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In cosmological evolution, it is the homogeneous scalar field (inflaton) that drives the universe to expand
isotropically and to generate standard model particles. However, to simulate cosmology, atomic gas research
has focused on the dynamics of Bose-Einstein condensates (BEC) with continuously applied forces. In this
paper we argue that a complementary approach needs also to be pursued; we thus consider the analog BEC
experiments in a nondriven and naturally closed atomic system. We implement this using a BEC in an optical
lattice which, after a quench, freely transitions from an unstable to a stable state. This dynamical evolution
displays the counterpart “preheating,” “reheating,” and “thermalization” phases of cosmology. Importantly, our
studies of these analog processes yield tractable analytic models. Additionally, of great utility to the cold atom
community, such understanding elucidates the dynamics of nonadiabatic condensate preparation. Indeed, the
dynamical processes discussed here are generic and in future cold atom reequilibration experiments it will be
important to observe both the preheating stage, corresponding to a fragmented condensate, and the reheating

stage, corresponding to a particle cloud.
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I. INTRODUCTION

Recent excitement in the literature has drawn attention to
quantum field simulators of cosmological evolution as im-
plemented in cold atom systems [1-14]. Such studies are
motivated by the fact that atomic physics laboratories provide
the possibility of studying in real time and in a reproducible
fashion, the analog of extreme nonequilibrium [15-21] con-
ditions such as might have prevailed in the early universe.
Much of the emphasis, both in experiment [1,3,12] and theory
[22-24] has focused on the inflation stage. Equally important
are the three subsequent stages which have received some
attention [3,11] as well.

A paradigmatic cosmological example which describes the
evolution of the early universe is the “slow roll inflation”
scenario [25-30]. The crucial features of this scenario are
that (1) the universe is an isolated quantum system in which
inflationary processes proceed on their own. (2) This scenario
begins with a homogeneous scalar inflaton field ¢ having
high energy; the subsequent dynamics correspond to ¢ slowly
rolling down a potential energy hill towards equilibration. Af-
ter an exponentially slow inflation period at the beginning, (3)
the inflaton oscillates and transfers its energy to matter fields
involving an explosive particle production, and then finally
to thermalization. This cosmological model, importantly, has
a body of experimental support [25,26]. These processes are
illustrated schematically in the simple picture of Fig. 1(a).

In this paper we capture these three essential features of
cosmology (after inflation) by studying the dynamics of a
dilute Bose gas on an optical lattice, transitioning from an
unstable to a stable Bose-Einstein condensate (BEC). Our
unstable BEC is formed in an optical lattice configuration
through a quench that instantaneously pumps particles from a
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lower to an upper band. Unlike the other atomic physics plat-
forms [3,11,12] ours is an isolated system which starts from
a homogeneous BEC. The evolutionary dynamics proceeds
on its own without external drive so that all the dynamics
we observe after the quench is driven by the excited BEC or
“inflaton.”

We find that this high-energy BEC state which is in-
trinsically unstable, spontaneously transfers its energy to
inhomogeneous quantum fluctuations and finally transitions
to a stable (condensate) state. The dynamical path is described
by three evolutionary stages with striking similarity to the
three postinflation stages of inflaton dynamics. Its subsequent
evolution corresponds qualitatively to the simple dynamics
suggested in Fig. 1(b).

By exploiting this correspondence, our paper demonstrates
how cold atom systems can provide concrete, analytically
tractable models for the dynamics within each of these evo-
lutionary stages of the early universe. Accompanying our
analytics are demonstrably consistent Gross-Pitaevskii simu-
lations which establish the relative time intervals associated
with each of the three stages. Moreover, the thermalized state
or endpoint contemplated here is a recondensation in contrast
to previously studied cosmological analog systems. Thus, this
work should satisfy a centrally important objective of cold
atom research: to create and to more deeply understand the
pathways associated with the nonadiabatic preparation of ex-
otic condensate phases [31-33].

Figure 2(a) provides an illustration of the proposed ex-
periment. The momentum distributions of the immediate
postquench stage and that of the three subsequent evolu-
tionary stages obtained from our simulations are represented
by the snapshots in Fig. 2(b). The first of the later three
(corresponding to “preheating” in the cosmological literature)
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FIG. 1. Similarity of systems which transition from an unstable
to a thermal state. (a). Slow roll inflation picture reflecting how the
inflaton slowly rolls down the potential and ultimately generates the
standard model particles. (b). A Bose-Einstein condensate initially at
an unstable state similarly rolls down to relax into the true ground
state, corresponding to the band minimum.

yields, through a parametric resonance, what we refer to as a
“ring condensate” [34]. More precisely, this so-called “con-
densate” corresponds to a macroscopic occupation of many
finite momentum modes (as in a fragmented condensate), but
distributed in a ring geometry, as seen in the second panel of
Fig. 2(b).

Collisions between the initial and ring condensates lead to
a second stage (“reheating”) which ends with a destruction of
both condensates and a proliferation of nonthermal bosonic
quasiparticles having a range of different momenta, which is
seen in the third panel of Fig. 2(b) and which we refer to
as a cloud state. The formation of this cloud, in which all
phase coherence is lost is, in turn, a crucial step that then
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FIG. 2. Optical lattice setup and numerical results. (a). Left
panel: Schematic plot of the two-dimensional optical lattice potential
confining atoms. The unit cell consists of two sites A and B. Pink cir-
cles in (a) denote atoms. Right panel: Color contour of the upper band
structure. Here momentum is given in units of ky = 7 /d. Here k = 0
is a saddle point in two dimensions and a local maximum along the
k, direction. (b). Momentum-space atom distribution nyx = [ (k)|?
at different stages from GP simulations at given interaction strength.
Here v (k) is the Fourier transform of v (r), Here the units of time
are in recoil energy Ep; for convenience in plotting we take 7' to be
h/(4Eg). For numerical details see Appendix E.

enables the system to reach the third stage corresponding to
full thermalization shown in the fourth panel Fig. 2(b).

II. NUMERICAL SIMULATION

As is illustrated in Fig. 2(a), we start with a two-
dimensional system where the Bose atoms are confined in the
y direction by a periodic potential V(y) = V) sin(4wy/d) +
V, sin(2y/d) with a free particle dispersion in the x direction.
Here V (y) involves two sublattices (denoted as A/B sites) with
a potential offset controlled by V,. The potentials of A and
B are exchanged during the quench, which effectively pumps
atoms from A sites to B sites, thereby exciting the BEC from
the lower band to the upper band. The extra free dimension in
Fig. 2(a) plays an essential role [33,35] in the recondensation
process, as it provides high-energy states needed to absorb the
released kinetic energy when the BEC reforms in the end. The
results here can be readily extended to three-dimensional (3D)
systems with only quantitative changes.

In our simulations, we use a CUDA-based Gross-Pitaevskii
equation solver implemented on graphic processing units,
based on a split-step algorithm [36,37] with no dissipation

added: zh S W(r, 1) =(-£ 2m +V(y)+g|\ll(r OI)W(r, 1),
where m 1s the boson mass, and g the interaction strength.
Details of the simulations and parameters are discussed in
Appendix E.

To make contact with cosmology we note that in the cold
atom laboratory, a quantum quench of the BEC to the upper
band is the analog creation of a homogeneous oscillating
inflaton field. The quenched BEC is associated with a finite
oscillation frequency w ~ J/h, where J corresponds to the
width of the upper band with dispersion ex = hzkf/Zm +
|/| cos(kyd). The subsequent dynamics is essentially confined
to the upper band since the interaction-mediated tunneling be-
tween two bands is tuned to be negligibly small. We presume
gno/J < 1 (where ng is the condensate density) and from our
tight-binding limit simulations determine the value for J =~
0.05Ef in recoil units. It is this finite-frequency BEC which
serves as an internal driving source to pump particles out
of the condensate, leading to its fragmentation and eventual
disappearance.

III. PREHEATING: EARLY DYNAMICS

In cosmological models, at the end of the inflation period
the inflaton field is assumed to oscillate around the minimum
of its potential and in this way decay into other forms of
matter. This next stage following inflation is called preheating
[38—40], where the universe is populated via parametric reso-
nances. The coherent nature of the BEC inflaton enhances the
efficiency of particle production and at early times particles
(inhomogeneous fluctuations) are generated exponentially.

Analogously, these parametric resonances emerge in the
cold atom system during the preheating stage which is associ-
ated with an effective preheating Hamiltonian [41]

Al =3 em@afa+ L0 @ty +aa). (1)
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FIG. 3. Evolutionary stages derived from analytic theory
[(a)—(c)], which should be compared with simulations in Fig. 2(b).
Here, the ring stage (a) originates from a parametric instability while
(b) the cloud stage arises from collisions between two condensates.
The quasithermal distribution (c) derives from Boltzmann dynamics.
(d) Characterization of the k and -k pairs which lead to cloud for-
mation and derive from momentum and energy conservation [42] (e)
Distribution of the rate of change of particle number 9,n. The plot
presents this distribution at early times where Boltzmann dynamics is
applicable. The arrows show how particles flow to the band minima.

Here €'(k) = ex — J + gno, dx is a bosonic operator. The
presence of imaginary eigenvalues A(k) = ve'(k)? — g’n§ of
Eq. (1) (when |€/(k)| < gng) reflects exponential growth of
the new condensate particles. The resonance condition €x =
J — gny corresponds, in momentum space to a ring-shaped
additional fragmented condensate, which forms on a timescale
t, ~ Fz(gno)’1 InL. Here L denotes the system size. These
predictions are confirmed by the GP simulations shown in the
second panel of Fig. 2(b). The dynamics can be described by
an analog of the Mathieu equation, for details see Appendix D.

IV. REHEATING STAGE

The universe enters the reheating stage once the energy of
the newly populated degrees of freedom becomes nonnegligi-
ble. Here the inflaton continues to oscillate and interact with
its fragmented products (called rescattering); this is associated
with nonlinear dynamics. At the same time the energy of the
inflaton and its byproducts is transferred to standard model
particles. The accompanying phenomenology of this process
in cosmological models is complex. There may emerge tur-
bulent scaling [43], or oscillons [44,45] or solitons [46] and
cosmic defects.

In the cold atom setup, the formation of the ring-
condensate in momentum space shown in Fig. 3(a) marks
the start of the reheating stage. In this stage, the quenched
BEC (inflaton) continues to oscillate at high frequency and
interactions between the BEC and the ring products become
important. Particles are pumped out of these byproducts and
energy is transferred to other noncondensed particles. These
dynamical processes eventually generate a highly nonequi-
librium “cloud” phase shown in the third panel of Figs. 2(b)
and 3(b).

It is convenient at this point to introduce a characterization
of the momentum regime occupied by the ring condensate;
we call this A throughout the paper [see Fig. 3(a)]. One
important interaction effect, V 4, corresponds to the annihi-
lation of two particles in the ring condensate. These collision
events, the details of which are discussed in Appendix B,
are associated with back-reaction dynamics and broaden the
radius of the ring. More important is the second process Vy o
which annihilates particles from both condensates and leads
to the destruction of condensates associated with an effective
reheating Hamiltonian

y0.r __ "at A / AT AT
Hy = Z €qdqdq +U Z (a4ay_q +He)
qEA keA,q¢A

+U Y (ajagx+He). 2)
keA,q¢A

Here €y = €q — (J — gno/2 + gi»/2 — gitp/2) is an effective
kinetic energy and U’ = 2g\/iofi, /L, is the effective interac-
tion strength for these back-reaction processes with L, being
the number of modes in the ring. Additionally, 7ip , is the
respective density for each coexisting condensate. The deriva-
tion of Eq. (2) is given in Appendix B.

In contrast to Eq. (1), where the physics is local in k space,
the Hamiltonian in Eq. (2) is intrinsically nonlocal. These
nonlocal features, reflecting the extended ring condensate, are
generic and universal and pertain to a geometrically extended
“resonance band” in k space. The physical consequences of
Eq. (2) are that the eigenvalue spectrum now involves a large
number of complex values, A; where the range of i scales with
the system size. These complex eigenvalues suggest an inter-
pretation in which there is a proliferation of bosonic particles
concurrent with the decay of the condensate(s).

To understand the origin of these complex eigenvalues
and the time evolution more quantitatively, we note that the
dynamics associated with Eq. (2) can be derived using a 2x2
matrix; since the effective interaction U’ is small, each pair
(k, g — k) can be treated separately. This corresponds to an
equation of motion

d [ () N;i(é,’(’ U’) ax(t) 3)
di\al_ )] 7 n\-U" —eJ\al_ )

where ay(t) evolves under the effective Hamiltonian in
Eq. (2). The eigenvalues are given by

/)

2
e —¢ e +e
Ak, q—k) = % + (%) — U2, &)

and when €, 4+ €;_, = 0, one clearly sees that the correspond-
ing values for A become complex.

The momentum distribution (£2) associated with this re-
heating stage is plotted in Fig. 3(b) which takes on a
cloud-like form representing a proliferation of noncondensed,
nonthermal bosons. Here the system enters into a highly
nonequilbrium phase, where the initial condensate, ring-
condensate, and a cloud-shaped distribution of nonthermal
bosons coexist. This cloud, deriving from the complex eigen-
values in Eq. (2), reflects collisions between specific bosonic
pairs as shown in Fig. 3(d). Here the energy and momentum
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conservation constraints, indicated by the two dashed lines,
establish how to associate the value of ¢ — k with a given k in
the pair. The reheating stage ends finally with the complete de-
cay of the condensate and the full formation of the cloud state.
This condensate decay is the cold gas counterpart of the
cosmological analog in which at the end of reheating one has
the generation of standard model particles. Here one sees a
destruction of all vestiges of phase coherence observed in
the earlier evolutionary stages, in many ways similar to the
cosmological picture in which the original memory of the
(inflaton-)condensate completely disappears.

V. LATE TIME: THERMALIZATION

In cosmology, the reheating stage ends with the complete
decay of the inflaton field and a highly nonthermal distribution
of standard model particles. All important particles which will
ultimately evolve to thermal equilibrium are already gener-
ated. What follows next is a stage of thermalization in which
energy is redistributed among the particles; this enables them
to reach an equilibrium distribution, as supported by cosmo-
logical evidence [47].

In a similar way to the cold atom system, the quenched
condensate completely disappears and a highly nonthermal
distribution of particles emerges, marking the end of the
reheating stage. Thermalization then follows; here all finite-
momentum degrees of freedom equilibrate as the system
relaxes towards thermal equilibrium. We find that the dynam-
ics in this stage is well described by a quantum Boltzmann
equation. This evolves the nonthermal cloud state to a quan-
tum Bose-Einstein distribution with, as it turns out, nearly
20% of particles in the condensate.

In this Boltzmann-like description of the dynamics the
interaction energy is assumed to be much smaller than the
bandwidth so that it can be treated perturbatively. This leads
to the famous quantum kinetic Boltzmann equation for a Bose
gas [48],

dyme = 1({me'}). ®)

Here ng is the particle number distribution function and
I({n'}) is the collision integral. Perturbatively, we have that
I({ny'}) depends on

Nk, k' k+q, k" — q) = ng_qeq(1 + m)(1 + nye)
— (g + Dieg + D,
(6)

Here k' and q are integrated out to yield the collision term I =
21 g? fdzk’d2q(27r)’3F8(Ei — Ef), where, for simplicity
of notation, we dropped the arguments in I'; the §(E; — Ef)
term introduces conservation of kinetic energy. This collision
integral then determines the momentum and energy flow pro-
cesses which lead the system to equilibration.

Because of the special property of the cloud state, initially,
the main contribution to I' is from scattering events involving
one out-of-cloud and three in-cloud modes. The details of the
scattering events are described in Appendix C. In such events,
I is dominated by the cubic terms [48] ~n>. More specifically,
the important collisions derive from two intermediate-energy
particles in the cloud which scatter into one low-energy mode
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FIG. 4. Time evolution of key properties from GP simulations.
Beyond 6007 the behavior is rather stable. The y axis for blue lines is
on the right, while the left axis pertains to all other curves. The solid
and dashed blue lines compare the particle number r near the band
minima from GP and analytical Boltzmann calculations, respectively.
The purple curve reflects global phase coherence while the orange
line plots the total particle number in excited states excluding the
k = 0 mode. The green curve indicates the residual particle number
in the lower band, and is responsible for the oscillatory behavior
found in the global coherence plots. Vertical black dotted lines indi-
cate the time interval over which there is a smooth crossover between
different evolutionary stages. The inset compares the entropy per
particle from GP simulations (solid) and Boltmann theory (dashed)
using S = N~' Y, [(1 + nk) In(1 4 nk) — nk In(n)], where N is the
total particle number. This monotonically increasing entropy and its
final saturation at long times are consistent with equilibration.

around the band minimum and the other mode at high energy.
The flow of particles is shown in Fig. 3(e). As a result, Eq. (5)
is of the form 9,nx o g°nj. As a consequence of the relatively
time-independent particle distribution, it follows that the ini-
tial dynamics evolving from the cloud yields a linear-in-time
growth for the occupation of the band minimum.

As the dynamics continues to evolve in time the system will
eventually be driven towards a Bose-Einstein distribution. In
this regime, the quadratic term ny_qni+q — hifie in I' begins
to dominate and the time variation of the particle distribution
slows down, approaching the quantum distribution function
nt = (eP @ — 1)~ as expected. Here the inverse temper-
ature B in this equilibrium state is determined by the kinetic
energy of the initial cloud while the chemical potential u
approaches zero for sufficiently large system sizes. In this
way we establish condensation at the band minima in the
thermodynamical limit.

VI. COMPARISON BETWEEN ANALYTICS
AND SIMULATIONS

We turn now to Fig. 4, which summarizes the evolu-
tionary stages as found in the GP simulations and presents
comparisons with our analytics, demonstrating reasonable
consistency. There are multiple time-dependent functions in-
dicated by the curves. At early times (of the order of ; o< g7 1)
the simulations show that there is a rapid growth in occu-
pation of excited modes (orange curve) which reflects the
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formation of a new ring-like condensate. The governing dy-
namics shows an exponential growth rate, as expected in a
parametric resonance. Following this, in the second stage, the
system experiences a complete loss of global phase coher-
ence (purple curve) associated with the upper band, which
corresponds to the cloud stage. Following this stage, then, the
occupation number in the band minimum (solid blue curve)
grows appreciably, displaying the expected linear time depen-
dence for an extended range of intermediate times.

The number of particles at the band minimum is shown
in Fig. 4 via a comparison between simulations (solid) and
Boltzmann analytical calculations (dashed) blue curves, in-
dicating that both overlap reasonably well. This stage of
thermalization is reflected in the growth of the (H theorem)
entropy as well, which is plotted as analogous dashed and
solid lines in the inset to Fig. 4.

VII. CONCLUSION

This paper has shown how the intrinsic dynamics of a Bose
condensate in an optical lattice transitioning from an unstable
to a stable BEC provides an analog experiment for the slow
roll inflation cosmology scenario. Importantly, it represents a
homogeneous and a closed quantum system in which the in-
flationary processes proceed without the external drive which
is usually incorporated in these analog laboratories [1-14]. All
of these are exciting contributions which address cosmology
as seen through the lens of a quantum gas.

The present equilibration study also informs about cold
atom engineering of exotic condensate phases which should
be of direct interest to the cold atom community. Importantly,
we argue here that the dynamical processes are quite generic
and in future recondensation experiments it will be important
to observe both the preheating stage, corresponding to a frag-
mented condensate and the reheating stage, corresponding to
a particle “cloud.”

As an example, the upper-band condensation discussed
here should be relatively straightforward to implement exper-
imentally, as was suggested in a previous theoretical study
[31], although there, while the cloud stage was found, the an-
tecedent preheating stage and associated ring condensate were
not. Retrospectively, we note that, in previous simulations [33]
involving a dynamical preparation of an atomic condensate
in a Hofstadter band, there were, indeed, indications of con-
densate fragmentation [49]. We caution, however, that once
the interactions become sufficiently strong the production of
particles is much more efficient so that the formation of the
cloud state is almost immediate. Interestingly, such behavior
is well known in the cosmology literature [50] and associated
with the “broad resonance” regime.

Equally important, we stress that the present studies pro-
vide analytically tractable models for the dynamics within
each of these evolutionary stages. This should be of value
both for simple cosmological models and for future analyses
of dynamical engineering in cold atom systems.

ACKNOWLEDGMENTS

We thank Cheng Chin for his substantial help in writing
this manuscript. Additionally, we are very grateful to Erich

Mueller for calling attention to the specific quench protocol
studied here. This work was partially (KL, KW) supported by
the Department of Energy (Grant No. DE-SC0019216). HF
acknowledges support from DOE, Grant No DE-SC0022245.
We thank Andreas Glatz for valuable help and insight over
many years of collaborations. We also acknowledge Steven
Wu, D. T. Son, L. T. Wang, S. Koren, A. Lucas, Y. M. Zhong,
and G. H Zhou for helpful discussions.

APPENDIX A: DYNAMICS IN THE PREHEATING STAGE

To begin, we address the early dynamics in the preheating
stage, focusing on an effective theory of the upper band de-
grees of freedom, with the effective Hamiltonian

upper— E Ekakak

Here ¢x = hzkf /2m + |J| cos(kyd) is the upper-band disper-
sion and dy, &]T( are bosonic operators in this band, J is
the hopping parameter associated with the periodic potential
treated here in a tight-binding approximation. To obtain J,
we directly diagonalize the original Hamiltonian matrix based
on the implemented lattice potential with a size cutoff where
a convergence is achieved. J is exponentially dependent on
the lattice depth (dominated by V| here) while the band gap
between the first and second bands are tuned by V,. Because
of the macroscopic occupation of a pumped BEC, we focus
on the dynamics of scattering events associated with k = 0
modes. This leads to a many-body interaction term

Z akak,akr qlk+q- (Al)

kk’q

Vo = %(&'& &an—f-Xk:(ak LkGoao +H.c.)

4y aiﬁagakao) ) (A2)
k
It is useful to rewrite this expression using &3&0 =N—
> k0 &i&k where the scalar N is the total number of particles
in the system. Using this replacement, one finds a quadratic ef-

fective Hamiltonian describing the scattering events between
condensed and noncondensed particles [41]

At A 8No At A
eff Z e]’{aliak + 7 Z(dla' T axd_x).
k=40 Ktk

(A3)

Here €, = ex — J + gno, no = N/V, and we ignored all quan-
tum fluctuations from noncondensed particles. This yields
Eq. (3) in the main text. In the Heisenberg picture, we address
the time evolution of operators under this effective Hamilto-
nian

&k(t) — €iH'!)ffz/h&k€7iH§ft/h. (A4)
From the commutation relations it is seen that
n| i ! ay (t
L _k( ) e gmo ﬁk( )| (AS)
dr|a )|~ h [—gme  —elal, ()

Note that the 2x2 matrix here is non-Hermitian so that the
dynamics are nonunitary.
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FIG. 5. Ring formation during the preheating

stage, as
represented by a momentum-space distribution. From left to
right the interaction energy is increased as gng = 0.0075Eg,
0.0151Ex, 0.0226E%. nyx = | (K)|>. A clear scaling of ring width
with the interaction energy determined by the resonance condition
is seen.

From the matrix eigenvalues

wx = /> — gn}/h,

it follows that wk becomes imaginary when 6{3 - gzn(z) <0
which is to be associated with exponential growth in the num-
ber of particles. The condition €, = gng provides the boundary
separating the dynamics associated with that of conventional
Bogoliubov quasiparticles and that associated with a paramet-
ric instability leading to the growth of a ring condensate, as
discussed in the main text.
The ring center is determined by

(AO6)

R2k2/2m + J cos(k,d) = J — gno. (A7)

Since cos(kyd) is periodic in momentum space, this leads to a
closed ring.

Moreover, the boundary region for exponential growth
corresponds to the onset of imaginary eigenvalues; this is
associated with the condition |e;| = gno. At this boundary the
modes are static, having zero frequency.

Connection to GP simulation results

From Eq. (A7), one sees that the ring position is directly
determined by the interaction strength. This is confirmed by
numerical simulations, see Fig. 5. A more quantitative anal-
ysis is summarized in Table I, where a scaling of the ring
position and growth exponent is shown.

APPENDIX B: DYNAMICS IN THE REHEATING STAGE

The appearance of a second condensate (through ring
formation) is an important step en route to thermalized re-
condensation. Crucial here is that now two condensates are
present which can lead to intercondensate scattering events.
The ring is not a replacement of the original condensate but
rather represents a fragmentation.

1. Back-reaction: Balancing between k = 0 and ring condensate

In this subsection which is associated in the cosmolog-
ical context with “back-reaction,” we study the scattering
events within ring condensates, first establishing a mechanism
to enable a coexisting BEC (corresponding to simultaneous

TABLE I. Summary of characteristic timescale and position for
the ring formation at different interaction strengths. Ex/h = 1.3 kHz,
27 /T = 6300Hz, wy = 1Hz. Here k, is identified as the smallest
y-momentum value in the ring, which corresponds to the k, = 0 point
in the equienergy ring in Fig. 5. The time is chosen such that the
particle density at this k, has grown to around 1000 (arb.units). Here
the energy difference AE = E(0, k,) — E, is measured with respect
to the initial energy Ey = —2.07237Ey at k = 0 in the second band.
One can see a scaling of 1/t and AE as o gny. Considering the
error of At ~ 10T, Ak, ~ 0.03k, in the numerical data, the scaling
relation is reasonably well satisfied.

gno/ (hay) t/T ky/ko AE /Ey
10 310 0.28 —0.0189
20 160 0.44 —0.0425
30 110 0.56 —0.0620
40 90 0.75 —0.0892

ring and k = 0 condensates). Ultimately, in the “rescattering”
phase, collisions between the two lead to a destablization.

Once aring BEC has formed, one has to consider scattering
events involved with ring modes. Here there are four terms to
consider:

~
Vr, r

EAP MDD I

q1,92€A q3,q4€A  q1,q2€A q3,qu¢A

fY Yy ¥

q1, @ ¢A q3,94€A Q1. Q3EA q,qugEA
x &3451;23&‘1251‘118((11 +q—q3 —qq4). (B1)

Since the ring is an extended object, the first summation itself
contains two types of contributions: (1) forward scattering
events (suph as qu’qze A Za(;l.&(gz&qufq,); () .the scatter-
ing involving two incident particles with opposite momenta
o al a' . aq,d_q,). In the second or third summation

Q. eA Pq T —q R Y g /s . . ?
the case q; = —q; is the leading contribution while all other
are subleading [51]. In the fourth summation, the leading
contribution corresponds to q; = qs.

It follows that V,., can be approximated by

5o 8 AT At A A AT AT A A
Vir = v E (Za'qlaqzaqzaql + aqlafqlaqza,qz)
qi.q2€A

+ Y (@ja aga_g +He)
qeA.q'¢A

+4 ) afla;;,aq,aq). (B2)

qeA,.q'¢A

Again one can apply a mean-field (M. F.) approxima-
tion and transform V,, to quadratic form. One may replace
(&g&q) =N,/L, and (aq4_q) = —iN,/L, if q € A. Here L,
counts the allowed momentum modes in the ring and N, is
number of particles inside the ring. As discussed earlier for the
preheating stage, one thus obtains an effective Hamiltonian
containing scattering events between particles on the ring con-

densate, and all other modes, among ring-condensed modes
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and other modes

Hp =Y (& — J + gno — gi,)ajax
kéA

+igh (akay — aga’,), (B3)

where 71, = N, /V. The overall factor of i before the quadratic
interaction term derives from the phase correlation of coun-
terpropagating modes in the ring. This factor may be
absorbed via a redefinition of operators, 4y — exp(—ir /4)d.
This leads (via a diagonalization) to a set of eigenvalues
corresponding to an effective Hamiltonian given by ¢; =
V(e — J + gng — gn,)* — g2n2. Here we consider the limit
n, = ny, where nearly all particles are transferred to the con-
tribution from n,..

The key point is that the main consequence of these ring-
ring scattering events is to scatter the particles in the ring back
to momenta around k =~ 0. This is the counterpart of the cos-
mological “back-reaction” effect which stabilizes a coexisting
BEC (corresponding to simultaneous ring and k = 0 con-
densates). Ultimately in the “rescattering” phase, collisions
between the two lead to a destablization. In summary, on a
timescale ¢ ~ ¢, which corresponds to when the ring BEC has
been formed, there will be a counterflow from the ring BEC
back to modes at the band minima, until a balance of flow is
reached between two BECs.

2. Rescattering: Formation of the important cloud state

In this section, we establish a mechanism to destabilize the
coexisting BEC’s, leading to the emergence of a cloud state
which represents a proliferation of bosonic pairs.

As in the previous sections, one can write down the scat-
tering terms between the coexisting BECs

5 g N AT AT A A
Vo.r = V( Z 3; 11 aogdx + 2 Zagalaoak
keA,q¢A keA

+2 Z aoaaqkak+2 Z a &&)

keA,q¢A keA,q¢A
(B4)

After a mean-field approximation we arrive at an effective
Hamiltonian describing scattering events among coexisting
BECs and other modes which leads to Eq. (4) in the main text

A =3 e —J -+ gno/2 — giy /2 + gito/ 2V

k¢ A
non
+2g /= Y (@al , +He)
L, qeA kgA
non, A
+2g/z > (@fax—q +He). (B5)
" qeA kgA

Here 7ip = Ny/V is the density of k = O particles. (Note that
the random phase from &g is unimportant as it can be absorbed
into redefined ay operators.) Importantly, the scattering events
here are responsible for states appearing in a new momentum
regime. The Hamiltonian is intrinsically nonlocal in momen-
tum space and the exact treatment involves a diagonalization

of a matrix M which includes multiple degrees of freedom.
this leads to an equation of motion for a;

d . il ,. 2gn . .
S = — | &+ % D (agiw(®) +a]_ (1))

qeA

Here ¢ =ex—J 4 gno/2 — g, /24 gp/2 and  ngeom =
noni,. The closed set of equations for all k modes can be
compactly written as

%‘-IJ(I) = %M\D(r) < WY(t) = exp{—iMt/h}¥(0),

where the vector W is defined by

W(r)
= (@, @) )"

(B6)

aty, @) g, (1) a

—Kki.L

Here k; ; = 2T”(i, J), and L is the linear size of the system.

Numerically diagonalizing Eq. (B6), we find that the spec-
trum consists of a large number of of complex eigenvalues (see
Fig. 6). This can be simply physically interpreted. In particu-
lar, since each nonlocal scattering term has a small coefficient,
one can deal with each pair of (q, k — q) individually. One
may write down the equation of motion for a single pair of
momenta [as in Eq. (5) of main text]

d| ax() —i| € U’ ax (1)
T AT =7 ’ " N . (B7)
di|a o |~ | -U = ||al_ @)

€ = ek —J +gno/2 — g, /2 + gip/2 and U’ =

. The eigenvalue of the 2x2 matrix above is given

Here

2g

non,

€ e

by A = S " 14+ 4/( U’?. This complex solution
reflects exponentlal growth. Hence, the fastest growing pair
is such that € =—€ , & e+ exq=2(J —gho),
assuming ng = g + 7i,.

This analysis can be used to determine the shape of the
cloud. Consider the following two equations:

qk)Z

hz
J cos (kyd) + —k* — (J — gitg)
; 2m
h2
= (J — go) — Jeosl(ky — gy)d] — (ke — qx)’
. ",
with  J cos (g,d) + 2—6]x =J —gnp. (B8)
m

The first equation introduces a constraint on the kinetic energy
and second equation determines the ring shape. To further
simplify these equations, one may cancel g, in the first and
second equations and find a single equation below

h22
0=s(2-2L
2mJ

+ T sin (kyd) |1 — (1 -

%) cos (kyd) — 2(J — giig)

) 2
h %ZC 8No
2mJ J

2

n 2 2
+ %(ka — 2oy + ¢7) = Fy (k). (B9)
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FIG. 6. Eigenvalue of the effective Hamiltonian in Eq. (BS). System size is set to be 40. Panel (a) plots the imaginary part of the eigenvalues.
One can observe there are a large number of eigenvalues with a small but finite imaginary part. Panel (b) plots the real part of the eigenvalues.
Combining these two figures, one may deduce that there are a large number of complex eigenvalues.

It follows that the cloud shape C is determined by zeros of
the functions F,, (k), where g, is a free parameter. Figure 3(b)
in the main text is obtained by solving for zeros of these
functions numerically.

It is important to stress that after the reheating stage is
completed all remnants of “global” coherence decay away
at which point the cloud state is fully formed. For the iso-
lated quantum system we study, quantum information cannot
be lost, but it can become spread and scrambled in a more
complicated manner. Note that the cloud state is a nonthermal
state. Nevertheless, we discuss next how it enables the system
to thermalize.

APPENDIX C: THERMALIZATION:
BOLTZMANN DYNAMICS

During this last stage of equilibration, the cloud state re-
organizes and the collection of nonthermal bosons contained
in the cloud begin to occupy the band minimum. This pro-
cess is associated with Boltzmann dynamics, as it involves
no “global” phase coherence. Since we consider weak in-
teractions, one may use leading-order perturbative theory to
characterize the processes. The dynamical equation of each k
mode is given by

ome  2¢* [ d*kKd’q
at  h Qm)*

X 2 8(€x + € — €ktq — €k'—q)-

'k, kK;k' +q,k—q)
(C1)

Here the vertex function I' determines how the particle
number is changed for scattering events involving the four
momenta: K, k', k+ q,k — q":

Pk, K5k + .k — q) = meqmerq(1+m)(1 + i)
— (g + 1)t q + D,
(C2)
The scattering event k, k" — k — q, k' + q decreases ng by
unity while the reverse process similarly increases ni. Note

that k, k" > k—q,kK'+q and k —q,K' + q — k, k' have
different scattering amplitudes. Their difference leads to a

cubic power dependence on the particle number. Thus

3I’lk I ( )

— = I(n).

ot K
This equation reflects three conserved quantities: particle
number, momentum, and energy.

Additionally, this Boltzmann dynamics reflects the H the-
orem which is associated with a monotonic increase in the
entropy of the Bose gas discussed in Fig. 4 of the main text
and given by

(C3)

Sp = / Ak[(ng + DIn(ng + 1) — nglnng].  (C4)

1. Characterization of cloud state

To understand the equilibrating Boltzmann dynamics, it is
important to provide a description of the initial state, the cloud
state | Wg,). This is the intermediate nonthermal state which ap-
pears after the quenching of the condensate but before thermal
equilibrium. It satisfies the following conditions.

(1) Ttis contained in a simply connected space €2 with well
defined boundaries in momentum space. €2 is, thus, a subspace
of the two-dimensional Brillouin zone (BZ). Importantly, the
smaller the size of 2 the lower the kinetic energy of the system
and hence the lower its effective temperature.

(2) For those momentum states which are present there is
an effectively large occupation number n; (2) = (Wq | |Wg).
Indeed in our numerical simulations we find n;(2) > 1.

(3) Within these occupied states there is no “global” phase
coherence

(Welara | ¥e) < 1. (C5)

The absence of phase coherence means that the cloud state can
be treated within a Boltzmann equation approximation.

2. Early stage of Boltzmann dynamics

The dynamics in this early stage strongly depends on
these properties of the cloud state. One may classify the
two-body collision events according to how many particles
inside and outside the cloud are involved. If there are three or
four inside-the-cloud modes involved this will induce strong
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particle number flow, whereas if there are only two such
modes the flow is weaker, and with only one or zero such
modes, this contribution in the early dynamics can be ignored.

We focus, for simplicity, on a situation where the particle
number distribution in the cloud is uniform. We tested the
appropriateness of this assumption numerically and with this
assumption, we can greatly simplify the expression for the
collision integral. To this end, we define four functions below:

d’k d’k d’k
Fi(k) = / 22 32 42
ko¢c ) Jigec 2m)* Jiyee 21)
278(ex + €x, — €1, — €x,)21)*8(k + ko — k3 — k4),
d’k d’k d’k
F(k) 2/ 22 32 42
kyeC (2m) k3¢C (2m) kseC (2m)
278 (ex + €k, — €k, — €x,)(2m ) 8(K + Ky — k3 — k4),
d*k d*k d*k
G(k) = / 22 32 / 42
kec ) Jigge 2Cm)* Jigee Cm)
2m(ex + ek, — €y — 6k4)(27'[)28(k + ky — k; — ky).
d?’k d’k d’k
J (k) :/ 22 32 42
kec 2m)* Jigee 2m)* Jiyee 2m)
278 (ex + €k, — €k, — €1,)2m)*8(K + ky — k3 — ky).

We consider the two separate cases for k € 2 and k ¢ Q.
For the first the collision integral can be reduced to be

2
I (n) =~ %‘Z[F1 K)ngy, — 2R K)ng, — G(kng],  (C6)

where only the first two terms dominate. Moreover, for k ¢
the collision integral becomes

2
L(n) ~ %:Z[J(k)ng + F(k)ng]. (C7)

Here numerically one can show that both J(k) and Fj(k)
nearly vanish except in a small region near the boundary of
the cloud.

APPENDIX D: RESULTS BASED ON THE
GROSS-PITAEVSKII EQUATION

To connect more directly to our numerical GP simulations
it is useful to consider the semi-classical approximation of the
quantum theory in Eq. (A1) based on the GP equation

292

[Jcos(iayd) _ +g|¢(r,r)|2]w(r,r) = ih%gﬁ(r,t).

2m

The evolutionary dynamics found in our numerical GP
simulations is seen to be consistent with the analytics
presented in the previous sections. Also consistent is the
close tie to observations from cosmological models. We can
demonstrate this through a linearization of the GP equa-
tion appropriate to the preheating stage.

In this early stage dynamics (associated with the preheat-
ing phase in cosmological models), the physics is governed
by a parametric resonance. The initial quenched condensate
with a finite kinetic energy can be modeled by the uniform
and intrinsically oscillating scalar field ¥(r, 1) = /nge """

Here w is the intrinsic oscillating frequency and its value is
determined by solving the corresponding GP equation, as we
show below. We assume a wave function of the form v (r, t) =
Yo(r, t) + 8¢ (r, t). To linearize the theory, we treat the self-
interaction term perturbatively,

[ (r, 1)|? =~ ny + \/geiwt&//* +Hec. + 08y ). (D)

Now we write down the equation for §1. Using the expansion
variable 6, it follows that

, "9? N e
Jcos(idyd) — —= + gng + g,/ —e 'S¢
’ 2m Vv
IN . IN _.
+g Velwt(sw} ( Ve—lu)t + 81#)
N .
= ihd, 8y + hw,/ Ve_”"t.

Since ¥ satisfies the GP equation, it follows that
ho = J + gng,

indicating that w is intrinsically determined by the model
parameters. Keeping only the linear terms in 8, 81/*, one
finds

7?92 4
|:J cos(idyd) — 2—" + 2gn0i|81ﬂ + gnoe 2 syt = ihd, 8.
m
(D2)
One may write the equation in the simple form

Ex(=iV)8y + g()8y™ = ihd, 8¢ (D3)

where Eg(—iV) = J cos(idyd) — h;?; + 2gny is the single-
particle energy with the Hartree-Fock shift and g(r) =
gno exp(—2iwt) is the effective time-dependent interaction.
The time dependence originates from the fact that the con-
densate is intrinsically oscillating. Later we will see how the
oscillating g(¢) leads to the parametric instability. Note that
in Ref. [11] the modulation of the coupling (to be time de-
pendent) is imposed externally and the oscillating frequency
serves as a free parameter of their model. As a contrast, the
frequency w is intrinsic in our model and has a clear physical
origin, the oscillating frequency of the condensate.
Expanding 8¢ = 8v/(r, 1) = ), , €™ "y (v) and de-

note [y = J cos(kyd) + ’i—f + 2gno, Eq. (D2) then becomes
Lk (V) + gnoy* (—v + 20) = hvy(v).  (D4)

With a change of variable v = v/ + w we arrive at a matrix
equation of the form

V(=)

Here 6, . is the Pauli matrix. Solving this equation, one finds

{[lk _ 0)]6’1 +gn06'16—x _ U/}|: wk(l)/ +Cl))i| —0.

V' (K) = /[l — ol — (g0)2. (D3)

When v’ assumes imaginary values, this corresponds to
the parametric resonance condition in cosmological models.
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When o is taken to be (J + gng)/A, this is consistent with
Eq. (A6).

In this way, we show the existence of a parametric insta-
bility in an isolated quantum system when the condensate
has a finite intrinsic oscillating frequency. The physical pro-
cess behind the parametric resonance is that the energy of
the condensate transfers to the noncondensate particles in an
exponentially amplified way.

GP derivation of the cloud thermalization stage:
Comparison with the quantum Boltzmann equation

It is instructive to use the machinery of the GP equation to
characterize how equilibration occurs. We will begin with
a stage in which there is no “global” phase coherence and
write Y (r, 1) =) Ui ()™, the corresponding equation of
motion in terms of the complex scalar field Y (¢) is then

oY (t)
ot

ih

—actg) Vi ViV (D6)

ki1,k3

v!here k4 =k + k; — k3. For simplicity, we put ¥g(t) =
Ui (£)e !/ We then arrive at

aYx(t)

a
where € = €y, + €x,, €5 = e + €k, Kk = Y Yk = VY.
We now assume that, in addition to the absence of “global”
phase coherence, the interaction energy is quite small. As
a result, the time change of v (¢) can be approximated to

the first order in g and the change rate is much smaller than
€;/h, €y /hi. We then obtain

Vi) = Pn(0) — img Y 8(e; — )0, Ve V-

Now because of the lack of phase coherence, different v
amplitudes have uncorrelated random phases. Only terms with
both ¢ and ¥* of the same momentum will survive in the

in gy e M i, (D7)

(D8)

equation. Therefore, combining Egs. (D7) and (D8), we find

ong  4mg

ETE Z (i — €5)(m iy, + i i

ki, k3

— NgNk, Nk — NkHk, nk4). (D9)

Comparing this result with Eq. (C2), we find that the term
ng, Nk, — NNk, 1s missing in this approximate GP approach.
Thus, the GP approach works best in the early stages of
thermalization where the leading contribution is o n?. We
chose a large particle density for our simulations to ensure
this dominance of n® in the early stage. We infer that there
may be some discrepancies at very late times.

APPENDIX E: NUMERICAL PARAMETERS
IN THE GROSS-PITAEVSKII SIMULATIONS

The parameters we used for the simulations are: V; =
12ER, Vo = 2ER, gnp = 0.015ER, h/T = 4.75Eg, where Eg =
B (r /d)*/2m is the recoil energy unit. d is the period of the
lattice, which is discretized into 64 grids in the y direction
with a total length of 256d. For the x direction which is free
and thus insensitive to grid resolution, we use 64d for the
total length to speed up the simulations. Periodic boundary
conditions are imposed for all directions. We run the dynamics
of the system for a sufficiently long time until we find the
results are stable. The longest running time is 6000 T.

In our simulations, noise is added only at the earliest time
(t =0) in the sequence and dropped thereafter. This plays
the physical role of random quantum fluctuations. Once the
dynamics is initiated in this way no noise or other external
perturbations are present. We emphasize the dynamical evo-
lution we consider is for a closed system.

Our simulations involve graphics processing unit based
quasispectral, split-step method to solve the GP equa-
tion based on fast Fourier transforms. More details can be
found in Ref. [36].
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