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First-order, continuous, and multicritical Bose-Einstein condensation in Bose mixtures
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We address the possibility of realizing Bose-Einstein condensation as a first-order phase transition by admix-
ture of particles of different species. To this aim we perform a comprehensive analysis of phase diagrams of
two-component mixtures of bosons at finite temperatures. As a prototype model, we analyze a binary mixture of
Bose particles interacting via an infinite-range (Kac-scaled) two-body potential. We obtain a rich phase diagram,
where the transition between the normal and Bose-Einstein-condensed phases may be either continuous or first
order. The phase diagram hosts lines of triple points, tricritical points, and quadruple points. We address the
structure of the phase diagram depending on the relative magnitudes of the inter- and intraspecies interaction
couplings. In addition, even for purely repulsive interactions, we identify a first-order liquid-gas-type transition
between noncondensed phases characterized by different particle concentrations. In the obtained phase diagram,
a surface of such first-order transitions terminates with a line of critical points.
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I. INTRODUCTION

Bose-Einstein condensation constitutes a textbook ex-
ample of a continuous phase transition. The interesting
possibility of realizing condensation as a first-order transition
was reported in recent studies [1,2] in setups involving attrac-
tive interparticle forces, three-body interactions, and trapping
potentials. In this paper we point out that first-order condensa-
tion is a phenomenon ubiquitous in Bose mixtures and may be
obtained even in rather simple models of homegeneous Bose
mixtures with purely repulsive intermolecular interactions.

Mixtures of quantum fluids have been receiving substantial
attention for many years. The early interest motivated pri-
marily by experiments on 3He - 4He mixtures [3,4] became
in more recent times boosted by the realization of binary
mixtures of ultracold alkali-metal atoms [5–9]. It was quickly
noted that such systems may exhibit a variety of ground
states [10–17], which triggered further efforts both on the ex-
periment and theory sides [18–35]. Despite this, in the case of
Bose mixtures, certain properties of the global phase diagram
(in particular, at finite temperatures) seem to remain not fully
explored. One such aspect concerns the actual order of the
transition between the normal and Bose-Einstein-condensed
phases depending on the thermodynamic parameters. Recent
results of numerical simulations (see Ref. [2]) have suggested
that in the case of mixtures with interactions involving an
attractive component (see Refs. [36–38]), the transition be-
tween the normal phase and the phase hosting a Bose-Einstein
condensate (BEC) may actually be of first order. Another
recent study reports condensation as a first-order transition [1]
even for single-component systems, but invokes attractive
two-body and repulsive three-body interactions. In fact, sug-
gestions concerning the possible first-order condensation have
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been made earlier [39] also in reference to the simple Bose
mixtures with purely repulsive microscopic interactions.

In the present paper we address the phase diagram of the
two-component Bose mixture, employing the exactly soluble
imperfect Bose gas model with purely repulsive interactions
and, for sufficiently strong interspecies repulsion, demonstrate
the realization of Bose-Einstein condensation as a first-order
transition. In addition, we identify another transition between
two noncondensed phases characterized by different concen-
trations of the mixture constituents.

For the one-component case, the model employed by us
was first discussed in Ref. [40] (see also Refs. [41–45]). Its
physical content is clarified by the Kac scaling procedure
(see, e.g., Ref. [46]), where a realistic two-body interaction
potential v(�x) is promoted to the form

v(�x) → vγ (�x) = γ dv(γ �x), (1)

which depends on a positive parameter γ . Here d denotes the
spatial dimensionality of the system and

∫
Rd d�x vγ (�x) = a >

0 is clearly independent of γ . The imperfect Bose gas model
corresponds to taking the limit γ → 0+, where the interaction
becomes very weak and long range. In this limit one finds the
usual two-body interaction part of the Hamiltonian Ĥint,

Ĥint = 1

2V

∑
�k, �k′,�q

v�qa†
�k+�qa†

�k′−�qa�k′a�k, (2)

where v�q is the Fourier transform of v(�x) and V denotes the
system volume, to be simplified as follows:

Ĥint −→ Ĥ IBG
int = v�0

2V

∑
�k,�k′

a†
�ka†

�k′a�k′a�k = a

2V
N̂ (N̂ − 1), (3)

where N̂ = ∑
�k a†

�ka�k denotes the total particle number opera-
tor. In the thermodynamic limit, on which we here focus, the
last term may be simplified by replacing (N̂ − 1) → N̂ . We
consider spin-zero bosons.

2469-9926/2024/109(1)/013312(10) 013312-1 ©2024 American Physical Society

https://orcid.org/0000-0003-3515-2832
https://orcid.org/0000-0002-2034-8544
https://orcid.org/0000-0001-5134-8996
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.013312&domain=pdf&date_stamp=2024-01-12
https://doi.org/10.1103/PhysRevA.109.013312
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No approximation is involved in the above transforma-
tion, which amounts to taking the limit γ → 0+ in Eq. (2).
The resulting model corresponds to infinitely weak and long-
ranged interactions and, as such, can be solved exactly by a
saddle-point approximation in the thermodynamic limit, as we
demonstrate below (see Sec. II).

The single-component imperfect Bose gas in the contin-
uum is defined by

ĤIBG =
∑

�k

h̄2�k2

2m
a†

�ka�k + Ĥ IBG
int , (4)

and its phase diagram as well as its critical behavior was
fully clarified in Refs. [47–50]. Despite some similarity to
the perfect Bose gas, its behavior is significantly closer to
realistic, interacting systems. In particular (in contrast to the
perfect Bose gas), (i) it exhibits superstability [51] such that its
descriptions using distinct Gibbs ensembles are fully equiva-
lent; (ii) its thermodynamics is defined both for negative and
positive values of the chemical potential; and (iii) the transi-
tion to the BEC phase is of second order and characterized by
nonclassical critical exponents. More specifically, it falls into
the universality class of the spherical (Berlin-Kac) model [52],
corresponding also to the limit N → ∞ of O(N )-symmetric
models [53,54]. For temperature T → 0, the model displays
a quantum critical point characterized by the dynamical ex-
ponent z = 2 [55–57], which can be accessed by varying the
chemical potential between positive and negative values.

The paper is structured as follows. In Sec. II we introduce
a simple generalization of the model defined in Eq. (4) to
account for Bose mixtures and present the analytical part of
its solution, which becomes exact in the thermodynamic limit.
In Sec. III we outline the procedure leading to the practical
determination of the phase diagram. In Sec. IV we analyze
the asymptotic behavior of the system at low concentration
of one of the mixture constituents. In Sec. V we present the
major results concerning the phase diagram depending on
relative magnitudes of the interaction couplings. In Sec. VI we
focus on the normal phase in the regime of relatively strong
interspecies interactions and analyze the liquid-gas-type tran-
sition occurring therein between two noncondensed phases
involving different particle concentrations. We summarize the
paper in Sec. VII and some technical details are given in the
Appendices.

II. THE IMPERFECT BOSE MIXTURE

We propose a simple generalization of the imperfect Bose
gas model described above to account for binary Bose mix-
tures. The Hamiltonian is defined as

Ĥ =
∑
�k,i

ε�k,in̂�k,i +
∑
i, j

ai, j

2V
N̂iN̂j . (5)

Here i, j ∈ {1, 2}, and a1,2 = a2,1 > 0 is the interspecies
coupling and will be denoted as a12, while the intraspecies
couplings ai,i > 0 are assumed positive and will be de-
noted as ai. The dispersion takes the standard form ε�k,i =
h̄2�k2/(2mi ). The system is subject to periodic boundary con-
ditions. We use the grand-canonical ensemble, where the
grand-canonical free energy density ω(T, μ1, μ2) is obtained
from the grand-canonical partition function �(T,V, μ1, μ2)

in the thermodynamic limit:

ω(T, μ1, μ2) = −β−1 lim
V →∞

1

V
log �(T,V, μ1, μ2) (6)

and

�(T,V, μ1, μ2) = Tre−β(Ĥ−μ1N̂1−μ2N̂2 ). (7)

Here β−1 = kBT , and μ1 and μ2 are the chemical potentials of
the two mixture constituents. By a sequence of exact transfor-
mations described in Appendix A, the partition function may
be cast in the following form:

�(T,V, μ1, μ2)

= − βV

2π
√

a′
1a′

2

∫ α1+i∞

α1−i∞
dt1

∫ α2+i∞

α2−i∞
dt2e−V 	(t1,t2 ), (8)

valid for a1a2 − a2
12 > 0. Here

	(t1, t2) = −
2∑

i=1

β

2a′
i

(ti − μ′
i )

2 − 1

λ3
1

g5/2(eβt1 )

− 1

λ3
2

g5/2(eβ( a12
a1

t1+t2 ) ) + 1

V
log(1 − eβt1 )

+ 1

V
log(1 − eβ( a12

a1
t1+t2 ) ), (9)

a′
1 = a1, a′

2 = a2(1 − a2
12

a1a2
), μ′

1 = μ1, μ′
2 = μ2 − a12

a1
μ1, and

λi = h/
√

2πmikBT are the thermal de Broglie lengths. The
Bose functions gα (x) are defined as

gα (x) =
∞∑

k=1

xk

kα
. (10)

An analogous expression involving the same function
	(t1, t2), but different integration contours in the complex
planes can be derived for the complementary range a1a2 −
a2

12 < 0 (see Appendix A). The quantities α1 and α2 are
arbitrary real parameters. From the structure of the above ex-
pressions it follows that the integrals defining �(T,V, μ1, μ2)
may be evaluated using the saddle-point approximation,
which becomes exact in the thermodynamic limit due to the
presence of the V factor in the exponential on the right-hand
side of Eq. (8). The stationarity condition reads as follows:

∂	

∂t1
= 0,

∂	

∂t2
= 0, (11)

and we denote the solution as (t̄1, t̄2). The grand-canonical
free energy density becomes

ω(T, μ1, μ2) = −β−1V −1ln� −→ β−1	(t̄1, t̄2). (12)

The densities ni (i ∈ {1, 2}) follow from

ni(T, μ1, μ2) = − ∂ω

∂μi
= −β−1 ∂	(t̄1, t̄2)

∂μi
. (13)

This, together with the stationarity condition of Eq. (11), leads
to the following simple relations:

n1 = − 1

a′
1

(t̄1 − μ′
1) + 1

a′
2

(t̄2 − μ′
2)

a12

a′
1

,

n2 = − 1

a′
2

(t̄2 − μ′
2). (14)
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Using the above relations one may eliminate t̄i from the
saddle-point equations, which leads to

n1 = 1

λ3
1

g3/2(eβ(μ1−a1n1−a12n2 ) ) + 1

V

eβ(μ1−a1n1−a12n2 )

1 − eβ(μ1−a1n1−a12n2 )
,

(15)

n2 = 1

λ3
2

g3/2(eβ(μ2−a2n2−a12n1 ) ) + 1

V

eβ(μ2−a2n2−a12n1 )

1 − eβ(μ2−a2n2−a12n1 )
.

(16)

In the thermodynamic limit, on which we here focus, the
terms ∼ 1

V in the above equations contribute to the condensate
densities of the two mixture constituents. This can be shown
by analyzing the densities of particles with momentum �k = 0.
These quantities will from now on be denoted as n(0)

1 and n(0)
2 ,

respectively. We observe that in the presence of condensation
we have n(0)

i = ni − ni,c, where ni,c ≡ ζ (3/2) λ−3
i and ζ (x)

denotes the Riemann zeta function. Note that, in particular,
ζ (3/2) = g3/2(1).

The above equations for the densities were derived from
the model defined in Eq. (5) and in Sec. I by a sequence of
exact transformations. However, their structure reveals affinity
to the self-consistent Hartree-Fock (H-F) treatment of dilute
Bose gases interacting via short-ranged interactions (see, e.g.,
Ref. [39]). The expressions for the thermal densities given by
Eqs. (15) and (16) above are equivalent to those resulting from
the H-F approximation upon identifying ai → 8π h̄2as

i /mi and
a12 → 2π h̄2as

12(m−1
1 + m−1

2 ), where as
i and as

12 are the corre-
sponding scattering lengths.

By expressing t̄i via the densities one may also rewrite the
quantity 	 in terms of n1 and n2. We find

	(n1, n2) = − β

2

[
a1n2

1 + a2n2
2 + 2a12n1n2

]

− 1

λ3
1

g5/2(eβ(μ1−a1n1−a12n2 ) )

− 1

λ3
2

g5/2(eβ(μ2−a2n2−a12n1 ) )

+ 1

V
ln(1 − eβ(μ1−a1n1−a12n2 ) )

+ 1

V
ln(1 − eβ(μ2−a2n2−a12n1 ) ). (17)

The last two terms in the above expression always vanish
in the thermodynamic limit (contrary to their counterparts
in Eqs. (15) and (16) which contribute to the condensate
densities). The reason for this is due to the presence of the
logarithm and is in full analogy to the noninteracting case.
Equations (15)–(17) constitute the starting point for the analy-
sis leading to the determination of the system’s phase diagram.
We emphasize at this point that the quantity β−1	(n1, n2)
has the physical meaning of the (grand-canonical) free en-
ergy only when evaluated at the physical values of (n1, n2)
obtained at saddle points and should not be understood as
any free energy functional. In particular, the above analysis
[see Eq. (8)] necessarily requires considering 	(n1, n2) in the
complex domain. One may also note that when the analy-
sis is implemented in the simpler and well-studied case of
a single-component system, an analogous quantity [	(n)],

when viewed as a function of a complex variable, features a
saddle point at the equilibrium density n = n̄ located on the
real axis. However, if 	(n) is considered as only a function
of a real variable, n̄ is easily shown to be the maximum
of 	(n). We also observe that the expression for 	(n1, n2)
bears similarity to, but is not equivalent to the H-F expression
for the density-dependent grand-canonical potential (see, e.g.,
Ref. [39]). This is in contrast to the expressions for the thermal
densities as implied by Eqs. (15) and (16).

The procedure implemented by us can be summarized as
follows: for fixed values of {a1, a2, a12, λ1, λ2, μ1, μ2, β}, we
solve Eqs. (15) and (16) and determine the densities n1 and
n2. As it turns out, for many choices of the system parameters
more than one solution for n1 and n2 is identified. In such
cases, we pick the one corresponding to the lower value of
	(n1, n2). The thermodynamic state of the system is then
determined depending on whether n(0)

i = 0 or n(0)
i > 0. In

addition, in the normal (non-BEC) state we find two phases
characterized by distinct density composition (see Sec. VI).
First-order transitions are identified as discontinuities of the
densities as functions of the system parameters. We give more
details of the procedure together with the results in Secs. III
and IV below.

III. THE SOLUTION PROCEDURE

It follows from Eq. (15) that absence of condensation of
component 1 requires that

μ1 − a1n1 − a12n2 < 0, (18)

which corresponds to 0 < n1 < n1,c On the other hand, con-
densation of type-1 particles takes place for

μ1 − a1n1 − a12n2 = 0. (19)

Analogous conditions hold for the absence or presence of
condensate of type-2 particles. Assuming the absence of
type-1 condensation, i.e., n(0)

1 = 0 (which is then consistently
checked), we may determine n2 from Eq. (15) as

n2 = − 1

a12

{
β−1ln

[
g−1

3/2

(
λ3

1n1
)] − μ1 + a1n1

}
(20)

and insert this into Eq. (17), which yields 	[n1, n2(n1)]. We
subsequently analyze 	[n1, n2(n1)] as a function of n1 for
various choices of the system parameters. We then check the
consistency with Eq. (18) and the analogous condition for the
absence of type-2 condensate.

A distinct case occurs if type-1 particles condense. In such
a situation we determine n2 from Eq. (19) and plug into
Eq. (17) to obtain 	[n1, n2(n1)] (which obviously differs from
the previous case). We subsequently find stationary points of
the resulting function and check their consistency with the
assumptions made [i.e., n1 > n1,c and 0 < n2 < n2,c]. In the
same manner we treat the case involving condensation of
type-2 particles, but not type-1 particles. Finally we analyze
the possibility of obtaining a state hosting condensates of
both type-1 and type-2 particles. In this case both n1 and n2

are obtained as simple, linear functions of μ1 and μ2 from
Eq. (19) and the analogous condition for condensation of
type-2 particles. By plugging these into Eq. (17), one straight-
forwardly obtains the expression for 	 valid for n1 > n1,c and
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FIG. 1. The putative critical lines for Bose-Einstein condensa-
tion of type-1 particles (blue dashed line) and type-2 particles (red
dashed line) plotted in the (μ1, μ2) plane at fixed temperature; see
Appendix B for the definitions of the dimensionless variables im-
plemented in the plot. The thin yellow line marks μ2 = μ1. The
asymptotes are situated at μi = aiζ (3/2) and the higher point of
intersection is located at μ1 = (a1 + a12κ )ζ (3/2). The true transition
lines are described by these solutions only for μ1 or μ2 sufficiently
low (see the main text). The plot parameters are a1 = a2 = 0.1,
a12 = 0.5, and κ = 1.

n2 > n2,c. By comparing the values of 	 corresponding to all
solutions, we project out the phase diagrams as described in
the following sections.

IV. ASYMPTOTIC REGIMES

We now analyze the system in the asymptotic regime,
where concentration of one of the constituents of the mixture,
say type-2 particles, is sufficiently low and has minor impact
on the behavior of type-1 particles. This corresponds to μ2

being negative and sufficiently large in value. We investigate
the Bose-Einstein condensation for type-1 particles, assuming
that type-2 particles do not condense and the densities evolve
continuously as functions of the control parameters (T , μ1,
μ2). At the BEC transition for type-1 particles, we have

n1 = n1,c, μ1 = a1n1 + a12n2. (21)

It follows that n2 = 1
a12

(μ1 − a1n1,c). When plugging this into
Eq. (16), we obtain

μ
(1,c)
2 = a2

a12
μ1 − n1,c

a12

(
a1a2 − a2

12

)

+ β−1ln

{
g−1

3/2

[
λ3

2

a12
(μ1 − a1n1,c)

]}
. (22)

The above formula describes the putative location of the crit-
ical surface, where type-1 particles undergo condensation. Its
derivation only requires the self-consistent equations for the
densities [Eqs. (15) and (16)] and may also be recovered from
the H-F treatment of the dilute Bose gas [39]. A representative
plot of its projection on the (μ1, μ2) plane is shown in Fig. 1.
Note that the existence of μ

(1,c)
2 requires that

0 � λ3
2

a12
(μ1 − a1 n1,c) � ζ (3/2), (23)

FIG. 2. Plot of 	[n1, n2(n1)] as the system is tuned through
Bose-Einstein condensation varying μ1 at fixed μ2 such that μ2 =
μ

(1,c)
2 (μ1 = 0.43) ≈ 0.134 (the remaining parameters are as in

Fig. 1). The dashed curve corresponds to the state involving the
BEC, where n1 > n1,c. The minimum of 	 evolves smoothly and at
μ1 = 0.43 is located at n1 = n1,c. The system exhibits a second-order
transition at the point located on the blue dashed line in Fig. 1. The
solid blue curve corresponds to μ1 = 0.42, and the dashed red curve
corresponds to μ1 = 0.438. The black curve is located at μ1 = 0.43.
The plot parameters are a1 = a2 = 0.1, a12 = 0.5, and κ = 1 (see
Appendix B for the definitions of the dimensionless variables).

which may also be rewritten as 0 � n2 � n2,c. We obtain

μ1 ∈ [a1 n1,c, a1 n1,c + a12 n2,c]. (24)

The lower bound a1 n1,c marks the position of the vertical
asymptote of the projection of the critical line on the (μ1, μ2)
plane (compare with Fig. 1). By interchanging the roles of
n1 and n2 we may obviously also obtain an expression for the
critical chemical potential for condensation of type-2 particles
(assuming this time that particles of type 1 do not condense).

At the beginning of this section we introduced the phys-
ical assumption that the present analysis is restricted to the
regime of small concentrations of one of the mixture con-
stituents. On the other hand, the above derivation of μ

(1,c)
2

and analogously of μ
(2,c)
2 is not based on this assumption in

any way. Indeed, the identified solutions to Eqs. (15) and (16)
are valid for any (μ1, μ2) as long as they make mathematical
sense. As we demonstrate below, these analytical solutions
correspond to a minimum of 	[n1, n2(n1)] exclusively for μ2

(or μ1) that is sufficiently low. Nonetheless, they correctly
describe the second-order transition in a substantial range of
the phase diagram. In the complementary case, they instead
fall at the maximum of 	[n1, n2(n1)]. To demonstrate this,
in Figs. 2 and 3 we plot 	[n1, n2(n1)] upon increasing μ1

and thus evolving the system across the putative transition
to the BEC state along two paths in the exemplary putative
diagram of Fig. 1. The two paths correspond to varying μ1 at
fixed μ2 such that μ2 = μ

(1,c)
2 (μ1 = 0.43) ≈ 0.134 and μ2 =

μ
(1,c)
2 (μ1 = 0.50) ≈ 0.445; for the definitions of dimension-

less quantities, see Appendix B. In both cases the blue line is
crossed below the intersection points of the blue dashed and
red dashed lines, which, for the parameters values chosen for
the plot in Fig. 1, is μ1 = μ2 ≈ 0.522.

These results clearly demonstrate the necessity of per-
forming careful checks of the nature of the solutions to the
saddle-point equations [Eqs. (15) and (16)] and identifying
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FIG. 3. Plot of 	[n1, n2(n1)] as the system is tuned through
Bose-Einstein condensation varying μ1 at fixed μ2 such that μ2 =
μ

(1,c)
2 (μ1 = 0.50) (the remaining parameters are as in Fig. 1). The

dashed curves correspond to the state involving the BEC, where
n1 > n1,c. The system exhibits a first-order transition characterized
by a jump of n1. The solid blue curve corresponds to μ1 = 0.49, and
the dashed blue curve corresponds to μ1 = 0.508. The dashed black
curve is at μ1 = 0.50, where 	 exhibits a maximum at n1,c, marking
a point [μ1 = 0.50, μ2 = μ

(1,c)
2 (0.50)] located on the blue curve in

Fig. 1 with a (false) transition. The true transition, where the global
minimum of 	 changes discontinuously, is located slightly to the
left of the dashed blue line in Fig. 1 (i.e., at a μ1 < 0.50). The plot
parameters are a1 = a2 = 0.1, a12 = 0.5, and κ = 1 (see Appendix B
for the definitions of the dimensionless variables).

the ones corresponding to true global minima of 	[n1, n2(n1)]
depending on the system parameters.

We finally observe that the picture of Fig. 1 is qualitatively
stable with respect to variation of temperature. For large T
one observes scaling of the entire transition line [arising from
Eq. (22)] as ∼T 3/2; see the following sections for further
discussion.

V. PHASE DIAGRAMS

We now execute the procedure described in Secs. II and III
to project out the phase diagrams. In all of the numerical
analysis we restrict to the mass-balanced case m1 = m2. As
implied by the structure of the equations, two cases must
be distinguished depending on the sign of the quantity D =
a1a2 − a2

12. The relevance of this parameter was recognized
already in earlier literature [10,14,39], where it was found that
for D < 0 the two condensates cannot coexist. We address the
distinct situations separately below.

A. Case a1a2 − a2
12 < 0

A representative projection of the phase diagram on the
(μ1, μ2) plane in the case of sufficiently strong interspecies
repulsion and low T is given in Fig. 4. From now on we refer
to the phase involving condensate of type-1 particles (but not
type-2 particles) as the BEC1 phase (and BEC2 analogously).
As BEC12 we denote a phase where particles of both types
form condensates. We clearly identify a triple point, where
the normal and two Bose-Einstein-condensed phases BEC1

and BEC2 coexist, as well as two tricritical points, above
which the transition between the normal and the BECi phases
becomes first order. While the second-order transition lines
coincide with the lines μ

(1,c)
2 and μ

(2,c)
2 computed analytically

FIG. 4. Projection of the phase diagram on the (μ1, μ2) plane
for sufficiently strong interspecies coupling a12 for a1a2 − a2

12 < 0.
The transition between the normal and BECi phases is first order
(black points) in the vicinity of the triple point located at μ1 = μ2 ≈
0.522 and becomes continuous (solid blue and red lines) below the
tricritical points. The transition between the BEC1 and BEC2 phases
(solid orange line) is first order and located at μ1 = μ2. The dashed
curves represent the putative transition lines computed in Sec. IV [see
Eq. (22)]. While the second-order phase boundaries coincide with
these lines, the first-order transition is shifted away from it (compare
with Fig. 3). This is not visible in the plot scale. The plot parameters
are a1 = a2 = 0.1, a12 = 0.5, and κ = 1 (see Appendix B for the
definitions of the dimensionless variables).

in Sec. IV [(Eq. (22)], the first-order transition lines are shifted
from them (as is clear from Fig. 3, but is not visible in
the scale of Fig. 4). We found no region of stability of the
BEC12 phase for the present choice of parameter values (see,
however, Sec. V B). An exemplary plot of the dimensionless
densities ni as a function of μ1 at fixed μ2 somewhat below
the triple point is presented in Fig. 5. The densities change
discontinuously at the two first-order transitions between the
normal and BECi phases. At lower values of μ2 (below the
corresponding tricritical points), the densities evolve continu-
ously across Bose-Einstein condensation, while for μ2 above
the triple-point value there is a single transition, where both

n1n2

0.1 0.2 0.3 0.4 0.5 0.6 0.7
μ1

1

2

3

4

5

6

7

FIG. 5. Evolution of the densities n1 and n2 upon varying μ1 at
fixed μ2 = 0.49 and the remaining parameters are as in Fig. 4. The
system undergoes two first-order phase transitions between the nor-
mal and the Bose-Einstein-condensed phases. The thin dashed line
marks the value n1,c = n2,c. The plot parameters are a1 = a2 = 0.1,
a12 = 0.5, and κ = 1 (see Appendix B for the definitions of the
dimensionless variables).
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FIG. 6. The temperature dependence of the location of the triple
(black line) and tricritical (red points) points in the (μ1, μ2) phase
diagram. The dimensionless temperature T̃ and the chemical po-
tential μ̃1 are defined as T̃ = kBT [4(2πm1)3a2

12]/h6 = 4a2
12/κ

4 and
μ̃1 = μ1[4(2πm1)3a2

12]/h6 = 4μ1a2
12/κ

4. The dimensionless param-
eters are a1

a12
= a2

a12
= 0.2 and κ = 1.

n1 and n2 change discontinuously when crossing the transition
line.

We finally discuss the evolution of the phase diagram
depicted in Fig. 4 upon varying temperature. Our analysis
indicates that the triple point is present for all values of T .
On the other hand, the relative distance between the triple
and the tricritical points shrinks upon raising T . At a certain
temperature Tcoll these points collide, and for T > Tcoll the
transition between the normal and BECi phases is continuous.
We plot an exemplary dependence of μ

triple
1 and μtric

1 on T in
Fig. 6 to demonstrate this collision.

We emphasize that our entire analysis is performed in the
grand-canonical ensemble. In this language, the occurrence of
a first-order transition implies the coexistence of two phases
characterized by different densities. This is clearly visible
in Fig. 3, where this effect is signaled by the occurrence of
two degenerate minima of 	̄. Analogously, when crossing the
transition between the BEC1 and BEC2 phases (see Fig. 4) at
μ̄1 = μ̄2, one encounters the coexistence between two ther-
modynamic states involving condensates. This corresponds
to phase separation (or demixing). As will become clear in
Sec. V B, upon manipulating the interaction coupling such
that a1a2 − a12 crosses zero, the system undergoes a mixing
transition (well recognized in previous literature), where the
two BECs are no longer phase separated, and no first-order
transitions are observed in the phase diagram plotted in the
natural variables of the grand-canonical ensemble.

B. Case a1a2 − a2
12 > 0

A significantly different situation occurs for weaker inter-
species interaction couplings such that a1a2 − a2

12 > 0. For
this case we find the transition between the normal and BECi

phases to be continuous. In addition, we identify a thermo-
dynamic phase BEC12 involving condensates of both types of
particles. A representative plot is given in Fig. 7. Remark-
ably, all the four phases meet at a quadriple point and all
the involved transitions are continuous, at least for the ranges
of parameters we investigated. An exemplary illustration is

FIG. 7. A representative projection of the phase diagram on the
(μ1, μ2) plane for sufficiently weak interspecies coupling (for a1a2 −
a2

12 > 0). All the involved phase transitions are continuous. The plot
parameters are a1 = a2 = 1, a12 = 0.2, and κ = 1 (see Appendix B
for the definitions of the dimensionless variables).

presented in Fig. 8, where we plot the evolution of the densi-
ties n1 and n2 upon varying μ1 along a horizontal trajectory
in Fig. 7. Using this (numerical) fact as an input, in addition
to the previously discussed shape of the normal-BECi phase
transition line [see Eq. (22)], one may straightforwardly derive
an analytical expression describing the shape of the other
phase boundaries (between the BEC1 and BEC12 phases as
well as between the BEC2 and BEC12 phases). Focusing on
the BEC2-BEC12 transition, from Eqs. (15) and (16), we have

μ2 − a2n2 − a12n1 = 0, (25)

μ1 − a1n1 − a12n2 = 0, (26)

n1 = n1,c. (27)

By eliminating n2 we find the BEC2-BEC12 phase boundary
given as

μ2(μ1) = a2

a12
μ1 − n1,c

a12

(
a1a2 − a2

12

)
, (28)

FIG. 8. Evolution of the densities n1 and n2 upon varying μ1

at fixed μ2 = 3.5 and the remaining parameters are as in Fig. 7.
The system undergoes two continuous phase transitions between the
BEC2 and BEC12 phases as well as between the BEC12 and BEC1

phases. The thin dashed line marks the value n1,c = n2,c, and the
transitions take place at the points of intersection between this line
and the density curves.
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which represents a straight line in the (μ1, μ2) phase diagram.
Curiously, the expression is independent of λ2 and therefore
insensitive to varying the mass of type-2 particles. The line
slope is fully controlled by a2

a12
and the entire temperature

dependence is in the free term, which is ∼λ−3
1 ∼ T 3/2 and

completely drops out for (a1a2 − a2
12) → 0.

It is instructive to also write down the corresponding ex-
pression for the BEC1-BEC12 phase boundary

μ2(μ1) = a12

a1
μ1 + n2,c

a1

(
a1a2 − a2

12

)
(29)

and investigate the fate of the two lines in the limit (a1a2 −
a2

12) → 0, where both of them coincide and are described by

μ2(μ1) →
√

a2

a1
μ1. (30)

In consequence, upon tuning the interactions towards (a1a2 −
a2

12) → 0, the wedge of stability of the BEC12 phase in the
phase diagram (compare with Fig. 7) becomes increasingly
acute. In the boundary case (a1a2 − a2

12) = 0 the BEC12 phase
is completely expelled from the phase diagram, and when
slightly modifying the interactions in such a way that a1a2 −
a2

12 < 0, it immediately becomes first order (see Sec. V A).
Since achieving this situation requires tuning two parameters
(for example, a12 and T ) in the multidimensional parameter
space of the system, we expect the transition between the
BEC1 and BEC2 phases to be of a tricritical character. This
is in contrast to the case a1a2 − a2

12 > 0, where the transition
can be achieved by tuning only one parameter (e.g., T at
fixed interaction couplings and densities). Note also the lack
of any dependence of Eq. (30) on the particle masses and
temperature.

We close this section with a comment regarding the relation
between the values of the model parameters adopted in the
numerical analysis above and those relevant to experimental
setups such as ultracold gases of 7Li atoms. Assuming that the
interaction potential has a characteristic strength amplitude
v0 and range r0, we estimate the magnitude of the inter-
action couplings in our model as ai, j ≈ a = ∫

Rd d�xv(�x) ≈
(4/3)πr3

0v0. Taking [58] (4/3)πr3
0 ≈ 10 Å3 and v0 ≈ 0.1 eV

yields a ≈ 1 eV Å3. The scattering length of the Kac model
is, on the other hand, given by as = a/(4a0) (where a0 =
h2/(2πm) ≈ 4 × 10−3 eV Å2 for 7Li). This leads to as ≈
102 Å. For realistic values [58] of the cold-atom densities ρ ≈
10−11 Å−3, we find ρa3

s ≈ 10−5 � 1. This indicates that the
Lee-Huang-Yang correction to the interaction energy should
not be expected to play an important role. We also observe
that the considered order of magnitude of the dimensionless
densities ρλ3 ≈ 1 corresponds to T ≈ 10−6 K, which is in the
range of experimentally reasonable values. The value of the
dimensionless coupling ā = 0.1 (compare the phase diagram
of Fig. 4) also leads to T ≈ 10−6 K.

VI. LIQUID-GAS-TYPE TRANSITION
IN THE NORMAL STATE

We finally analyze a separate aspect of the system concern-
ing the noncondensed state for sufficiently strong interspecies
repulsion a12. In this regime we numerically detected an addi-
tional first-order phase transition between component-1-rich

FIG. 9. Plot of 	[n1, n2(n1)] in the normal phase for a sequence
of values of μ1 = μ2 in the regime of large interspecies coupling
a12. The dotted line corresponds to μ1 = μ2 = −0.05, the solid line
to μ1 = μ2 = 0, and the dashed line to μ1 = μ1 = 0.1. The system
exhibits two coexisting phases for sufficiently large μ1 = μ2. The
plot parameters are a1 = a2 = 0.1, a12 = 2, and κ = 1. The curves
were shifted vertically for better clarity of the illustration. Upon
slightly modifying one of the chemical potentials, the degeneracy is
removed and one of the states becomes metastable. See also Fig. 10.

and component-2-rich normal phases. The analyzed setup is
analogous to the one of Sec. V A, but we now consider signif-
icantly larger values of a12 (as compared to a1 and a2). The
additional transition surface extends from the triple line in the
(μ1, μ2, β) phase diagram and terminates with a line of critical
points (in the three-dimensional parameter space spanned by
μ1, μ2, and β). The distance between the triple and the critical
lines is controlled by a12. In Fig. 9 we plot the function
	[n1, n2(n1)] at exemplary points on the detected coexistence
line, demonstrating the occurrence of the two minima, which
indicates coexistence of two phases characterized by differ-
ent density compositions and involving no condensates. In
Fig. 10 we present a projection of the transition surface on
the (μ1, μ2) plane.

FIG. 10. Projection of a portion of the phase diagram on the
(μ1, μ2) plane in the regime of large interspecies couplings a12.
The solid diagonal line denotes a first-order transition between two
(component-1-rich and component-2-rich) normal phases. The line
terminates with a critical point (the red dot). The light blue points
represent the spinodal lines marking the region where metastable
states exist. The dashed lines demarcate the regions where the
condensates become present and were determined according to the
procedure described in Sec. IV and illustrated in Fig. 1. The plot
parameters are a1 = a2 = 0.1, a12 = 2, and κ = 1; compare also
with Fig. 9.
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The transition is reminiscent of those widely considered
in the context of classical mixtures and also bears similarity
to the classical liquid-gas transition. Strikingly, it does not
require the occurrence of any interparticle interactions with
attractive components. We emphasize that the presence of an
attractive tail in the interaction potential in classical fluids
is indispensable for the occurrence of van der Waals-type
transitions. Our present result indicates that in the case of
Bose systems the role of such interaction may be taken over
by quantum statistics.

Our present study of this aspect of the Bose mixture is
unfortunately restricted to numerical analysis. Our results
demonstrate a generic occurrence of the liquid-gas type tran-
sition provided a12 is sufficiently large. At this point we
are not able to address the natural question concerning the
scale determining the onset of this transition. We cannot rule
out the possibility that it, in fact, always occurs provided
a1a2 − a2

12 < 0, but for a1a2 − a2
12 close to zero is present

only in a tiny region of the phase diagram, which is hard to
resolve numerically. This obviously calls for further clarifying
studies.

VII. CONCLUSION

Bose-Einstein condensation is commonly recognized to
be a generically continuous phase transition and its realiza-
tion as a first-order transition poses an interesting problem
from both theoretical and experimental perspectives. In this
paper, using an exactly soluble, mean-field-type model, we
have demonstrated such a possibility in a very simple
setup involving a Bose mixture with purely repulsive in-
teractions. We have shown that in the mass-balanced case,
for sufficiently strong interspecies interactions, which fulfill
the condition a1a2 − a2

12 < 0, Bose-Einstein condensation is

realized as a first-order transition in the vicinity of the
triple point. We have demonstrated a structural change of
the phase diagram occurring at a1a2 − a2

12 = 0 [see Figs. 4
and 7], where the phase diagram viewed in the (μ1, μ2, T )
space features a two-dimensional surface of tricritical points.
In addition, for sufficiently strong (repulsive) interspecies
coupling, we identified an additional first-order phase transi-
tion between component-1-rich and component-2-rich normal
phases, which does not seem to have been discussed in lit-
erature. Our predictions are certainly open to verification via
experiments and numerical simulations. This concerns both
the first-order character of the BEC transition in the vicinity
of the triple point and the existence of the additional transition
within the region of the phase diagram hosting the normal
phase. Even though our study relies on a model character-
ized by long-ranged interparticle interactions, its predictions
are closely related (and in some aspects equivalent) to those
of the Hartree-Fock treatment of the dilute Bose gases with
short-range forces. This provides good reasons to believe that
our findings are of relevance also to such situations. We ob-
serve, on the other hand, that long-range interacting potentials
can also be experimentally realized [59]. On the theory side
there are a number of interesting extensions of the present
study, involving, in particular, systems with mass imbalance,
attractive interspecies interactions, and beyond mean-field ef-
fects [29,31,35,60–63], which we relegate to future studies.
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APPENDIX A

In this Appendix we derive the expression for the grand-canonical partition function of the imperfect Bose mixture, Eq. (8).
The definition in Eq. (7) evaluated for the Hamiltonian in Eq. (5) reads

�(T,V, μ1, μ2) =
∞∑

N1=0

∞∑
N2=0

eβ(μ′
1N ′

1+μ′
2N ′

2−
a′

1
2V N ′2

1 − a′
2

2V N ′2
2 )Z (1)

0 (T,V, N1) Z (2)
0 (T,V, N2), (A1)

where a′
1 = a1, a′

2 = a2 − a2
12

a1
, μ′

1 = μ1, μ′
2 = μ2 − a12

a1
μ1, N ′

1 = N1 + a12
a1

N2, N ′
2 = N2, and Z (i)

0 (T,V, Ni ) denotes the canonical
partition function of the ideal Bose gas formed by the ith species.

First we consider the case a′
2 > 0. In this case we apply twice the identity

exp

(
− γ 2

i

4δi

)
=

√
δi

π

∫ ∞

−∞
dqi exp

( − δiq
2
i + iγiqi

)
, (A2)

where δi > 0, and obtain the following expression for the partition function:

�(T,V, μ1, μ2) = V β

2π
√

a′
1a′

2

∞∑
N1=0

∞∑
N2=0

∫ ∞

−∞
dq1

∫ ∞

−∞
dq2 Z (1)

0 (T,V, N1) Z (2)
0 (T,V, N2)

× e
∑2

i=1{− V β

2a′
i
q2

i +iqiβ [N ′
i − V

a′
i

(μ′
i−αi )]+βαiN ′

i + V β

2a′
i
(μ′

i−αi )2}

= − V β

2π
√

a′
1a′

2

∞∑
N1=0

∞∑
N2=0

∫ α1+i∞

α1−i∞
dt1

∫ α2+i∞

α2−i∞
dt2e

∑2
i=1[ V β

2a′
i
(ti−μ′

i )
2+tiβN ′

i ]
Z (1)

0 (T,V, N1) Z (2)
0 (T,V, N2) , (A3)
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where αi (i ∈ {1, 2}) are arbitrary constants. After performing the summations over Ni, using the expression for the grand-
canonical partition function of an ideal Bose gas,

�
(i)
0 (T,V, si ) =

∞∑
Ni=0

eβsiNi Z (i)
0 (T,V, Ni ) = exp

[
V

λ3
i

g 5
2
(eβsi )

]
, (A4)

and changing the integration variables we obtain the expressions displayed in Eqs. (8) and (9).
In the case a′

2 < 0 we proceed analogously except that we additionally use the identity

exp

(
γ 2

4δ

)
=

√
δ

π

∫ ∞

−∞
dq exp (− δq2 − γ q). (A5)

Following the steps described above we arrive at the following expression:

�(T,V, μ1, μ2) = V β

2π
√

a′
1|a′

2|
∞∑

N1=0

∞∑
N2=0

∫ ∞

−∞
dq1

∫ ∞

−∞
dq2 Z (1)

0 (T,V, N1) Z (2)
0 (T,V, N2)

× e
− V β

2a′
1

q2
1+iq1β [N ′

1− V
a′

1
(μ′

1−α1 )]+βα1N ′
1+ V β

2a′
1

(μ′
1−α1 )2

e
− V β

2|a′
2 | q2

2−(q2−α2 )βN ′
2− V β

2|a′
2 | [(μ′

2−α2 )2+2q2(μ′
2−α2 )]

= − i V β

2π
√

a′
1|a′

2|
∞∑

N1=0

∞∑
N2=0

∫ α1+∞

α1−i∞
dt1

∫ ∞

−∞
dt2 e

∑2
i=1[ V β

2a′
i
(ti−μ′

i )
2+tiβN ′

i ]
Z (1)

0 (T,V, N1) Z (2)
0 (T,V, N2). (A6)

Analogously to the previous case, one obtains again Eqs. (8) and (9) with the same expression for 	(t1, t2) except that now the
integration over variable t2 is taken along the real axes.

APPENDIX B

In this Appendix we rewrite Eqs. (15), (16), and (17) using dimensionless quantities:

μi = βμi, ni = niλ
3
i , ai = βaiλ

−3
i , a12 = βa12λ

− 3
2

1 λ
− 3

2
2 , κ =

(
λ1

λ2

) 3
2

. (B1)

One obtains

n1 = g 3
2
(eμ1−a1n1−a12n2κ ) + λ3

1

V

1

e−(μ1−a1n1−a12n2κ ) − 1
, (B2)

n2 = g 3
2
(eμ2−a2n2−a12n1κ

−1
) + λ3

2

V

1

e−(μ2−a2n2−a12n1κ−1 ) − 1
, (B3)

and

	(n1, n2) = 	(n1, n2)
√

λ3
1λ

3
2 = −1

2

[
a1n2

1κ
−1 + a2n2

2κ + 2a12n1n2
] − 1

κ
g 5

2
(eμ1−a1n1−a12n2κ ) − κ g 5

2
(eμ2−a2n2−a12n1κ

−1
)+O

(
1

V

)
.

(B4)
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