dx, (A5b)
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FIG. 12. Breathing frequency ωb f with respect to the SOC wave number kL for various � (see legends) at (a) N = 1 and (b) N = 4. The
breathing motion is generated by perturbing the droplet with velocity v = 0.05 with the ground state prepared with δg/g = 0.1. For all N ,
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� = 1. The peak density increases with N and acquires a maximum for all N at the transition where the SOC wave number is kc

L .

where

Nj =
∫

|ψ j |2dx, j =↑,↓, (A5c)

H̃↑ =
[

g|ψ↑|2 + g↑↓|ψ↓|2 + δg

2
(|ψ↑|2 − |ψ↓|2)

− g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
|ψ↑|2, (A5d)

H̃↓ =
[

g|ψ↓|2 + g↓↑|ψ↑|2 + δg

2
(|ψ↓|2 − |ψ↑|2)

− g3/2

π

√
|ψ↑|2 + |ψ↓|2

]
|ψ↓|2. (A5e)

In these expressions, the real and imaginary parts of the mix-
ture wave function are denoted by ψR

↑,↓ and ψ I
↑,↓, respectively.

APPENDIX B: DEPENDENCE OF THE DROPLET
BREATHING FREQUENCY ON THE SPIN-ORBIT

COUPLING PARAMETERS

Having analyzed the impact of the effective mean-field in-
teraction δg/g, and atom number N on the breathing frequency
ωb f in the main text, we proceed to examine in more detail
the effect of the SOC wave number kL and Rabi coupling
�. Figure 12 presents the behavior of ωb f as a function of
kL for different Rabi couplings while maintaining a fixed N
in each panel. For small particle number, e.g., N = 1 shown
in Fig. 12(a), it is observed that ωb f increases with kL until
reaching a maximum at a critical kL value, and then reduces
for larger kL. It eventually approaches the same value as the
one at small kL, i.e., kL ≈ 0. The increase in the maximum
breathing frequency at the transition point can be attributed
to the enhanced rigidity resulting from the higher density
at that particular point. Moreover, increasing � leads to an
elevation in the maximum ωbf , and the same holds for the
critical kc

L above which ωbf starts to decrease. The exact oppo-
site behavior in terms of the maximum breathing frequency
with increasing � is found for larger N . For instance, at
N = 4, the maximum ωbf at critical kc

L exhibits a decreasing
tendency with � [Fig. 12(b)], and this behavior persists as

N is further increased to a higher value, e.g., N = 10. To
understand the origin of the maximum breathing frequency at
the critical SOC wave number kc

L for different N , we provide
the peak density (i.e., |ψ |2max) with kL for different N = 1,
4, and 10 by fixing � = 1. It is found that, for a fixed N ,
the total density acquires a maximum |ψ |2max at the critical
SOC wave number. This feature occurs independently of N
[see Fig. 12(c)].

APPENDIX C: GENERATION OF STRIPE
DROPLET FRAGMENTS

In the main text, Sec. IV D, we discussed the dynami-
cal response of a standard (nonmodulated) droplet following
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FIG. 13. Time evolution of the density of a stripe QD subjected,
at t = 0, to sudden change of the Rabi coupling from � = 1 to
(a) � f = 2.2 and (b) � f = 2.8. It becomes clear that a weak am-
plitude quench on � [panel (a)] gives rise to internal excitations as
well as droplet breaking and subsequent merging. However, larger
quench amplitudes [panel (b)] lead to a pronounced breaking into
multiple counterpropagating stripe droplets showing breathing-like
oscillations. The remaining system parameters correspond to g = 1,
g↑↓ = −0.9 (δg/g = 0.10), N = 280 and kL = 2. Color bar visual-
izes the total density of the stripe droplet.
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a quench of the Rabi-coupling term. Here, for reasons of
completeness, we aim to briefly analyze the effect of the
abrupt change in � when the original (at t = 0) configura-
tion is a stripe droplet. As such, a SOC setup is prepared
with g = 1, δg/g = 0.1, N = 280, � = 1, and kL = 2. Apply-
ing a quench to � f = 2.2, see Fig. 13(a), leads to internal,
mainly breathing-like, excitations of the stripe droplet. As
time evolves, these excitations allow the splitting of the entire
stripe structure, around t ≈ 125, into two symmetric ones,
which naturally contain a smaller amount of stripes. Later
on, t ≈ 180, they merge into a huge breather-striped droplet,
which remains as such during the evolution. This merging
process is accompanied by the simultaneous emission of

two counterpropagating (with nearly equal velocity) density
branches towards the edges.

On the other hand, the emergent dynamical response ap-
pears to be drastically altered when utilizing a quench to larger
Rabi coupling such as � f = 2.8 as can be seen in Fig. 13(b).
The modification in � causes the internal excitation of the
original striped pattern, which, after some time evolution,
emits density fractions. This latter event initiates collisions
between the nearest-neighboring stripes and, afterwards, the
breaking of the entire structure into multiple counterpropa-
gating fragments consisting of stripe droplets. These striped
density branches suffer breathing motion and mass transfer
among themselves, but they survive during evolution.
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