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Excited-state preparation of trapped ultracold atoms via swept potentials
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We study the out-of-equilibrium dynamics of noninteracting atoms confined within a one-dimensional har-
monic trap triggered by dragging an external long-range potential through the system. The symmetry-breaking
nature of this moving potential couples adjacent eigenstates in the atoms’ effective potential, leading to an
energy landscape reminiscent of systems exhibiting trap-induced shape resonances. These couplings may be
exploited to selectively excite the atoms into higher vibrational states of the harmonic trap by controlling the
motion of the dragged potential. To this end, we consider two protocols designs: The first protocol strives
to maintain adiabaticity at critical points during the atoms’ dynamics, while the second protocol utilizes the
fast tunneling of the atoms within their effective double-well potential. These protocols take place in the few
to many millisecond regime and achieve high-fidelity excitation of the atoms into pure vibrational states and
superpositions thereof. Overall, our study highlights the significance of dragged potentials for controlling and
manipulating atom dynamics and offers intuitive protocols for achieving desired excitations.
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I. INTRODUCTION

Reliable and efficient quantum state engineering tech-
niques are indispensable for emerging quantum technologies
from information processing to interferometry and commu-
nications. Ultracold quantum gases are particularly suited to
the manipulation of quantum states and dynamics due to the
exceptional control over interparticle interactions via tunable
scattering resonances [1], the ability to prepare ensembles
with a well-defined number of particles [2,3], and the flexibil-
ity of trapping geometry in terms of shape [4,5], periodicity
[6], and dimensionality [7].

For trapped ultracold species, transitions between different
vibrational states can be carried out by employing external
drives, such as deforming [8] or shaking the trapping potential
[9]. The latter approach was implemented in [10] to trans-
fer a Bose-Einstein condensate (BEC) to the collective first
excited trap state, which serves as a twin-beam matter wave
source upon collisional deexcitation of the atoms. Similar
protocols for population inversion have been proposed which
rely on adiabatic cycles controlled by the interaction of the
BEC with a δ-like impurity [11,12]. Additionally, collective
excitations such as solitons and vortices may be generated
through appropriately steering a focused laser beam through
a condensate [13–17]. State transfer protocols such as those
described above have been further combined with sophisti-
cated quantum optimal control techniques [18] and shortcuts
to adiabaticity [19,20] in order to manipulate quantum sys-
tems with high fidelity on timescales shorter than decoherence
times (see, e.g., [21]). Quantum optimal control and shortcuts
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to adiabaticity can be used for a wide range of applications,
including for example the transport of trapped ions [22,23].

Controlled collisions between species in separate traps pro-
vide a further avenue for quantum state engineering. In their
theoretical work [24], Stock et al. found that the quantized
relative motion of a colliding atom pair leads to resonances
between trap eigenstates and molecular bound states which
would not be present in free space. They termed these trap-
induced shape resonances (TISR). Later theoretical works
uncovered TISR for colliding atom-ion pairs [25] and pro-
posed using TISR to realize two-qubit quantum gates [26]
and excite atoms into higher Bloch bands of an optical lattice
[27]. TISR have also been considered in the context of single
atoms interacting with multiple impurities [28]. Recently, a
landmark experiment by Ruttley et al. [29] demonstrated the
mergoassociation of single cold RbCs molecules using TISR
between the constituent atoms confined in separate optical
tweezers.

In this work, we consider a particular case of an external
drive which enables fine control over the vibrational state
occupation of trapped atoms. Similar to [14–16], the external
drive takes the form of dynamically swept external potentials.
Our potential however is repulsive at short range with a long-
range attractive tail supporting bound states, which offers
additional flexibility in terms of protocol design and a more
diverse dynamical response of the system. We explore how
tuning the shape and drag speed of the external drive can be
exploited to excite ground-state atoms into excited trap states
or superpositions thereof. We propose two different types of
protocols for achieving state transfer which rely on avoided
crossings arising in the atoms’ discrete energy spectrum due
to the swept potential, in a manner analogous to the emergence
of TISR. The first protocol, slow yet robust, relies on adia-
batic sweeping of the potential around certain critical avoided
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crossings in the energy spectrum. The second protocol, sig-
nificantly faster yet requiring precise control over the external
potential’s position, exploits the ability of the atom to undergo
relatively fast tunneling at the avoided crossings.

Our work is laid out as follows. In Sec. II we introduce the
setup and discuss the landscape of avoided crossings arising
in our system and how these can be used to shuttle the atoms
to higher excited states. Sections III and IV focus on the
two different state preparation protocols and include proof-
of-principle demonstrations for both, as well as a discussion
of their limitations. Section V summarizes the present study
and discusses directions for future work.

II. SWEPT POTENTIAL MODEL

We begin in Sec. II A by introducing the time-dependent
Hamiltonian which models the collision between a dragged
external potential and trapped atoms in one spatial dimen-
sion. Section II B considers the scenario in which the external
potential is swept through the trap at a constant velocity,
highlighting the emergence of avoided crossings between
eigenstates during the collision and the role played by the
potential’s profile and speed. This motivates the discussion of
the state preparation protocols which are the focus of Secs. III
and IV.

A. Model: Collision of trapped atoms with a swept potential

Our system is comprised of atoms of mass m confined
within a quasi-one-dimensional (quasi-1D) harmonic trap
centered at the origin. The quasi-1D confinement requires
ω‖ � ω⊥, where ω‖ and ω⊥ are the longitudinal and trans-
verse trapping frequencies, respectively. The longitudinal axis
is chosen to be parallel to the z axis and the corresponding lon-
gitudinal eigenstates and associated eigenenergies are denoted
by {φn(z)} and {εn = n + 1

2 }, n ∈ N. Transverse excitations
are neglected throughout this paper such that we restrict our-
selves to a one-dimensional problem. Finally, unless stated
otherwise, all quantities are given in units defined by the
oscillator length aHO = √

h̄/mωz and the energy spacing
εHO = h̄ωz of the longitudinal eigenstates.

At t = 0, the atom occupies the trap’s vibrational ground
state φ0(z). For t > 0, it experiences an additional time-
dependent potential Vo(z, t ) which is swept from one side of
the system to the other along the z axis. The dragged poten-
tial’s profile is comprised of a short-range repulsive barrier
with an attractive long-range tail and takes the form

Vo(z, zo(t )) = ae−b(z−zo(t ))2 − 1

2[z − zo(t )]4 + 1/c
, (1)

where zo(t ) is the displacement of the repulsive barrier from
the center of the trap. The model parameters a, b, and c set
the height and width of the barrier as well as the depth of the
wells formed by the attractive tail, respectively. A plot of the
potential is provided in the inset of Fig. 1(a). This potential
could be created in an experiment using, for example, a tightly
trapped ion [30–32] or a shaped optical potential [4].

FIG. 1. Instantaneous single-particle energy spectrum. (a) Dis-
crete atomic energy spectrum as a function of the position zo of the
external potential (shown in inset) relative to the trap center. The
energies of the lowest few harmonic trap eigenstates are labeled εi.
The dashed lines show the approximate energy shift of the external
potential’s bound states ε̄i + z2

o/2 [25] as a function of zo, where
ε̄i are the energies of the bound states without the harmonic trap.
The circles highlight examples of narrowly avoided crossings. Also
shown are plots of the instantaneous eigenstates {ϕi(z; zo)} near an
avoided crossing between (b) a bound state of the dragged potential
and a trap state and (c) two trap states. The blue solid line shows
the effective potential experienced by the atoms and the gray dashed
line is the harmonic trap potential. Eigenstates are vertically offset by
their energy. Here we have used the parameters a = 120, b = 4

√
10c,

and c = 40 for the external potential (1).

Summarizing the above considerations, we write the
single-atom Hamiltonian as

Ĥ [zo(t )] = −1

2

d2

dz2
+ Vtrap(z) + Vo(z, zo(t )), (2)

where Vtrap(z) = z2/2 describes the time-independent har-
monic trap. Equation (2) is parametrically dependent on the
position of the dragged potential zo and we denote its eigen-
states and eigenvalues by {ϕn(z; zo)} and {εn(zo)}, respectively,
to contrast them with those of the pure harmonic trap [φn(z)
and εn].

Hamiltonians of the above form were employed in
related works to model atom-ion interactions in the ultra-
cold regime [30,31,33–35]. The atom-ion interaction has
a species-dependent length scale R∗ and together with the
harmonic-oscillator length aHO, these constitute the two char-
acteristic length scales of the system. In this and prior works,
we have been interested in the regime where these length
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scales are comparable. The form of our Hamiltonian in Eq. (2)
is valid for R∗ = aHO, which is valid for a variety of species
in terms of the atom-ion interaction range and the achievable
trapping frequencies. The analysis carried out in the remainder
of this work holds for R∗ = aHO. However, we emphasize
that the proposed protocols would also work for different
values so long as the length scales remain comparable. As
we mentioned above, the model potential could be realized
in one of two ways: (i) a trapped ion and (ii) a shaped optical
potential. Thus, we see that the realization with a trapped ion
is less flexible since the length scale R∗ is set by the choice of
species for the atom-ion pair. In contrast, an optical potential
would allow greater flexibility since the size of the potential
may be tuned in addition to the trapping frequency.

B. Impact of swept potential on the atomic energy spectrum

Let us first solve the time-independent problem to clarify
the zo dependence of the atoms’ discrete energy spectrum
{εn(zo)}. We choose the following model parameters for the
external potential (1): a = 120, b = 4

√
10c, and c = 40 (as

used in [30,31,33–35]). For this choice of parameters, the
potential supports two bound states with energies ε̄0 = −12.2
and ε̄1 = −10.4, shown in the inset of Fig. 1(a).

Figure 1(a) shows the evolution of the lowest nine eigen-
values with zo, obtained using exact diagonalization of the
Hamiltonian (2). For |zo| > 6, the lowest eigenstates have a
regular energy spacing h̄ωz and describe states of the unper-
turbed harmonic trap. Closer to the trap center [4<|zo(t )|<6],
the energies of the external potential’s bound states are re-
duced, which leads to level repulsions between the bound
states and the trap eigenstates, generating two chains of
avoided crossings. The avoided crossings seen here can be
considered analogous to trap-induced shape resonances, first
predicted by Stock et al. for colliding pairs of trapped atoms
[24]. That these are indeed a form of shape resonance can be
seen in Fig. 1(b), which shows the trap’s ground state near its
avoided crossing with the lower bound state of the external po-
tential at zo = −5.25. Here these near-degenerate eigenstates
are separated by a barrier that forms in the atom’s effective
potential created by the sum of Vo(z, zo) and Vtrap(z). In addi-
tion, a second variety of trap-induced shape resonance analog
manifests in this system due this time to the short-range repul-
sive barrier component of Eq. (1). One such example is shown
in Fig. 1(c), where two (perturbed) trap states are separated
on either side of the external potential’s Gaussian barrier at
zo = 1.48. We see therefore that the repulsive and attractive
components of (1) each create their own class of avoided
crossings. Crucially, both kinds of shape resonances present
in Fig. 1 would not appear in the absence of the trap’s discrete
energy spectrum.

Let us now turn to the time-dependent solution of the
Hamiltonian (2). In the remainder of this section, we examine
the simplest case of the external potential (1) moving at a
constant velocity żo from one side of the system to the other.
We are interested in the state of the atoms at long times, i.e.,
after the external potential has passed into and through the
system and excited it on the other side, and which factors
influence it.

FIG. 2. Path of the atomic state along the energy curves. (a)–
(f) Atomic energy spectrum (gray) weighted by the overlap of the
atomic state with the instantaneous eigenstates | 〈ψ (z; zo|ϕn(z; z0)〉 |2
of the Hamiltonian (2) as a function of zo(t ) for constant drag speeds
(a) żo = 0.01, (b) żo = 0.10, and (c) żo = 1.00. Here we have used
the parameters a = 120, b = 4

√
10c, and c = 40. (d)–(f) Same as

(a)–(c) but for a barrier height a = 320. (g) and (h) Open circles show
the overlap of the final state | 〈ψ f (z)|φn(z)〉 |2 with the first (g) 11 and
(h) 101 harmonic trap eigenstates {φn} (n = 0, 1, 2, . . .) for various
drag speeds żo. Closed circles in (g) are values obtained using the
Landau-Zener formula (3).

At t = 0, the atoms occupy the ground state of the trap
ϕ(z, 0) = φ0(z). We choose the same model parameters for
the external potential as before. For numerical purposes, we
set the external potential’s position at t = 0 to be zo(0) = −6,
which is sufficiently far removed from the trap center to
prevent an immediate quench of the initial atomic state. We
determine the atomic dynamics ψ = ψ (t ) by solving the time-
dependent Schrödinger equation via wave-packet propagation
using a dynamically optimized truncated basis representation
[36].

We first consider the way in which the dragged potential
couples the initial atomic state with other eigenstates during
the course of the dynamics. For this purpose, we determine the
overlap of the atomic state with the instantaneous eigenstates
of the Hamiltonian (2) as a function of zo(t ). Figures 2(a)–2(f)
show plots of the energy spectrum [cf. Fig. 1(a)] in which
the curves {εn(zo)} are weighted by the overlap integrals
| 〈ψ (t )|ϕn(zo)〉 |2 for different drag speeds żo and heights a
of the repulsive barrier. These plots effectively describe how
ψ (t ) evolves within the Hilbert space of the Hamiltonian
(2). We see in Fig. 2(a) that for a sufficiently slow drag
speed and small barrier height, the state ψ (t ) initially evolves
along a single energy curve, with only minor population
of neighboring curves occurring after the dragged potential
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passes through the trap center. For faster drag speeds and a
greater barrier height, the atomic state follows an increasingly
diabatic path to higher energy curves. Figure 2 shows that
for żo = 0.01 and 0.10, diabatic transitions between energy
curves take place exclusively at the avoided crossings, since
there the coupling between energy curves is greatest and
the energy gap smallest. However, this simple picture breaks
down at sufficiently fast drag speeds, such as at żo = 1.00,
which is shown in Figs. 2(c) and 2(f). In both of these cases,
the coupling between curves becomes strong enough that ad-
ditional transitions take place at positions zo away from the
immediate vicinity of the avoided crossings, where the curves
have relatively large energy separations. For our purposes,
these additional transitions are undesirable since they consti-
tute an additional form of “leakage” between energy curves,
which hinders the controlled preparation of a well-defined
final atomic state.

A more quantitative understanding of the influence of the
drag speed and barrier height on the path of the atomic state in
Fig. 2 is provided by the semiclassical Landau-Zener formula
[37,38]. This determines the probability Pi j for a diabatic
transition at an avoided crossing between the energy curves
of the eigenstates ϕi(zo) and ϕ j (zo):

Pi j = exp

(
−2π


2
i j

żoαi j

)
. (3)

Here 
i j = min(|εi − ε j |)/2 is half the minimum energy gap
at the avoided crossing and αi j = | d

dzo
(εi − ε j )|. For Pi j → 0,

transitions between the states are suppressed, i.e., the dynam-
ics is adiabatic. This holds for the condition 
2

i j � żoαi j ,
whereas for 
2

i j � żoαi j , Pi j → 1 and the dynamics is maxi-
mally diabatic.

The closed circles in Fig. 2(g) are predictions for the
composition of the atomic state at long times determined by
applying Eq. (3) at each crossing encountered by the state. The
predictions are in good agreement with the results obtained
from the solution of the time-dependent Schrödinger equa-
tion (open circles) over a wide range of drag speeds żo. Thus,
we see that the Landau-Zener formula (3) is a reasonable
model for describing the state’s path and we may use it to
guide our intuition. Figure 2(h) extends the numerical results
from Fig. 2(g) up to the 100th excited trap state, highlighting
that it is in principle possible to populate arbitrarily highly
excited states using the dragged potential. In an experimen-
tal setting however, the finite depth of the trapping potential
imposes an upper energy limit and any atoms excited beyond
this threshold would be lost from the system. This loss could
be exploited to our advantage in the following way. We may
design a state preparation protocol in which any atoms that
do not reach the desired final state are lost from the system,
thereby maximizing the fidelity with the target state at the
cost of particle number uncertainty. This could be used to
circumvent the limitations of the adiabatic state preparation
protocol which is the focus of Sec. III.

From Eq. (3) we see that we have three knobs at our
disposal for controlling the atoms’ path through the energy
curves {εn(zo)}: 
i j , αi j , and żo. The gap size 
i j at each
avoided crossing is determined by the size of the barrier at
the shape resonance since taller, wider barriers lead to more

narrowly avoided crossings. Therefore, we can control 
i j by
tuning the model parameters in Eq. (1) as well as the longi-
tudinal trapping frequency ωz. These will also influence αi j ;
however, the quadratic dependence of 
i j in Eq. (3) makes
it a more sensitive and thus attractive control parameter. The
speed of the dragged potential is also an attractive control
parameter since it is a free parameter.

In the following sections, we develop protocols which ex-
ploit these control parameters in order to realize deterministic
state preparation such that the dragged potential shuttles the
atoms into an excited trap state φn, n > 0, or a well-defined
superposition of N trap states

∑N
n=0 cnφn. We denote the tar-

get state by ψt and the goal of the following sections is to
maximize the fidelity measure F = | 〈ψ |ψt 〉 |2. We choose
the following fixed set of model parameters: a = 320, b =
4
√

10c, and c = 40. In particular, we choose a = 320, since
from Fig. 2(e) we see that for this barrier height, in com-
bination with a drag speed of zo = 0.1, the state’s path is
predominantly diabatic and transitions between energy curves
are to a large extent “clean,” by which we mean that the
transitions occur chiefly at the avoided crossings and not, as is
the case in Figs. 2(e) and 2(f), also in between avoided cross-
ings. Both of these features are crucial for realizing efficient,
high-fidelity state preparation protocols.

III. ADIABATIC PROTOCOL

This section introduces the first state preparation protocol,
an adiabatic protocol, which seeks to control the path of the
atomic state through the energy curves {εn(zo)} using only
the intuition provided by the Landau-Zener model (3) dis-
cussed in Sec. II. Specifically, we use the drag speed żo of
the external potential to control whether the state traverses a
given crossing adiabatically or diabatically in order to force
it to follow a predetermined path through the energy spec-
trum. In particular, we demonstrate preparation of the target
states ψ

(1)
t = φ5 and ψ

(2)
t (t ) = (φ4 + ei�(t )φ5)/

√
2, where we

include the phase factor �(t ) = −ωzt to indicate that the latter
target state is not a pure eigenstate of the harmonic trap and
hence undergoes periodic dynamics. The demonstration of
preparing a mixed state is used to highlight the versatility
of the protocol. In principle however, it would be possible to
employ similar protocols in order to engineer localized wave
packets in anharmonic trap potentials for probing quantum
collapse and revival behavior [39].

The adiabatic protocol is outlined in Fig. 3. In particular,
Fig. 3(a) illustrates the ideal path through the energy spec-
trum from the ground state to the fifth excited state of the
harmonic trap φ5. Ten narrowly avoided crossings lie along
this particular path. Starting from t = 0, the state should
evolve diabatically at speed vd until just before it reaches the
eighth avoided crossing [indicated by the box in Fig. 3(a)],
whereupon the dragged potential is decelerated linearly to the
speed va, which should be sufficiently slow to fulfill the adia-
batic condition 
2

i j � żoαi j [see Fig. 3(b)]. If no deceleration
occurs, the state will continue to populate higher trap eigen-
states, similar to the path seen in Fig. 2(e). After passing this
critical eighth avoided crossing, the potential is accelerated
once again to vd and the state continues diabatically through
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FIG. 3. Schematic of the adiabatic protocol. (a) Ideal state path
[orange (dark gray)] through the atomic energy spectrum (light gray)
to excite the atom to the fifth excited trap state φ5(z). (b) Close-up
of the critical region highlighted by the box in (a). The impurity’s
drag speed is overlaid in [blue (dark gray)], indicating the transition
between the diabatic and adiabatic speeds (vd and va, respectively).
(c) Ideal state path [green (dark gray)] through the atomic energy
spectrum (light gray) to excite the atom to the superposition state
(φ4 + ei�(t )φ5)/

√
2, where �(t ) = −ωzt . (d) Close-up of the critical

region highlighted by the box in (c). Note that in both (b) and (d) żo

is plotted on a logarithmic scale for the sake of visibility.

the last two avoided crossings, finally reaching the target state
ψ

(1)
t = φ5.

Equally, the target state ψ
(2)
t (t ) = (φ4 + ei�(t )φ5)/

√
2 may

be achieved through a slight modification to the protocol for
ψ

(1)
t . In particular, an additional deceleration step is required

such that the state splits equally along the two energy curves
at the seventh avoided crossing, as depicted in Fig. 3(c). The
speed protocol is shown in Fig. 3(d). The potential is first
decelerated from vd to v′

a, whose value is chosen such that
an equal mixing between states at the seventh crossing is
achieved and can be estimated using Eq. (3).

The results of the simulations for ψ
(1)
t are summarized in

Figs. 4(a)–4(e). Figure 4(a) shows the actual path followed
by the atomic state in each simulation, which agree as ex-
pected with the ideal path given in Fig. 3(a). The evolution
of the atomic probability density ρ(z, t ) = ψ∗(z, t )ψ (z, t ) is
provided in Figs. 4(b)–4(d) and the external potential’s tra-
jectory zo(t ) is indicated by the dashed line. As the potential
enters the trap [Fig. 4(b)], the atomic density is swept in the
direction of motion of the potential and the dynamics of the
state is diabatic. After the external potential is decelerated, the
density begins to tunnel to the opposite side of the potential’s
barrier [Fig. 4(c)]. As the potential leaves the trap [Fig. 4(d)],
the atomic density recenters on z = 0 and its profile matches
approximately that of the fifth excited trap state [see the
comparison in Fig. 4(e)]. For this particular simulation, we
obtain an overlap of 97.4% with the target state in a time of
approximately 1.22 × 104.

TABLE I. Dependence of final fidelity on the adiabatic speed.
Column 1 lists the ratio of adiabatic va and diabatic vd speeds, with
vd = 0.1 in all cases; column 2 the fidelity with the target state; and
column 3 the protocol duration.

va/vd | 〈ψ f |φ5〉 |2 ttot

5.0 × 10−3 25.8 3.20 × 102

5.0 × 10−4 89.1 1.40 × 103

5.0 × 10−5 97.4 1.22 × 104

Similar results for the ψ
(2)
t protocol are depicted in

Figs. 4(f)–4(j). Here we obtain an overlap of 92.6% with the
target state. The fidelity is smaller than that obtained for ψ

(1)
t

in part due to the larger value of va used in this example (see
the caption of Fig. 4). Consequently, the duration of this pro-
tocol is shorter at approximately 6.90 × 103. The final atomic
state exhibits regular density oscillations [Fig. 4(i)] with a
period matching the time scale set by the energy separation
of the neighboring trap states, namely, 2π/ωz.

Adiabatic protocols are slow by nature. For a longitudi-
nal trapping frequency of ωz = 2π × 300 Hz, the examples
shown in Fig. 4 would have a duration on the order of seconds.
A tighter trapping potential would reduce this of course, since
the time unit τ is given by τ = 1/ωz in our unit system. In
addition, using larger values of va would further reduce the
protocol duration but would come at the cost of the fidelity
(see Table I). Additional improvements could be made by
minimizing the distance over which the potential moves adia-
batically via standard optimization techniques.

The final fidelity achieved is strongly influenced by the
value of va. Nonetheless, there are additional sources of fi-
delity loss, accounting overall for approximately 1% of the
total probability. First, the state’s evolution while the potential
is dragged at vd is not perfectly diabatic, which leads to minor
losses at each crossing. Diabatic transitions between energy
curves away from the avoided crossings are a further source of
loss, as we saw for fast drag speeds in Figs. 2(c) and 2(f). No
doubt a protocol could be devised to fine-tune the drag speed
around particular regions where these transitions become sig-
nificant. This would however make the overall protocol more
complex for rather marginal improvements to the fidelity.

IV. TUNNELING PROTOCOL

The key limiting factor of the protocols described in
Sec. III is their long duration: Achieving fidelities with the
target state greater than 90% requires 103–104 units of time,
which translates to timescales on the order of seconds for
trapping frequencies on the order of 100 Hz. Ideally, we want
to be able to significantly reduce the duration of the protocols
while still preserving their relative simplicity and high fidelity.
This will be the focus of the following section. In Sec. IV A
we show how more efficient protocols can be designed by
drawing analogies between the dynamics of our system to the
tunneling of a particle in a double-well potential and arrive at
a condition which enables tunneling to be exploited usefully
for state preparation in our system. In Sec. IV B we apply the
knowledge from Sec. IV A to realize efficient protocols and
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FIG. 4. Adiabatic protocol. (a)–(e) Exciting atoms to the fifth excited trap state φ5(z) using the adiabatic protocol. (a) Instantaneous energy
spectrum (gray) with the colored line representing the overlap of the atomic state with the instantaneous eigenstates | 〈ψ (z, zo)|ϕν (z, zo)〉 |2 of
(2) as a function of zo(t ). (b)–(d) Atomic probability density |ψ (z, t )|2 for different time intervals during the protocol. The dashed line indicates
the trajectory of the moving potential zo(t ). (e) Comparison of the density of the final atomic state |ψ f |2 to the target state |ψt = φ5|2. Here we
achieve a fidelity | 〈ψ f |ψt 〉 |2 of 97.4%. (f)–(j) Same as (a)–(e) but for the target state (φ4 + ei�φ5)/

√
2, where �(t ) = −ωzt . Here we achieve

a fidelity | 〈ψ f |ψt 〉 |2 of 92.6%. For both protocols, vd = 0.1. In addition, (a)–(e) va = vd/20 000 and (f)–(j) va = vd/600 and v′
a = vd/2000

(vd , va, and v′
a are defined in Fig. 3). Wave functions are normalized such that

∫
dz|ψ (z)|2 = 1.

present results for the preparation of pure and superposition
excited trap states using the two varieties of avoided crossings
in our system that were introduced in Sec. II.

A. Condition for complete tunneling

The combination of the harmonic trap and the dragged
potential (1) creates an effective potential for the atoms re-
sembling an asymmetric double well [cf. Figs. 1(b) and 1(c)].
For the sake of building intuition, let us first consider the case
of noninteracting atoms confined within a symmetric double-
well potential, which is realized in our system for zo = 0. The
energy spectrum of atoms in a double well is characterized by
a series of near-degenerate doublets whose eigenstates have
opposite parity. Assume that at t = 0 the atoms are in an
equal superposition of the lowest two eigenstates: ψ (z, 0) =
[ϕ0(z) + ϕ1(z)]/

√
2. From the near degeneracy of the eigen-

states ϕ0(z) and ϕ1(z) and their opposite parity, this wave
packet is localized solely within one of the wells. For t > 0,
the state undergoes unitary time evolution and accumulates a
phase �, ψ (z, 0) = [ϕ0(z) + exp(i�)ϕ1(z)]/

√
2, where � =

−
εt , which is proportional to the energy gap between the
eigenstates 
ε = ε1 − ε0. After a time T = π/
ε, the state
will have accumulated a phase π such that the wave packet

is now localized within the opposite well: ψ (T ) = (ϕ0 −
ϕ1)/

√
2. For our purposes, we refer to T as the tunneling

time.
Based on the size of the energy gaps at the avoided cross-

ings in Fig. 1(a), we can expect tunneling times on the order
of 102 in our system. This value is one to two orders of magni-
tude smaller than the time required for the adiabatic protocols
discussed in Sec. III [see Figs. 4(c) and 4(h)]. In other words,
our estimate of the effective double-well tunneling time T
for our system indicates that we could significantly lower the
duration of our protocols by simply setting our adiabatic speed
all the way to va = 0, i.e., stopping the potential in the vicinity
of the avoided crossing and allowing the state to tunnel freely
on timescales set by the atomic energy spectrum.

To exploit tunneling for the purpose of state preparation,
we need to understand how to control it. In this regard, two
related questions arise. First, what conditions must be fulfilled
in the asymmetric double-well system to realize “perfect”
tunneling, namely, where the atomic density tunnels com-
pletely from one side to the other without leaving behind any
residue? Second, can we realize such tunneling for arbitrary
positions of the dragged potential? The remainder of this
section provides concrete answers to these questions through
some straightforward analytical considerations.
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We assume that on the approach to the avoided crossing
between the instantaneous eigenstates ϕA and ϕB, the atomic
state is in a superposition of only these two eigenstates,

ψ (z; zo(t )) = cA(zo(t ))ϕA(z; zo(t )) + cB(zo(t ))ϕB(z; zo(t )),
(4)

which is valid assuming that the dynamics up to this point
has been diabatic. The complex coefficients cA(zo(t ))
and cB(zo(t )) satisfy |cA(zo(t ))|2 + |cB(zo(t ))|2 = 1
since the atomic wave function is normalized
〈ψ (z; zo(t ))|ψ (z; zo(t ))〉 = 1. The narrowly avoided crossing
emerges due to a barrier created in the atoms’ effective
potential, centered at position zb. Depending on the type of
avoided crossing (see Sec. II for details), zb may be equal
to the position of the dragged potential zo(t ), yet this is not
guaranteed. For example, the variety of avoided crossings
depicted in Fig. 1(a) is not formed due to the external
potential’s Gaussian barrier but rather by its long-range
attractive tail; hence in this case zb 
= zo(t ).

At t = 0, the dragged external potential is suddenly halted
at the position zo(0) = zs near the avoided crossing between
ϕA and ϕB. Thereafter, the atomic wave function undergoes
unitary evolution. Since the Hamiltonian Ĥ (zs) no longer
has explicit time dependence, the wave function for t � 0
is given by ψ (z, t ; zs) = e−iĤ (zs )tψ (z; zs). In the interest of
readability, we drop the zs parameter notation in equations be-
yond this point. The atomic probability density ρ(z, t ) =
ψ∗(z, t )ψ (z, t ) at time t is given by

ρ(z, t ) = |cA|2|ϕA(z)|2 + |cB|2|ϕB(z)|2
+ 2cAcB cos(
ε t )ϕA(z)ϕB(z), (5)

where 
ε is the energy difference between the eigen-
states at position zs and we have assumed that the
eigenstates are real valued. For brevity, we label the time-
independent and time-dependent contributions to the den-
sity as ρ̄(z) = |cA|2|ϕA(z)|2 + |cB|2|ϕB(z)|2 and δρ(z, t ) =
2cAcB cos(
ε t )ϕA(z)ϕB(z), respectively. Note that δρ(z, t ) is
periodic in time with period P = 2π/
ε.

If the dynamics for t < 0 has been diabatic, the atoms’
probability density at t = 0 will be localized on one side of the
barrier created in the effective potential, for example, z > zb

[see Fig. 4(b)]. Thus, the atomic density at t = 0 fulfills the
condition

ρ(z, 0) = ρ̄(z) + δρ(z, 0) = 0 ∀ z � zb. (6)

Using Eq. (5), we can rewrite the above condition as

ρ̄(z) = −δρ(z, 0) = −2cAcBϕA(z)ϕB(z) ∀ z � zb. (7)

We now seek the optimal value of the external potential’s
stopping position, denoted by z̄s, such that the atoms undergo
perfect tunneling. This requires that at time t = P/2 the atoms
are localized on the opposite side of the barrier in the effective
potential. Hence, we demand that the atomic density fulfills
the following condition:

ρ(z, P/2) = ρ̄(z) + δρ(z, P/2) = 0 ∀ z > zb. (8)

Making use of Eq. (5) and cos(
ε P/2) = −1 yields

ρ̄(z) = 2cAcBϕA(z)ϕB(z) ∀ z > zb. (9)

FIG. 5. Perfect tunneling condition. Energy curves ε(zo) (dark
gray) for the eigenstates ϕ5(z; zo) and ϕ6(z; zo) in the vicinity of
their avoided crossing (left axis). Also shown is 1 − I(zo) [or-
ange (light gray)], where I(zo) is the overlap integral I(zo) =∫

dz|ϕA(z, ; zo)||ϕB(z; zo)| appearing in Eq. (10) (right axis). The
dashed line indicates the critical stopping position z̄s.

Finally, we make use of the conditions in Eqs. (7) and (9) and
the fact that ρ̄(z; zs) is normalized to derive

1 =
∫

dz|ρ̄(z)| =
∫

z�zb

dz|ρ̄(z)| +
∫

z>zb

dz|ρ̄(z)|

= 2|cA||cB|
∫

dz|ϕA(z)||ϕB(z)|.
(10)

In the above, we have used the absolute value in order to
write the final expression as a single integral. Equation (10)
provides us with a relation between the overlap coefficients
ci = ∫

dz ϕi(z)ψ (z) and the overlap of the eigenstates’ ab-
solute magnitudes I = ∫

dz|ϕA(z)||ϕB(z)| which must be
fulfilled in order for perfect tunneling to take place, namely,
|cA||cB| I = 1

2 .
Since 0 � |cA||cB| � 1

2 and 0 � I � 1, the condition in
Eq. (10) can only be fulfilled when |cA||cB| = 1

2 and I = 1.
This requires (i) the atomic state to be in an equal superposi-
tion of eigenstates ϕA(z) and ϕB(z) (i.e., |cA| = |cB| = 1/

√
2)

and (ii) that these eigenstates differ at most by the sign of
their prefactors [|ϕA(z)| = |ϕB(z)| ∀ z]. The former condition
is rather loose, since it could be realized in general for ar-
bitrary zs. However, the latter condition provides a strong
indication that the optimal stopping position z̄s is located
at the narrowest point of the avoided crossing between the
eigenstates. Thus, we have shown that the requirements for
perfect tunneling in an asymmetric double well match those
of the symmetric double well that we considered at the be-
ginning of this section. We determine z̄s for a given crossing
by evaluating the overlap integral of the eigenstates |ϕA(z)|
and |ϕB(z)| for a range of zs around their common avoided
crossing. Figure 5 shows the results for |ϕ5(z)| and |ϕ6(z)|.
In this case, we confirm that the optimal position z̄s occurs
at the point of closest approach between the energy curves ε5

and ε6.
In conclusion, the tunneling protocol cannot be realized for

arbitrary zs. In fact, the ability to tunnel is highly sensitive
to the choice of zs as shown by Fig. 5. Nonetheless, through
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FIG. 6. Tunneling protocol. (a)–(c) Exciting atoms to the third excited trap state φ3 using the tunneling protocol. (a) Atomic energy
spectrum, weighted by the overlap of its state with the instantaneous eigenstates | 〈ψ (z, zo)|ϕν (z, zo)〉 |2 of Eq. (2) as a function of zo(t ).
(b) Atomic probability density |ψ (z, t )|2 throughout the protocol. The dashed line indicates the trajectory of the moving potential zo(t ).
(c) Comparison of the density of the atom’s final state |ψ f |2 to the target state |φ3|2. Here we achieve a fidelity | 〈ψ f |ψt 〉 |2 of 99.02%. (d)–(f)
Same as for (a)–(c) but for the target state (φ0 + ei�(t )φ4)/

√
2, where �(t ) = −4ωzt . Here we achieve a fidelity | 〈ψ f |ψt 〉 |2 of 99.7%. For both

protocols, vd = 0.1. Wave functions are normalized such that
∫

dz|ψ (z)|2 = 1.

the above analysis we have arrived at the condition I (z̄s) = 1
which must be fulfilled to achieve perfect tunneling, which
provides us with a systematic method for determining the
optimal stopping position z̄s. Furthermore, the size of the
energy gaps at the avoided crossings mean that the atoms will
tunnel over one order of magnitude faster than the adiabatic
protocols discussed in Sec. III.

B. Proof of principle

Using the knowledge about the conditions for perfect tun-
neling gained from the preceding section, we now perform
state preparation using with new protocols that execute sudden
stops of the dragged potential at relevant avoided crossings in
the atomic energy spectrum. The relevant avoided crossings
are determined by the desired target state. The duration of
each stop is set by the tunneling time T = π/
ε for the given
avoided crossing. Between stops, the external potential moves
at a constant speed żo = 0.10 and the change in its velocity is
assumed to be sudden.

Figure 6 summarizes the results of tunneling protocols
for target states ψ

(3)
t (z) = φ3(z) and ψ

(4)
t (z, t ) = [φ0(z) +

ei�(t )φ4(z)]/
√

2, where �(t ) = −4ωzt . In both cases, we
achieve fidelities above 99% for durations of 102 time units. In
order to prepare the superposition state ψ

(4)
t (z, t ), we follow a

slightly different approach by exploiting instead the avoided

crossings that arise between a bound state of the dragged
potential (1) and a vibrational state [see, e.g., Fig. 1(b)].
Using these anticrossings requires us to reverse the direction
of motion of the dragged potential, which therefore requires
stopping twice during the protocol as compared to only once
in the protocol in Figs. 6(a)–6(c). The advantage of this
approach is however that there are overall fewer avoided
crossings that the state has to traverse, which improves the
overall fidelity at the cost of a slightly longer protocol. Fi-
nally, we note that by stopping the potential at z̄s for only
half the tunneling time T/2, the state will split equally along
both paths that meet at the crossing. Using this method, we
achieve a fidelity of 99.7% with ψ

(4)
t (z, t ) in a time of 650

[see Figs. 6(d)–6(f) for further details].
While the tunneling protocols have a distinct advantage in

terms of speed, their major drawback is their sensitivity to
errors in the stopping position zs. In Table II we summarize
some data which investigate the robustness of the protocol
to errors in the stopping position zs. We find that deviations
as small as 0.1% from the optimal stopping position z̄s can
lead to a sizable decrease in the fidelity with ψ

(3)
t (z, t ). The

level of precision in the positioning of the potential might be
challenging to meet by current experimental standards.

Additionally, the protocols discussed in this work will be
sensitive to deviations in the swept potential from its optimal
shape. This effect is investigated in Appendix A 1.
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TABLE II. Robustness of the tunneling protocol to error in the
stopping position. Column 1 lists the percentage error in the stopping
position zs relative to the optimal stopping position z̄s and column 2
the fidelity with the target state φ3. The error-free fidelity amounts to
99.02% (see Fig. 6).

Percent error in zs | 〈ψ f |φ3〉 |2

0.01 98.70
0.10 72.14
1.00 1.18

In this work we have demonstrated the preparation of su-
perposition states consisting of at most two trap eigenstates
in the population-balanced case. It is possible to modify
the protocols to prepare more complicated superposition
states, as discussed for the case of the tunneling protocol in
Appendix A 2.

V. CONCLUSION

In this work, we explored protocols for exciting individual
trapped atoms into higher vibrational states by means of a
dynamically swept external potential. In particular, we em-
ployed an external potential possessing long-range attractive
character and a repulsive barrier at its center, which could be
realized via a tightly trapped ion or a shaped optical potential.
Excitation of the atoms was facilitated by avoided crossings
in the atomic energy spectrum, whose position and gap size
may be tuned through the shape of the external potential. The
presence of the avoided crossings is a consequence of shape
resonances in the effective potential created by the moving
external potential, analogous to TISR emerging in collisions
between species in separate trapping potentials. The protocols
proposed in our work selectively prepare the atoms in excited
vibrational states through controlling the speed of the exter-
nal potential in order to drive the state along a desired path
through the atoms’ discrete energy spectrum.

The first protocol relies on adiabatic driving around a small
number of critical anticrossings, which depend on the desired
target state. The protocol’s primary limitation is its duration:
Achieving fidelities higher than 90% requires durations of
103–104 in harmonic oscillator units. For a Rb atom with ωz =
2π × 1 kHz, this would correspond to a protocol duration of
approximately 0.1–1.0 s.

In contrast, the second protocol brings the potential to a
complete halt at the critical avoided crossings, whereupon
the atom undergoes unitary dynamics in its effective poten-
tial created by the harmonic trap and the now static external
potential. During this period, the atom tunnels through the
barrier present at the shape resonance on timescales defined
by the energy gap between the eigenstates at the avoided
crossing. We found that tunneling occurs over durations of
102, which is one to two orders of magnitude faster than the
timescales for the adiabatic protocol. The tunneling protocol
achieved fidelities higher than 99% with protocol durations
of 10–100 ms, assuming a Rb atom with ωz = 2π × 1 kHz.
However, the fidelity of this protocol is highly sensitive to the
external potential’s stopping position.

FIG. 7. Robustness of the protocols to deviation in shape of the
swept potential. (a) Distribution of fidelities achieved by the adia-
batic protocol for varying degrees of error in the model parameters
p of the swept potential [see Eq. (1)]. For each value of p, 1000
randomly sampled swept potentials were used. The fidelities are
plotted as a fraction of the ideal fidelity with respect to the target
state and the counts are normalized. In this case, the target state
was the fifth excited trap state φ5 with an ideal fidelity of 97.40%.
(b) Corresponding results for the tunneling protocol. In this case, the
target state was the third excited trap state with an ideal fidelity of
99.02%. (c) Number of simulations which achieved better than 80%
of the ideal fidelity for the adiabatic (slash-hatched) and tunneling
(dot-hatched) protocols.

Without any specific attempts at optimization, our proto-
cols can achieve fidelities better than 99% on timescales on
the order of milliseconds. While employing quantum optimal
control methods would enable us to design protocols with
more competitive durations, these protocols would not offer
the same level of clarity and intuitiveness as the protocols
presented in this work.

Our work may be extended to weakly interacting Bose or
Fermi gases to investigate the role of interparticle interac-
tions and particle statistics. Moreover, considering a binary
mixture may be of particular interest. For instance, consider
a mixture of two components A and B, where species A
initially occupies an excited trap state and species B occupies
the vibrational ground state. Introducing weak interspecies
interactions would mean that species B experiences, in an
effective picture, a latticelike background potential created by
the density of species A. Additionally, the lattice could be
made to vibrate by preparing species A in a superposition of
trap states, thus mimicking phononic excitations.
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FIG. 8. Tunneling protocol: three-state superposition. (a)–(c) Exciting atoms to the population-balanced three-state mixture (see the
text) using the tunneling protocol. (a) Atomic energy spectrum, weighted by the overlap of its state with the instantaneous eigenstates
| 〈ψ (z, zo)|ϕν (z, zo)〉 |2 of Eq. (2) as a function of zo(t ). (b) Atomic probability density |ψ (z, t )|2 throughout the protocol. The dashed line
indicates the trajectory of the moving potential zo(t ). (c) Comparison of the density of the atom’s final state |ψ f |2 to the target state |φt |2. Here
we achieve a fidelity | 〈ψ f |ψt 〉 |2 of 99.87%. (d)–(f) Same as (a)–(c) but for the population-imbalanced three-state mixture. Here we achieve a
fidelity | 〈ψ f |ψt 〉 |2 of 98.76%. For both protocols, vd = 0.1. Wave functions are normalized such that

∫
dz|ψ (z)|2 = 1.

Note added. Recently, we became aware of earlier related
works [14,15] which propose preparing atoms in pure excited
trap states through adiabatic passage of a constant-speed po-
tential well with varying well depth.
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APPENDIX

1. Robustness of the protocols to errors in the swept potential

The success of the protocols described in this paper in
an experimental setting would rely on the ability to recreate
the shaped potential (1) with high precision. Deviations in
the shape of the potential, through, e.g., errors in the model
parameters, will lead to a reduction in fidelity with respect to
the target state. In this section we investigate the robustness
of our protocols to deviations in the potential’s shape from the
ideal, mimicking the impact of experimental errors.

We carried out a series of simulations using swept po-
tentials whose model parameters (a, b, and c) were sampled
from Gaussian distributions, where the mean was fixed at the
ideal value (a0 = 120, b0 = 4

√
10c0, and c0 = 40) and the

standard deviation σ was changed to reflect varying degrees

of experimental error. Figure 7 shows the distribution of fideli-
ties achieved for the adiabatic and tunneling protocols with
varying standard deviation, defined as a percentage p of the
ideal value (i.e., the Gaussian distribution for model parameter
a would have a standard deviation σ = pa0). To obtain statis-
tics, we performed simulations with 1000 randomly sampled
swept potentials for each value of p.

As expected, the protocols perform worse for increas-
ing noise. The tunneling protocol is particularly sensitive:
For p = 0.20, fewer than 10% of runs achieved a fidelity
higher than 80% of the ideal value. In contrast, the adiabatic
protocol proved itself more robust, with around 50% of sim-
ulations achieving a fidelity better than 80% at p = 0.20 [see
Fig. 7(c)].

2. Further examples of state preparation

In the main text we showed proof-of-principle results for
the preparation of target states involving at most two excited
trap states. Nonetheless, the protocols can be applied to re-
alize more sophisticated superpositions of trap states. In this
section we show results for the preparation of a superposition
of the three lowest-energy trap states

ψt = αφ0 + βφ1 + γφ2. (A1)

Figure 8 demonstrates results for the preparation of a
population-balanced case (α = β = γ = 1/

√
3) as well as an
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imbalanced case with coefficients in the ratio α:β:γ = 5:4:16
using the tunneling protocol. We achieve fidelities of 99.87%
and 98.76% for the two cases, respectively. In general, even
more complex superpositions of states could be created in this

way. However, guiding the state along more complicated paths
in the energy spectrum shown in Fig. 1(a) would require the
traversal of an increased number of avoided crossings which,
in principle, means a larger overall loss of fidelity.
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