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Critical velocity of a two-dimensional superflow past a potential barrier of arbitrary penetrability
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We theoretically investigate the critical velocity for dissipationless motion of a two-dimensional superfluid
past a static potential barrier of large width. The circular-shaped barrier provides a comprehensive analytical
framework for the critical speed, for which we derive closed-form expressions using the hydraulic approximation,
the hodograph method, and Janzen-Rayleigh expansions of the velocity potential. These analytical estimates are
shown to be in good agreement with the numerical results of an imaginary-time integration of the full wave
equation. In contrast to most of the state of the art, our study is not restricted to an impenetrable potential barrier
nor to a quartic interaction Hamiltonian, which enables realistic modeling of recent experiments with atomic
Bose-Einstein condensates and paraxial superfluids of light in two dimensions.
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I. INTRODUCTION

Superfluidity is the ability of a fluid to flow without dissi-
pation [1–3]. Following its discovery in liquid helium-4 [4,5],
Landau established that it should occur at flow speeds smaller
than the critical velocity vc = minp Ep/p, where Ep is the en-
ergy of an elementary excitation with momentum p in the fluid
at rest [6,7]. However, Landau’s criterion often overestimates
the actual critical velocity for superfluidity because it does not
properly account for the nonlinear nature of the interaction
between the fluid and its environment [8]. This is not only
noticed in liquid helium-4 but also in many other systems evi-
dencing a superfluid transition, which include liquid helium-3
[9,10], ultracold atomic vapors [11–19], microcavity polariton
condensates [20,21], and more recently, paraxial superfluids
of light [22–24].

In the present work we consider a two-dimensional (2D)
superfluid flowing past a static potential barrier of large width.
Drawing inspiration from the theoretical studies [25–27]
(see also Refs. [28–38] for related theoretical work), we
analytically derive its critical speed using the hydraulic ap-
proximation, the hodograph method, and Janzen-Rayleigh
expansions of the velocity potential. In contrast to previous
work, we do it for a circular potential barrier of arbitrary
penetrability and a local interaction energy of arbitrary de-
pendence on the fluid density in the nonlinear Schrödinger
equation. Comparison with imaginary-time numerical calcu-
lations inspired from the very recent study [37] shows good
agreement for different interaction potentials. To the best of
our knowledge, no theoretical work had previously provided
analytical results for the 2D critical velocity in the case of
a penetrable potential barrier, which has been measured in a
quasi-2D atomic Bose-Einstein condensate [19] without mod-
eling other than numerical [37]. In addition, no related work
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had previously analytically explored the possibility of a non-
linearity different from that of the usual nonlinear Schrödinger
equation, thus providing theoretical support for different types
of superfluids and, in particular, recent experiments with a 2D
paraxial superfluid of light in a saturable nonlinear medium
[23,24].

The article is organized as follows. In Sec. II we present the
hydrodynamic equations of the superfluid, starting with the
wave equation and two physical examples of it and finishing
with the coupled system verified by the density and velocity
fields. In Sec. III we then derive analytical results for the
corresponding critical velocity for superfluidity. Using the hy-
draulic approximation and the hodograph method, the critical
speed is obtained in the case of a penetrable and then impene-
trable circular potential barrier by means of Janzen-Rayleigh
expansions of the velocity potential around its incompressible
approximation. In Sec. IV next, we discuss these analytical
results by confronting them to imaginary-time numerical sim-
ulations of the full wave equation. Finally, we conclude and
give outlook to the present work in Sec. V. Details about the
numerical calculation of the critical velocity are provided in
the Appendix.

II. HYDRODYNAMIC EQUATIONS

A. Wave equation

Many 2D nonlinear wave systems display superfluidity or
an analog of it when transported past obstacles (see Sec. II B
for two representative examples). These are often described by
a complex-valued wave function ψ (r, t ) whose dependence
on position r = (x, y) = (r cos θ, r sin θ ) and time t is gov-
erned by a nonlinear partial differential equation of the form

i
∂ψ

∂t
= −1

2
∇2ψ + U (r)1U ψ + ε(ρ)ψ, (1)

where ρ(r, t ) = |ψ (r, t )|2 is the density associated with
ψ (r, t ). In this generalization of the 2D nonlinear Schrödinger
equation to an arbitrary local nonlinearity ε(ρ)ψ [the
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nonlinear Schrödinger equation is obtained for ε(ρ) =
±ρ, i.e., for the quartic interaction Hamiltonian
± ∫

d2r |ψ (r, t )|4/2], ∇ denotes the del operator with
respect to position and U (r) is the potential of a static
obstacle to the system’s flow. This potential is assumed to
be repulsive [U (r) > 0] and localized with typical width σ

[U (r) → 0 as r/σ → ∞], in such a way that the indicator
1U equals 1 or 0 depending on whether U (r) is penetrable
or not, respectively [a condition for penetrability of U (r) is
given in Sec. III D]. This distinction is based on the following
heuristic reasoning. When U (r) is penetrable, the superfluid
occupies all the space and there is no reason to do anything
about the potential barrier U (r) in Eq. (1). On the contrary,
when U (r) is impenetrable, the superfluid can only occupy
the region r > σ where U (r) is negligible, in such a way that
the system’s dynamics can be described by Eq. (1) without
any potential barrier U (r) but with appropriate conditions for
the wave function at the obstacle’s boundary r ∼ σ . Finally,
we assume that ε(0) = 0, ε(ρ) > 0, and (∂ε/∂ρ)(ρ) > 0 to
prevent the system from developing modulational instabilities
[e.g., ε(ρ) = ρ for the original nonlinear Schrödinger
equation].

B. Physical examples

1. Atomic Bose-Einstein condensates

For example, Eq. (1) is well known [3] to govern the
dynamics of the 2D reduction ψ (r, t ) of the condensate
wave function of an ultracold atomic Bose gas of three-
dimensional (3D) s-wave scattering length a > 0 in a tight
one-dimensional (1D) harmonic potential h̄2z2/(2m�4), where
h̄, m, and � are respectively the reduced Planck constant, the
atomic mass, and the harmonic length. In this 1D trap, the
atoms almost live in the r plane and interact with each other
via a Hartree-Fock potential ε(ρ) = gρν scaling as a positive
power of the 2D number density ρ(r, t ) = |ψ (r, t )|2 when
ρa2 is much smaller1 or much larger than a/�. In the first
regime, mg/h̄2 = (8π )1/2a/� and ν = 1, and in the second
one, �2/3mg/h̄2 = (3π/21/2)2/3(a/�)2/3 and ν = 2/3 [40]. In
this context Eq. (1) reads [3]

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + U (r)1U ψ + ε(ρ)ψ, (2)

where the obstacle potential U (r) is usually gener-
ated by means of a focused laser beam crossing the
quasi-2D condensate perpendicularly [18,19]. We rigor-
ously map Eq. (2) to Eq. (1) within the dimensionless
variables r̃ = r/ξ , t̃ = μt/h̄, ψ̃ (r̃, t̃ ) = ψ (r, t )/ρ̄1/2 [hence
ρ̃(r̃, t̃ ) = |ψ̃ (r̃, t̃ )|2 = ρ(r, t )/ρ̄], Ũ (r̃) = U (r)/μ, and

ε̃(ρ̃) = ε(ρ)

μ
= ρ̃ν

ν
, (3)

from which we eventually remove the tildes for readability. In
these definitions, the proper units ξ = h̄/(ms) and μ = ms2

1But larger than (a/�)2 exp[−(2π )1/2�/a] to prevent the gas from
entering the 2D analog of the Tonks-Girardeau regime. In this ultra-
dilute regime, ε(ρ ) = 4π (h̄2/m)ρ/|ln(ρ�2)| (see, e.g., Ref. [39]).

with

s =
√

ρ̄

m

∂ε

∂ρ
(ρ̄) =

√
νgρ̄ν

m
(4)

are respectively the healing length, the chemical potential, and
the speed of sound of the quasi-2D condensate at a typical
number density ρ̄ which we choose to be the uniform number
density of the system in the absence of the obstacle, i.e., when
U (r) = 0.

2. Paraxial superfluids of light

Equation (1) is also encountered in nonlinear optics to
describe paraxial propagation of monochromatic light in non-
linear dielectrics [41]. In this context its resemblance with
Eq. (2) [see Eq. (5) below] has been used to investigate quan-
tum hydrodynamic phenomena with classical nonlinear light
[42–45], leading to the research field of paraxial superfluids
of light [22–24,46–49]. Recent experiments [23,24] have been
done in a medium whose optical response to two lasers results
in a refractive index of the form n0 + n1(r) + n2I/(1 + I/Isat ).
In this expansion the middle contribution is defocusing
[n1(r) < 0] and induced by the first laser, of low intensity.
The last one, which reproduces quite well the saturation
of the optical nonlinearity [50] observed in photorefractive
crystals [23,24], is also defocusing (n2 < 0) but induced by
the second laser, of large intensity I (r, z) = n0ε0cρ(r, z)/2.
In this equation, ε0 and c are the vacuum permittivity and
speed of light, respectively, and ρ(r, z) = |ψ (r, z)|2, where
ψ (r, z) is the slowly varying envelope of the complex-
valued electric field ψ (r, z) exp[i(kz − ωt )] of the second
laser, of angular frequency ω and carrier wave number
k = n0ω/c along the z axis. Defining U (r) = −(ω/c)n1(r)
and ε(ρ) = −(ω/c)n2I/(1 + I/Isat ), the equation for the
electric-field amplitude ψ (r, z) reads [41]

i
∂ψ

∂z
= − 1

2k
∇2ψ + U (r)1U ψ + ε(ρ)ψ, (5)

whose formal analogy with Eq. (2) is transparent. Equation (5)
is cast into Eq. (1) within the dimensionless variables defined
in Sec. II B 1, except that here t̃ = μz,

ε̃(ρ̃) =
(

1 + 1

ρ̃sat

)2
ρ̃

1 + ρ̃/ρ̃sat
, (6)

ξ = 1/(ks), μ = ks2, and

s =
√

ρ̄

k

∂ε

∂ρ
(ρ̄ ) =

√|n2|ε0cρ̄/2

1 + ρ̄/ρsat
, (7)

where ρ̃sat = ρsat/ρ̄ with ρsat = 2Isat/(n0ε0c). Note that al-
though (7) has no dimension here, we can call it “speed of
sound” by analogy with Eq. (4).

C. Superfluid hydrodynamics

We now express the wave function ψ (r, t ) in the polar form
ψ (r, t ) = ρ1/2(r, t ) exp[iφ(r, t )] (the so-called Madelung rep-
resentation), which inserted into Eq. (1) leads to the
usual hydrodynamic equations of atomic superfluids at zero
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temperature [3]:

∂ρ

∂t
+ ∇ · (ρv) = 0,

(8)
∂v

∂t
+ ∇

[
v2

2
+ U (r)1U + ε(ρ) − 1

2

∇2√ρ√
ρ

]
= 0,

where v(r, t ) = ∇φ(r, t ) is the velocity field of the superfluid
expressed in units of the speed of sound (4) or (7) if one refers
to the examples of superfluids given in Sec. II B. The first of
Eqs. (8) for the density ρ(r, t ) is nothing but the continuity
equation, while the second one for the velocity v(r, t ) is
Newton’s second law of motion.

We are specifically interested in the solutions of Eqs. (8)
that are typical of a superfluid flow, i.e., a flow which is (i)
steady and (ii) devoid of any hydrodynamic disturbance far
away from the obstacle [25]: (i) ρ = ρ(r) and v = v(r); (ii)
ρ(r) = ρ∞ = const and v(r) = v∞ = const at infinity where
U (r) = 0, and we choose ρ∞ = 1 in adequacy with the defi-
nition of the dimensioned density ρ̄ given in Sec. II B, as well
as v∞ = (v∞, 0) with v∞ > 0 (asymptotic flow from left to
right) for the sake of concreteness. As such, ρ(r) and v(r)
verify the following differential system:

∇ · (ρv) = 0,
(9)

v2

2
+ U (r)1U + ε(ρ) − 1

2

∇2√ρ√
ρ

= v2
∞
2

+ ε(1),

from which one sees that the condition of existence of its
solutions bears on v∞ once the potentials U (r) and ε(ρ) are
fixed. It is this constraint on v∞ we seek to determine in the
present work. We will show that to have superfluidity, v∞
must be smaller than a critical speed vc specific to the U (r)
and ε(ρ) considered. Analytical results for this critical veloc-
ity for superfluid motion are derived in Sec. III and compared
to numerical calculations in Sec. IV.

It is worth noting that when U (r) → 0, linear-response
theory applies2 and predicts that vc equals unity [51–53],
in agreement with Landau’s criterion vc = minp Ep/p, where
Ep = p(1 + p2/4)1/2 is the Bogoliubov dispersion relation of
the superfluid far away from the obstacle and in the comoving
frame [3]. Thus, for an obstacle potential U (r) with arbitrary
(so possibly large) amplitude, vc must necessarily be smaller
than unity and we consequently restrict our study to the sub-
sonic regime v∞ < 1.

III. ANALYTICAL DERIVATION
OF THE CRITICAL VELOCITY

A. Hydraulic approximation

From now on we consider that the typical width of the
potential barrier U (r) is very large: σ → ∞. In this case the
scale of variation of the superfluid density ρ(r) is of the order
of σ (see, e.g., Ref. [51], although in 1D). As a result, one can
neglect the dispersive term −∇2ρ1/2/(2ρ1/2) in the second of

2Except in the vicinity of the origin (r → 0) and close to the sound
barrier (v∞ → 1), where the density response function diverges
logarithmically and algebraically, respectively.

Eqs. (9), which thus simplifies to an algebraic equation for the
density ρ as a function of the norm v = |∇φ| of the velocity.
In this hydraulic [51] approach we are left with the following
differential problem for the velocity potential φ(r):

∇ · [ρ(|∇φ|)∇φ] = 0,
(10)

ε[ρ(v)] = ε(1) − U (r)1U − v2 − v2
∞

2
,

with

φ|r/σ→∞ = v∞x = v∞r cos θ (11)

as asymptotic condition.
Note that the analytical treatment of the so-called quantum

pressure −∇2ρ1/2/(2ρ1/2) is difficult in 2D, especially when
σ is small (see discussions in Secs. IV and V). As far as we
know, the only work in which this issue is tackled is Ref. [27],
where the critical velocity for superfluid motion past an im-
penetrable potential barrier is perturbatively estimated up to
first order in 1/σ 2 → 0. This result does not add much to the
hydraulic physics, and we consequently restrict our study to
the approximation explained above, as in most of the literature
dealing with the superfluid transition in 2D, starting with the
seminal work [25].

B. Hodograph method

Finding the condition of existence of the superflow de-
scribed by Eqs. (10) and (11) is facilitated in the hodograph
plane [54], where the first of Eqs. (10), nonlinear, is trans-
formed into the following linear equation:

ρ(v)v2 ∂2�

∂v2
+ ∂

∂v
[ρ(v)v]v

∂�

∂v
+ ∂

∂v
[ρ(v)v]

∂2�

∂ϑ2
= 0.

(12)

In this equation, �(v) = v · r − φ(r) is the hodograph
transform of φ(r) and ϑ is the angular coordinate of
v = (vx, vy) = (v cos ϑ, v sin ϑ ) in polar representation. Fo-
cusing on the equation of the characteristic curves [54] of
Eq. (12),

∂

∂v
[ρ(v)v]dv2 + ρ(v)v2dϑ2 = 0, (13)

one then infers that there is no trajectory ϑ = ϑ (v) along
which a possible wave discontinuity can propagate—a hall-
mark of superfluid motion—provided

∂

∂v
[ρ(v)v] > 0 ∀v, (14)

which is the constraint for dϑ/dv to be complex-valued, i.e.,
for Eq. (12) to be elliptic. This condition for superfluidity has
long been used to investigate the superfluid transition in 2D,
starting with Ref. [25]. Nevertheless, as far as we know, the
reasoning leading to it has never really been made explicit in
the superfluid literature, which we have tried to overcome in
the present paragraph.

Using the identity ∂ρ/∂v = (∂ε/∂v)/(∂ε/∂ρ) and the
second of Eqs. (10), it is easy to show that the left-hand
side of inequality (14) equals ρ(r)[1 − v2(r)/s2(r)], where
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s(r) = {ρ(r)(∂ε/∂ρ)[ρ(r)]}1/2 is the local speed of sound.3

Thus condition (14) is equivalent to v2(r) < s2(r) for all r,
which is the local Landau criterion for superfluidity [51] after
removing the squares. This constraint is also equivalent to
the same inequality with v(r) and s(r) respectively replaced
with their maximum vmax and minimum smin, the latter being
reached at the minimum density ρmin given the interaction
potentials ε(ρ) considered in this work. By relating ρmin to
vmax and v∞ using the second of Eqs. (10) with U (r) replaced
with its maximum Umax since U (r) is repulsive, we thus come
to the following superfluid condition in terms of vmax, v∞, and
Umax:

v2
max < ρmin

∂ε

∂ρ
(ρmin),

(15)

ε(ρmin) = ε(1) − Umax1U − v2
max − v2

∞
2

.

Constraint (15) changes from one interaction potential ε(ρ)
to another. Hereafter we write it in the case where ε(ρ) is
given by Eq. (3):(

1 + ν

2

)
v2

max − ν

2
v2

∞ < 1 − νUmax1U , (16)

which is, for ν = 1 and 1U = 0, the condition for superfluidity
first established in Ref. [25]. An explicit expression for (15)
also exists in the case where ε(ρ) is given by Eq. (6) but it is
cumbersome.

C. Model obstacle

In order to find the critical velocity for superfluidity vc,
one needs to relate vmax = maxr |∇φ(r)| to v∞ in (15), which
requires the first of Eqs. (10) to be solved for φ(r). The
procedure obviously depends on the shape of the obstacle,
which we choose to be represented by the circular potential
barrier

U (r) =
{

U0 > 0 if r < σ

0 otherwise , (17)

hence Umax = U0 in (15). Given the central symmetry of (17),
Eqs. (10) and (11) will be naturally analyzed in the polar
coordinates r and θ .

It is worth noting that a potential barrier of the form
U (r) = U0 exp(−r2/σ 2) would have been a better choice
for comparison with experiments with atomic Bose-Einstein
condensates or paraxial superfluids of light (see Sec. II B),
where obstacles are often Gaussian-shaped. However, this
potential does not make it possible to push analytics further
than Eqs. (15), which is not the case of the potential (17),
and it has already been numerically investigated in a very
recent work [37]. In addition, by reproducing the results of
this reference, we have noticed that they do not differ much
from those obtained for (17) (see comments in Sec. IV and
the Appendix). Thus the simple model (17) turns out to be
well suited to describe realistic situations while providing a
comprehensive analytical framework for the 2D critical speed.

3Reformulated in these terms, Eq. (12) is identical to Chaplygin’s
equation of gas dynamics [54].

D. Penetrable regime

When (17) is penetrable (1U = 1), we close Eqs. (10) and
(11) with the following continuity equations at the boundary
r = σ :

φ|r=σ− = φ|r=σ+ ,
(18)

ρ(|∇φ|)∂φ

∂r

∣∣∣∣
r=σ−

= ρ(|∇φ|)∂φ

∂r

∣∣∣∣
r=σ+

.

While the first of Eqs. (18) imposes no phase jump for the
superfluid wave function at r = σ , the second equation for
the radial component of the current density ρ(r)∇φ(r) follows
from the first of Eqs. (10) integrated along an arbitrary radial
cut of a thin annulus of median radius σ → ∞.

1. Incompressible approximation

We start by solving Eqs. (10), (11), and (18) by neglecting

v2(r) − v2
∞

2
= χ = v2

∞
2

[ |∇φ(r)|2
v2∞

− 1

]
−−→
χ→0

0 (19)

in the right-hand side of the second of Eqs. (10). This can
be seen as an incompressible approximation for the super-
fluid since the dimensionless parameter χ defined in (19)
is also expressed in terms of the dimensioned quantities of
Sec. II B as χ = v2

∞/s2 = (m or k)v2
∞κ , where κ denotes the

compressibility of the superfluid at the uniform density ρ̄ [3].
In this approximation, the density ρ(r) = ρ0(r) is constant

on either side of the obstacle’s boundary r = σ :

ρ0(r) =
{
ρ0 = ε−1[ε(1) − U0] if r < σ

1 otherwise
, (20)

which makes the first of Eqs. (10) simplify to the following
2D Laplace equation for φ(r) = φ0(r):

∇2φ0 = 0 ∀r ≶ σ. (21)

It is worth noting that given Eq. (20), the positiveness of ε(ρ)
imposes

U0 < ε(1), (22)

which can be considered as the condition for penetrability of
the obstacle potential (17)—one thus has 1U = H[ε(1) − U0],
where H is the Heaviside step function. Given the gen-
eral form of the solution of Eq. (21) in polar coordinates,
which is φ0(r, θ ) = a0 + b0 ln r + ∑∞

k=1 Rk (r)�k (θ ) with
Rk (r) = akrk + bkr−k , �k (θ ) = ck cos(kθ ) + dk sin(kθ ), and
a0,k, b0,k, ck, dk = const, solving Eq. (21) with the asymptotic
condition (11) and the boundary conditions (18) becomes an
easy task. One finds

φ0(r) = v∞r cos θ ×

⎧⎪⎪⎨
⎪⎪⎩

2

1 + ρ0
if r < σ

1 + 1 − ρ0

1 + ρ0

σ 2

r2
otherwise

, (23)

from which one infers that vmax,0 = maxr |∇φ0(r)| is reached
everywhere in the disk of radius σ [see Fig. 1(a) for visualiza-
tion] and reads

vmax,0 = 2

1 + ρ0
v∞, (24)
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FIG. 1. (a) Norm of the velocity field ∇φ0(r) normalized to its maximum value vmax,0 in the incompressible approximation χ = 0, obtained
from Eq. (23) for the interaction potential (3) with ν = 1 and for the potential barrier (17) with U0/ε(1) = 0.5, the boundary of which is
materialized by the circle of proper radius σ . (b) Critical velocity for superfluidity vc,0 in the incompressible approximation χ = 0 and in the
penetrable regime U0/ε(1) < 1 when ε(ρ ) is given by Eq. (3) with ν = 1 (solid curve), by Eq. (3) with ν = 2/3 (dashed curve), and by Eq. (6)
with ρsat = 1 (dotted curve). For each curve, any point (U0, v∞) below corresponds to a superfluid flow (shaded region below the solid curve
for instance).

where the superfluid density inside the obstacle potential, ρ0,
is a function of U0 defined in Eq. (20). Inserting (24) into (15)
yields an inequality on v∞ and U0 which can be rearranged in
the form v∞ < vc,0, where the U0-dependent velocity vc,0 is
the critical speed we are looking for.

For example, when ε(ρ) is given by Eq. (3), one has
ρ0 = (1 − νU0)1/ν , vmax,0 = 2v∞/[1 + (1 − νU0)1/ν], and in-
equality (16) becomes v∞ < vc,0 with

vc,0 =
√

1 − νU0

4(1 + ν/2)/[1 + (1 − νU0)1/ν]2 − ν/2
. (25)

A closed-form but unhandy expression for vc,0 also exists in
the case where ε(ρ) is given by Eq. (6). In Fig. 1(b) we plot
these vc,0’s as a function of U0/ε(1) < 1 for ν = 1 and 2/3
when ε(ρ) is given by Eq. (3) and for ρsat = 1 when ε(ρ) is
given by Eq. (6). As expected, all curves converge to Landau’s
critical speed when U0/ε(1) → 0. On the other hand, they all
drop to zero when U0/ε(1) → 1, which can be explained as
follows. In the penetrable regime U0/ε(1) < 1, the maximum
of the norm of the velocity field is reached and thus the super-
fluid transition takes place inside the obstacle potential where
the superfluid density drops to zero when U0/ε(1) → 1, and
so does the corresponding local speed of sound. Since this
speed of sound is an upper bound for the critical velocity
for superfluidity, it is then normal for the latter to vanish in
this limit. However, superfluidity is not irretrievably lost from
entry to the impenetrable regime U0/ε(1) > 1 because the
fluid can always go around the obstacle from the north and
the south (see Sec. III E). This contrasts with the 1D geometry
(see, e.g., [55] and references therein) where the fluid is, in
this impenetrable regime and in the hydraulic approximation,
cut into two disconnected parts. Coming back to the present
situation, crossing from below the critical frontiers displayed
in Fig. 1(b) is typically marked by the nucleation of a rar-
efaction wave [27,37] known as Jones-Roberts soliton [56,57]
inside the obstacle.4

4This is maybe what is observed in Figs. 2(e) and 2(f) of Ref. [24].

2. Janzen-Rayleigh expansions

It is possible to refine the results of Sec. III D 1, valid in
the incompressible approximation χ = 0, by perturbatively
treating the velocity term (19) in the second of Eqs. (10).
To do so, we draw inspiration from the seminal work [26]
by searching for the velocity potential in the Janzen-Rayleigh
form [58,59]

φ(r) =
n∑

k=0

φk (r)χ k + o(χn), (26)

where φ0(r) is given in Eq. (23), χ tends to zero, and n � 0 is
the order of the expansion in powers of χ . Solving Eqs. (10),
(11), and (18) order by order using Eq. (26), one obtains vmax

in the form

vmax =
n∑

k=0

vmax,kχ
k + o(χn), (27)

where vmax,0 is given in Eq. (24) and the other vmax,k’s are
functions of v∞ and U0 as complex as k is large. Expanding
condition (15) up to order n in χ using Eq. (27) and rewriting
χ as v2

∞, one eventually gets (15) as a constraint on v∞ and
U0 only, which can be in principle expressed in the form
v∞ < vc,n, with vc,n = vc,n(U0) being the critical velocity for
superfluidity at order n in the Janzen-Rayleigh expansion (26).

For the three interaction potentials ε(ρ) considered in
Fig. 1(b), a relative difference of (1–2)% is observed for the
critical speed between orders n = 1 and 2 of the Janzen-
Rayleigh expansion (26), as Table I shows for the median
obstacle amplitude U0 = ε(1)/2. To be quantitative, we pro-
vide below the recurrence relations between the φk (r)’s of
the Janzen-Rayleigh expansion (26) when ε(ρ) is given by
Eq. (3):

(1 − νU0)∇2φk+1 = 1

2v2∞

k∑
j=0

[∇φk− j · ∇(v2) j

+ ν∇2φk− j (v
2) j] − ν

2
∇2φk, (28)

φk|r=σ− = φk|r=σ+ , (29)
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TABLE I. Proof by example of the accuracy of the Janzen-
Rayleigh method in determining the critical velocity for superfluidity
beyond the incompressible approximation χ = 0 (vc,0), here in the
penetrable regime U0 < ε(1). Between orders n = 1 and 2, the criti-
cal speed vc barely varies by (1–2)%. Indeed, from left to right, one
has 1 − vc,2/vc,1 � (1.13, 0.99, and 1.23) × 10−2.

ε(ρ ) (3), ν = 1 (3), ν = 2/3 (6), ρsat = 1

vc,0 for U0 = ε(1)/2 0.48(0) 0.44(0) 0.53(8)

vc,1 for U0 = ε(1)/2 0.44(2) 0.40(4) 0.48(8)

vc,2 for U0 = ε(1)/2 0.43(7) 0.40(0) 0.48(2)

∞∑
h,i, j=0

(
−ν

2

)h(1/ν

h

)(
h

i

)
i!∏∞

�=1 i�!

{
(1 − νU0)1/ν−h

×
[

((v2)0 − 1)h
∞∏

�=1

(
(v2)�

(v2)0 − 1

)i� ∂φ j

∂r

]
r=σ−

−
[

((v2)0 − 1)h
∞∏

�=1

(
(v2)�

(v2)0 − 1

)i� ∂φ j

∂r

]
r=σ+

}
= 0.

(30)

In these equations, (v2)k = ∑k
j=0 ∇φk− j · ∇φ j , and the in-

dices h, i, and j of the summation in Eq. (30) are such that
h + ∑∞

�=1 �i� + j = k with
∑∞

�=1 i� = i. Analytical formulas
also exist when ε(ρ) is given by Eq. (6), but their very long
length makes their writing unreasonable.

E. Impenetrable regime

When (17) is impenetrable [U0 > ε(1) and so 1U = 0], the
superfluid only occupies the region r > σ and we just need to
supplement Eq. (11) with one boundary condition to close the
differential problem for φ(r). We choose this condition in the
form

∂φ

∂r

∣∣∣∣
r=σ

= 0, (31)

which corresponds to the usual no-slip boundary condition of
classical hydrodynamics: The flow velocity at the boundary of
a rigid body is tangential [54]. Interestingly, Eqs. (10), (11),
and (31), which constitute the differential problem investi-
gated in, e.g., Refs. [25–27], do not involve U0 in such a way
that the corresponding critical velocity for superfluidity does
not depend on this parameter.

We employ exactly the same method [26] as in Sec. III D
to solve Eqs. (10), (11), and (31). Focusing on (3), for in-
stance, this yields the following results for the equivalents of
Eqs. (25), (28), and (29, 30), respectively:

vc,0 =
√

2

8 + 3ν
, (32)

∇2φk+1 = 1

2v2∞

k∑
j=0

[∇φk− j · ∇(v2) j

+ ν∇2φk− j (v
2) j] − ν

2
∇2φk, (33)

∂φk

∂r

∣∣∣∣
r=σ

= 0. (34)

TABLE II. Same as Table I but in the impenetrable regime
U0 > ε(1). A relative difference of barely (1–2)% is observed for
vc between orders n = 2 and 3. Indeed, from left to right, one has
1 − vc,3/vc,2 � (1.32, 1.26, and 1.40) × 10−2.

ε(ρ ) (3), ν = 1 (3), ν = 2/3 (6), ρsat = 1

vc,0 0.42(6) 0.44(7) 0.49(1)

vc,1 0.39(0) 0.40(7) 0.44(2)

vc,2 0.38(0) 0.39(6) 0.42(9)

vc,3 0.37(5) 0.39(1) 0.42(3)

Note that when ν = 1, one recovers the celebrated
vc,0 = (2/11)1/2 = 0.42(6) first established in Ref. [25] (first
figure in Table II). One should also notice the drastic differ-
ence in complexity between the Janzen-Rayleigh boundary
conditions (34) recursively treated in Ref. [26] in the ν = 1
case and the novel equations (29, 30) specific to the penetrable
circular barrier and Eq. (3) with an arbitrary ν. Table II shows
the accuracy of the Janzen-Rayleigh method in determining
the critical speed for superfluid motion past the impenetra-
ble barrier for the three interaction potentials of Fig. 1(b).
In the ν = 1 case, one recovers the first values of the se-
ries established in Ref. [26]. In this impenetrable regime,
the breakdown of superfluidity manifests by the nucleation
of quantized vortices with opposite circulations at the north
and south poles (r, θ ) = (σ,±π/2) of the circular obstacle
[25,27,37].

IV. COMPARISON WITH NUMERICAL
SIMULATIONS AND DISCUSSION

In Ref. [37] the authors numerically investigate the crit-
ical velocity of a 2D nonlinear Schrödinger superflow past
a Gaussian potential barrier, as described by Eq. (1) with
U (r) = U0 exp(−r2/σ 2) and ε(ρ) = ρ. They observe, for
wide enough obstacle potentials (i.e., σ large), that the critical
velocity is a nonmonotonic function of U0 which decreases
for U0/ε(1) < 1, reaches a minimum around U0/ε(1) = 1,
and slightly increases towards a U0-independent value for
U0/ε(1) > 1. This is similar to what we have found analyt-
ically in Sec. III, although the smallest value of the critical
speed calculated in Ref. [37] is not zero.

To bridge the gap between these numerical results and our
analytical study done for the model potential barrier (17), we
have performed similar numerical simulations in the case of
a circular-shaped obstacle. We have used a finite-difference
numerical scheme to determine the limit of the superfluid re-
gion where stationary solutions exist—all the technical details
concerning the simulation method are given in the Appendix.
To perform these simulations, we have used the smoothed-out
circular potential barrier (A3) with a radius σ = 10 and a
shoulder of width w = 1, which is different from the very
wide circular potential (17) of sharp boundary used in the
analytical approach. Another difference is that the simulation
takes into account the full Hamiltonian, whereas the analytical
theory neglects the dispersive term −∇2ρ1/2/(2ρ1/2) in the
hydrodynamic equations (9).
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FIG. 2. (a) Critical velocity for superfluidity vc as a function of U0/ε(1) for an interaction potential ε(ρ ) of the form (3) with ν = 1. We
compare the numerical results (circles) with the analytical ones obtained using a Janzen-Rayleigh expansion of the velocity potential to the
second order in the penetrable regime U0/ε(1) < 1 (solid curve) and to the third order in the impenetrable regime U0/ε(1) > 1 (dashed line).
The numerical and analytical results accurately coincide at low and large U0/ε(1) but differ around U0/ε(1) = 1 (see main text). (b) Critical
velocity for superfluidity vc as a function of U0/ε(1) for three different interaction potentials ε(ρ ): (3) with ν = 1 [circles; same as in panel (a)],
(3) with ν = 2/3 (squares), and (6) with ρsat = 1 (triangles). In all cases we observe a minimum of the critical velocity for U0/ε(1) � 1. The
dashed lines represent the analytical critical velocities vc,3 referenced in Table II. For clarity we do not show the analytical curves vc,2 = vc,2(U0 )
for U0/ε(1) < 1. In both panels the vertical error bars correspond, at best, to the discretization of the velocity used in the numerical approach
(see Appendix).

The comparison between our numerical and analytical re-
sults is shown in Fig. 2(a) in the case of the interaction
potential of Ref. [37], i.e., ε(ρ) = ρ [Eq. (3) with ν = 1]. The
solid curve vc,2 = vc,2(U0) in the penetrable-barrier regime
U0/ε(1) < 1 is obtained using a Janzen-Rayleigh expansion
of the velocity potential to the second order [i.e., Eq. (26)
with n = 2], whereas the dashed line vc,3 = const in the
impenetrable-barrier regime U0/ε(1) > 1 is deduced from the
same method but to the third order. The agreement between
the numerical and analytical predictions is very good at both
low and large U0/ε(1). This validates the existence of two
distinct branches of solutions in the penetrable and impene-
trable regimes, corresponding to a breakdown of superfluidity
that happens inside or outside the obstacle through the nucle-
ation of a rarefaction wave [27,37] or of quantized vortices
[25,27,37], respectively. However, contrary to what the an-
alytical approach predicts, these two branches turn out to
be smoothly connected around the penetrable-to-impenetrable
transition threshold U0/ε(1) = 1, and the critical speed dis-
plays a nonzero minimum [� 0.28 in Fig. 2(a)] in its vicinity,
which is similar to what is observed in Ref. [37].

These smoothing and nonzero minimum are likely due to
the dispersive term −∇2ρ1/2/(2ρ1/2), omitted in the analyt-
ical approach but fully taken into account in the numerical
simulations.5 Indeed, this term tends to reduce density gra-
dients in the penetrable-barrier regime and then favors a
larger density inside the obstacle. This yields a larger local
speed of sound and then a larger and nonzero critical ve-
locity close to the penetrable-to-impenetrable transition. We
thus expect our two analytical curves, accurate away from
U0/ε(1) = 1, to be smoothly connected around this thresh-
old without vanishing. Next, the fact that the smoothing of

5They probably also originate, but certainly in a more marginal
way, from the continuous behavior of the potential barrier (A3)
around r = σ .

the penetrable-to-impenetrable transition is accompanied with
a minimum for the critical velocity can be understood as
follows. During this transition the points of emission of the
excitations responsible for the breakdown of superfluidity are
shifted from the interior of the obstacle towards the exterior
(at the obstacle’s boundary in our configuration), where the
density is less depleted by the potential and then where the
local speed of sound and so the critical velocity are larger. This
explains the increase of the critical velocity at the transition
and then the existence of a minimum for it right before,
provided the mechanism responsible for the breakdown of
superfluidity shifts from the formation of a rarefaction wave
inside the obstacle towards the nucleation of quantized vor-
tices outside the obstacle.

In Fig. 2(b) we compare the numerical results for the three
interaction potentials ε(ρ) considered in Fig. 1(b) for the
same circular potential barrier (A3) with a radius σ = 10 and
a shoulder of width w = 1. The behavior is similar in all
cases, and a minimum for vc is always observed for a ratio
U0/ε(1) ∼ 0.7. The minimal value of each critical velocity
ranges from � 0.28 for (3) with ν = 1, to � 0.32 for (6) with
ρsat = 1. This is similar to what is observed for a Gaussian
potential barrier U (r) = U0 exp(−r2/σ 2), for which one ob-
tains a critical velocity slightly lower going down to vc ∼ 0.2
[37]. Finally, the numerical results compare favorably to the
analytical ones at low and large U0/ε(1), as shown in Fig. 2(b)
but only in the impenetrable regime U0/ε(1) > 1 for the sake
of visibility.

V. CONCLUSION AND OUTLOOK

We have theoretically investigated the condition of exis-
tence of a 2D superflow past a static potential barrier of large
width. Building on Refs. [25–27] (see also Refs. [28–38]
for related theoretical work), we have analytically derived
its critical velocity using the hydraulic approximation, the
hodograph method, and Janzen-Rayleigh expansions of the
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velocity potential. This has been done in the case of an
obstacle potential of certainly simplistic shape—we have
focused on the circular potential barrier—but of arbitrary
penetrability, and in the case of a local interaction energy
of arbitrary dependence on the fluid density in the nonlinear
Schrödinger equation. This pushes the state of the art towards
more realistic modeling of recent experiments with atomic
Bose-Einstein condensates [19] and paraxial superfluids of
light [23,24] in 2D. Our analytical results have been shown
to fairly agree with imaginary-time numerical calculations
inspired from Ref. [37].

In strong contrast to the 1D geometry (see, e.g., [55]
and references therein), the 2D critical velocity is a non-
monotonic function of the typical amplitude of the potential
barrier [19,37]. When the obstacle potential is penetrable,
the breakdown of superfluidity manifests by the emission
of a rarefaction wave [27,37] inside the potential and the
corresponding critical speed decreases with the potential’s
amplitude. On the contrary, when the obstacle potential is
impenetrable, superfluidity breaks down at the potential’s
boundary, where quantized vortices with opposite circula-
tions [25,27,37] are nucleated at a critical speed independent
of the potential’s amplitude. These two different tendencies
are smoothed out at the penetrable-to-impenetrable transition
where the critical velocity displays a minimum.

An extension to the present work could be the study of
the critical speed of a 2D superflow past a potential barrier
narrower than the healing length. In this case the density varies
at the scale of the healing length (see, e.g., Ref. [51], although
in 1D) and the quantum pressure −∇2ρ1/2/(2ρ1/2) can no
longer be neglected, which has not yet been analytically tack-
led despite numerical investigations [27,32,37]. Moreover,
interaction between pointlike impurities and a superfluid bath
seems to be an important ingredient to understand nonequi-
librium dynamics in recent experiments (see, e.g., Ref. [60],
although in 3D). As another prospect, it could be interesting to
investigate the critical velocity resulting from the presence of
several obstacles, or even in a disordered potential landscape
where localization nontrivially competes with interactions
(see, e.g., [61,62] and references therein). In this case the
critical speed should become a random variable [63] whose
statistical properties are unknown in 2D.
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APPENDIX: NUMERICAL CALCULATION
OF THE CRITICAL VELOCITY

Following the method proposed in Ref. [37] for a similar
problem with a Gaussian-shaped obstacle potential, we have

used an imaginary-time numerical method to find superfluid
stationary solutions when those exist.

In a reference frame where the obstacle is not moving, far
away from the obstacle, a superfluid stationary solution of the
dimensionless equation (1) should behave as

ψ (r, t ) = exp

{
i

[
v∞x −

(
v2

∞
2

+ μ

)
t

]}
= A(x, t ) (A1)

for a homogeneous fluid flowing in the x direction at con-
stant velocity v∞ > 0. We then look for solutions of the
form ψ (r, t ) = A(x, t )ϕ(r, t ), where the auxiliary function ϕ

should be independent of time t and should tend towards
1 far away from the obstacle if a stationary solution exists.
Notice that ρ = |ψ |2 = |ϕ|2. We rewrite Eq. (1) in terms of ϕ,
which gives the evolution equation i∂ϕ/∂t = Hϕ, where the
Hamiltonian

H = −1

2
∇2 − iv∞

∂

∂x
+ U (r)1U + ε(ρ) − μ. (A2)

Starting from an initial ansatz ϕ(r, 0), we propagate ϕ

in imaginary time τ using −∂ϕ/∂τ = Hϕ and monitor if ϕ

converges towards a stationary solution at long τ . One should
notice than no trivial imaginary-time dependence remains, as
the energy has been shifted to zero by the addition of the
μ term in Eq. (A2). As shown in Ref. [37], when ϕ does
not tend towards a stationary solution, hydrodynamic pertur-
bations that move perpendicularly to the flow of the superfluid
are emitted around the obstacle. The observation of these
emissions then shows the absence of a superfluid stationary
solution, which can be monitored through the behavior of the
curl of the current, for example. On the contrary, in a regime
where a stationary solution exists, we do not observe these
perturbations and |Hϕ| decreases continuously towards zero.

To perform the imaginary-time evolution of ϕ, we have
used an explicit finite-difference scheme [64–66] which is
conditionally stable for small enough time steps. We have not
used a sharp circular potential as in Eq. (17) but a smoothed
version of it, of the form

U (r) = U0

2

(
1 + tanh

σ − r

w

)
, (A3)

which is more amenable to our numerical scheme. Preliminary
simulations have shown that a radius σ = 10 is large enough
to study the hydraulic approach introduced in Sec. III A. We
have used a value of w = 1 to avoid numerical difficulties,
which means that we have not studied cases where the poten-
tial changes abruptly compared to the healing length ξ = 1.
This is an important difference between the cases studied
analytically and numerically.

We have typically used rectangular systems of sizes
Lx = 400 and Ly = 100 with a space step δx = 0.25 and an
imaginary-time step δτ = 0.01. As ϕ goes towards a uni-
form solution ϕ = 1 far away from the obstacle, we have
used periodic boundary conditions. The wave function ψ can
be calculated from ϕ using Eq. (A1) and used to evaluate
quantities of interest such as currents. The linear size of
the system along the x axis allows us to increment v∞ by
steps δv = 2π/Lx � 0.016. We have performed simulations
to maximal imaginary times τmax ∼ 104. In this limit the
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largest value of |Hϕ| in the rectangular grid is generally of
order 10−5. To validate our approach, we have reproduced the
results obtained in Ref. [37] for a Gaussian potential barrier
U (r) = U0 exp(−r2/σ 2).

For given values of U0, we have done simulations for dif-
ferent values of v∞ and observed if a stationary solution is
reached or not. This has allowed us to determine a transition
interval with a precision which is, at best, δv . One should

notice that a sort of critical slowing-down happens close
to the transition between the nonstationary and stationary
regimes: As v∞ is decreased towards the transition value, the
imaginary-time interval before the emission of some pertur-
bation increases and this emission may not be observed in
our finite-time window. We have defined the nonsuperfluid
regime as the one where we observe the emission of several
perturbations.
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