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Theoretical exploration of phase transitions in a cavity-BEC system with two crossed optical pumps
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We consider a Bose-Einstein condensate inside an optical cavity and two crossed coherent pump fields. We
determine perturbatively the phase boundary separating the normal superfluid phase and the superradiance phase.
In the regime of negative cavity detuning, we map out the phase diagrams for both an attractive and a repulsive
optical lattice. It turns out that the situation is quite different in the two cases. Specifically, in the case of an
attractive lattice, if a system is in the superradiant phase with one pump laser, adding another pump does not drive
the system out of the superradiance phase, while for the repulsive lattice, increasing another pump potential has
suppressive effects on the superradiance. We also find that, in the case of an attractive lattice, equally increasing
two pump lattice potentials can induce a transition from the normal phase to the superradiance phase. In stark
contrast, for the repulsive lattice, the system will remain in the normal phase as the pump depths are tuned within
a wide range, independently of the cavity detuning and the decay rate.
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I. INTRODUCTION

Loading ultracold quantum gases into single or multiple
high-finesse cavities provides a versatile platform to explore
many-body phenomena [1–11]. The coupling between the
degenerate quantum gases and quantized radiation fields in
cavities gives rise to controllable long-range interactions,
which is dominant in many-body phases [12,13]. Transversely
driving a Bose-Einstein condensate (BEC) inside an optical
cavity is a typical example, which allows us to achieve the
Dicke model and a self-organization phase [12,14–21]. Taking
the atoms’ spins into account, one single cavity can also me-
diate spin-dependent interactions, realize single-mode Dicke
spin models [22–25], and simulate a nondegenerate two-mode
Dicke model [26,27]. With two crossed linear cavities, it is
possible to demonstrate the coupling between two order pa-
rameters [28–30], realize different supersolid formation, and
even engineer a continuous U(1) symmetry in real space and
cavity space [31–34] so that Higgs and Goldstone modes can
be monitored and manipulated [35].

Scattering photons into cavities, companied with the self-
organization of quantum gases, lies at the heart of these phe-
nomena, which is also referred to as superradiance. Usually,
an attractive potential, rather than a repulsive one, is expected
to induce superradiance since, intuitively, the buildup of any
additional repulsive potential seems to cost energy and hence
prohibits self-organization. Actually, most experiments im-
plement a red-detuned pump laser to drive atoms so that an
attractive standing-wave lattice can be generated. However, a
repulsive pump potential, generated by a blue-detuned optical
pump, is also able to produce superradiance, which has been
verified theoretically and experimentally [36–40].
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In practice, such a cavity-BEC system is commonly driven
by a single-pump laser. It is hard to resist the temptation
to ask what if there is more than just one pump as well as
what the situation is in the case of an attractive or a re-
pulsive optical lattice. It is not a trivial question to answer
since additional pumps produce a two-dimensional periodic
potential and lower the symmetry of the system compared
with the case of one pump. In this work we address this
question by considering a cavity-BEC system in the presence
of two crossed optical pumps and we also take the interference
between the two pumps into account. By mapping out the
phase diagrams, we conclude that adding another pump will
increase the tendency of a transition towards superradiance in
the case of an attractive lattice and suppress the tendency in
the case of a repulsive lattice. We also find that the repulsive
rectangular lattice (equal pump lattice depths) cannot induce
superradiance within a wide range of pump depths, which is
independent of the cavity detuning and decay rate.

II. MODEL AND FORMALISM

In Fig. 1 we consider a BEC (orange) inside a high-finesse
optical Fabry-Pérot resonator exposed to a cavity laser beam
(yellow) and two pump laser beams (green and blue). The
angle between the cavity beam and per pump beam is 60◦,
as shown in Fig. 1(a). We focus on the two-dimensional case,
where the atoms’ motion along ẑ can be frozen by tight con-
finement and bosons can only move in the xy plane [41].

The decay rate of the cavity field is κ . Within the dipole
and rotating-wave approximation, the effective many-body
Hamiltonian in a frame rotating at the pump laser frequency
[1,27] is given by

Ĥ =
∫

dr �̂†(r)

(
p̂2

2m
+ h̄

�a
Ê†Ê

)
�̂(r) − h̄�câ†â, (1a)

Ê =
∑
i=1,2

�i cos(ki · r) + gcos(kc · r + φ)â, (1b)
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FIG. 1. (a) Schematic of the experimental setup. A BEC (orange)
inside a high-finesse optical resonator is exposed to pump laser
beam 1 (green) and pump laser beam 2 (blue). Photons scattered
by the atoms populate the cavity mode (yellow), with coherent field
amplitude α that can be detected when leaking from the cavity.
The angles between the cavity beam and per pump beam are both
60◦. (b) Wave-vector (momentum) distributions of the BEC. The
orange point marks the condensed state in the absence of photons
scattering into the cavity, while green (blue) points are the steady
states of condensation scattered by pump 1 (2) in superradiant phase.
The dotted line is the boundary of the first Brillouin zone for the
two-dimensional rectangular lattice of the combined pump fields.
Calculated density modulations for equal pump lattice depths are
shown (c) without and (d) with the intracavity field, respectively,
for red atomic detuning �a < 0. In the case of �a > 0, there is
no superradiant phase under equal pump depths within red atomic
detuning �c < 0, but the density pattern is the same as in (c) in the
absence of the intracavity field.

where �̂† (�̂) is the creation (annihilation) operator for
bosonic atoms with mass m and momentum p̂ = −ih̄∇ and
â† (â) is the photon creation (annihilation) operator for the
cavity mode. Here we consider pump beams that have the
same frequency ωp, which is far detuned by �a = ωp − ωa

from the atomic resonance at frequency ωa. The cavity fre-
quency ωc is closely detuned by �c = ωp − ωc from the
pump frequency, and we stay within only �c < 0 throughout
this work. Here � j ( j = 1, 2) are the Rabi frequencies for
pump beams and g is single-photon Rabi frequency of the
cavity mode. The wave vectors of the pump beams and cavity
light are given by k j = k0 cos(60◦)x̂ + (−1) j+1k0 sin(60◦)ŷ
and kc = k0x̂, respectively, as shown in Fig. 1(a). Here k0

is the wave-vector magnitude of the pumping lasers and the
cavity mode. We choose recoil energy ER = h̄2k2

0/2m as the
energy unit and set h̄ = 1 for simplicity. The relative spatial
phase between the pumps and cavity field is denoted by φ,
which can be adjusted experimentally [31,42], and is assumed
to be in phase at the origin, namely, φ = 0.

At the zero-temperature limit, all atoms occupy the lowest-
energy Bloch state |� (1)(0)〉 in the absence of intracavity
photons, where |� ( j)(k)〉 denotes the jth band eigenstates of
the single-particle Hamiltonian

Ĥ0 = p̂2

2m
+ sgn(�a)[V1 cos2(k1 · r) + V2 cos2(k2 · r)

+ 2
√

V1V2 cos(k1 · r) cos(k2 · r)]. (2)

Here we define pump lattice depths Vi = �2
i /|�a| (i = 1, 2)

and sgn(�a) gives the sign of atomic detuning �a. Indeed,
sgn(�a) determines whether the effective pump potential is
attractive (negative) or repulsive (positive).

Intracavity photons are scattered by atoms from the trans-
verse pump lasers into the cavity mode and vice versa.
It is sufficient to consider the two-photon scattering pro-
cesses through the phase transition. Equivalently, starting
from the lowest-energy Bloch state |� (1)(0)〉 of the BEC, only
|� ( j)(k1)〉 can be reached by applying the scattering operator

	̂ =
∑
i=1,2

√
Vi cos(ki · r) cos(kc · r). (3)

Hence the atomic field operator can be expanded as

�̂(r) ≈ 〈r|� (1)(0)〉b̂0 +
∑

j

〈r|� ( j)(k1)〉b̂ j, (4)

where b̂0 and b̂ j are bosonic annihilation operators for states
|� (1)(0)〉 and |� ( j)(k1)〉, respectively. The sums are over all
band indices j = 1, 2, . . . , while the particle number conser-
vation b̂†

0b̂0 + ∑
j b̂†

j b̂ j = N should be satisfied, with N the
total atom number. Substituting Eq. (4) into Eq. (1) yields the
effective Hamiltonian

Ĥeff = −�̃câ†â +
∑

j

(Ej − E0)b̂†
j b̂ j

+ (â† + â)
∑

j

(ν j b̂
†
j b̂0 + H.c.), (5)

where the effective cavity detuning is defined as �̃c = �c −
sgn(�a)U0N〈� (1)(0)| cos2(kc · r)|� (1)(0)〉, and here we set
U0 = g2/|�a|. The scattering matrix elements are given by
ν j = sgn(�a)

√
U0θ j , with θ j = 〈� ( j)(k1)|	̂|� (1)(0)〉. In ad-

dition, E0 and Ej are eigenvalues of Ĥ0 corresponding to
|� (1)(0)〉 and |� ( j)(k1)〉, respectively.

We proceed with mean-field description by taking the av-
erage values 〈â〉 = α, 〈b̂0〉 = ψ0, and 〈b̂ j〉 = ψ j . The atomic
fields are governed by the Heisenberg equation i∂t b̂ j =
[b̂ j, Ĥeff ]. We seek a steady state in which ∂tψ j = 0, gaining
ψ j = (α∗ + α)ν jψ0/(E0 − Ej ). Together with the normaliza-
tion condition |ψ0|2 = N − ∑

j |ψ j |2, we retain the ground-
state energy up to the fourth order in the amplitude of α,

Eα ≈ −�̃cα
∗α − NU0χ (α∗ + α)2 + NU 2

0 χη(α∗ + α)4. (6)

Here we define the susceptibility χ = ∑
j |θ j |2/(Ej − E0) and

η = ∑
j |θ j |2/(Ej − E0)2. Note that χ and η are functions

of V1 and V2 and they also depend on sgn(�a). Meanwhile,
the Heisenberg equation of the photon operator is given by
i∂t â = [â, Ĥeff ] − iκ â. The steady condition ∂tα = 0 leads
to α = sgn(�a)

√
U0	/(�̃c + iκ ), where an order parame-

ter 	 = ∫
dr〈�̂†	̂�̂〉 is introduced, so the energy can be
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FIG. 2. Dimensionless susceptibility χ as a function of V1/ER

and V2/ER for (a) �a < 0 and (b) �a > 0. The brightness of the
region is proportional to the magnitude of χ : A brighter region
represents a larger χ .

transformed into

E	 ≈ − �̃cU0

�̃2
c + κ2

(
1 + 4�̃cNU0χ

�̃2
c + κ2

)
	2 + 16�̃4

cNU 4
0 χη(

�̃2
c + κ2

)4 	4.

(7)

The coefficient of the fourth-order term being positive guaran-
tees the stability of the system. We minimize the ground-state
energy (7) with respect to the order parameter 	, yielding the
established superradiant phase condition

−4�̃cNU0

�̃2
c + κ2

χ > 1. (8)

Note that we deal with only �̃c < 0 here. In the normal phase,
we have 	 = 0 as expected, while in superradiance the system
has one of the two solutions

	 = ±Nηχ (�̃2 + κ2)
√

�̃2 + κ2 + 4NU0�̃cχ

4
√

2(NU0�̃cηχ )3/2
. (9)

In fact, the effective Hamiltonian (5) possesses a Z2 symme-
try, as it is invariant under the simultaneous transformation
of â → −â and b̂ j → −b̂ j . The system spontaneously breaks
this Z2 symmetry during the transition from the normal super-
fluid to superradiance [42].

III. RESULTS AND DISCUSSION

The key part of the phase condition (8) is the susceptibility
χ of the normal phase, which characterizes the tendency of
inducing superradiance. A larger χ indicates a greater critical
magnitude of effective cavity detuning |�̃c|. Since we take
the interference between two pumping lasers into account,
the relation of χ to V1 and V2 cannot be separated indepen-
dently, i.e., χ (V1,V2) 	= χ1(V1)χ2(V2), so it is infeasible to
directly apply outcomes derived from the single-pump case
for simplicity. We present numerical results for χ at zero
temperature in Fig. 2 for different signs of atomic detuning
�a. In both cases, the susceptibility shows non-negativity
χ � 0. As expected, it is symmetric about V1 = V2, which
renders it equivalent to fixing one of the pump depths while
varying the other. However, in the case of �a < 0, χ grows as

FIG. 3. Two lowest bands of the rectangular pump lattice for
equal pump depths V1 = V2, with (a) �a < 0 and (b) �a > 0. Dotted,
dashed, and solid lines are numerical results of pump lattice depths
0.5ER, ER, and 2ER, respectively. Bands are calculated along points
�, X , S, and Y marked in Fig. 1(b).

V1 increases at given V2, while for �a > 0 this monotonicity
disappears as V2 rises, and χ decreases to a local minimum
towards V1 = V2. Furthermore, the growth rate of χ connected
with �a < 0 is much larger than that with �a > 0. Within the
range of V1,V2 ∈ [0, 5ER], the maximum χmax is over 4000
in Fig. 2(a), in comparison to χmax ∼ 0.34 in Fig. 2(b). This
can be understood from the fact that the pump depths flatten
the energy bands, as indicated in Fig. 3. Here we plot only
the two lowest bands, which contribute the major parts of χ .
Without loss of generality, pump depths are set to be equal
so that pump potentials form a rectangular lattice, as shown
in Fig. 1(c). It is clear that increasing the pump depths has
a much more powerful effect on flattening energy bands and
widening band gaps with negativity than positivity of �a.
Especially the first band width E1 − E0, which determines the
denominator of the leading term in χ , becomes dominant at
higher pump depths.

With susceptibility χ in hand, we are now in a position
to construct phase diagrams. The pump lattice depths V1 and
V2 can be tuned by varying the pump laser power, while the
cavity detuning �c can be controlled via cavity frequency ωc.
For experimental consideration, we construct phase diagrams
in terms of experimentally tunable parameters V1, V2, and �c.

A. Phase diagrams spanned by V1 and �c

Solving the phase boundary condition of Eq. (8) with re-
spect to �c yields the critical cavity detuning

�±
NU0

= sgn(�a)θc − 2χ ±
√

4χ2 −
(

κ

NU0

)2

, (10)
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FIG. 4. Phase diagrams spanned by one of the pump lattice
depths V1/ER and cavity detuning �c/(2π MHz) for (a) �a < 0
and (b) �a > 0. Another pump depth is fixed at a small value
V2/ER < 1. Experimental settings in Ref. [40] are used, with the atom
number N = 2.7 × 105, decay rate κ = 2π × 147 kHz, atom-cavity
coupling g = 2π × 1.95 MHz, and magnitude of atomic detuning
|�a| = 2π × 76.6 GHz.

where we additionally define the scattering matrix element
θc = 〈� (1)(0)| cos2(kc · r)|� (1)(0)〉 for convenience. It turns
out that θc cannot be neglected when �a > 0, as θc is compa-
rable to χ .

Here we consider only the situation that �c < 0. The rea-
son is that, for �c > 0, the term −�câ†â in Eq. (1) indicates
that the system can lower its energy in the rotating frame
with more photons and then gives rise to a transition from
the metastable regime to the unstable regime [40]. In this
situation, we have to care about large α and therefore the
perturbation method breaks down. Instead, within �c < 0,
we only need to deal with small α and the above results
always hold. Hence, only negative solutions of Eq. (10) are
taken into account. We map out the phase diagrams on V1

and �c at small V2 in Fig. 4. Here we choose the parameters
from Ref. [40] for verification, where the atom number N =
2.7 × 105, the decay rate κ = 2π × 147 kHz, the atom-cavity
coupling g = 2π × 1.95 MHz, and the magnitude of atomic
detuning |�a| = 2π × 76.6 GHz.

For �a < 0, both �± are negative due to χ > 0 and θc > 0.
At the limit V2 → 0, the phase boundary in Fig. 4(a) captures
the characteristics of the well-known superradiant transition in
the single-pump system: The cavity photons emerge and then
vanish as the cavity detuning increases from below [12]. In
addition, there is a threshold of V1, here V1 ∼ 0.03ER, below
which the superradiance will not happen. The threshold can be
obtained by requiring χ = κ/2NU0. However, this threshold
will no longer exist while another pump depth V2 rises, as
exhibited by the boundaries of 0.05ER and 0.1ER in Fig. 4(a).
In other words, if a system is in the superradiant phase with
one pump laser, adding another pump will not drive it out.
Further, increasing V2 also makes the lower bounds of phase
boundaries steeper and steeper, which indicates it is easier for
the system to enter the superradiant phase.

However, situations are different in the case of �a > 0,
where θc ∼ 0.5 is comparable to χ . That leaves only �−
being partially negative as a function of V1 at the current
parameter settings. At the limit V2 → 0, the phase boundary
in Fig. 4(a) is in agreement with the numerical mean-field
results in Ref. [40]. For a fixed cavity detuning �c, such
as −2π × 4 MHz, the system starting in the normal phase

FIG. 5. Phase diagrams spanned by one of the pump lattice
depths V1/ER and cavity detuning �c/(2π MHz) for (a) �a < 0
and (b) �a > 0. Another pump depth is fixed at a comparable
value V2/ER > 1. The other parameters are set to be the same as
in Fig. 4. The acronym NP stands for the normal phase and SR for
superradiance.

undergoes a transition to the superradiant phase and returns
to the normal phase as the pump lattice is ramped up. This
uniqueness of the phase boundary is a result of the competi-
tion between the band gap and mode softening. Meanwhile,
there is a local minimum of critical �c for different V2 and it
gets lower as V2 increases.

In the regime of a deeper pump lattice V2/ER > 1, the slope
of the critical cavity detuning �−, as a function of V1, gets
even steeper than in V2/ER < 1 for negative �a, as shown in
Fig. 5(a). This indicates an increasing tendency of a transition
towards superradiance as the pump depth goes deeper, pro-
vided the pump lattice potentials are both attractive.

For positive �a, another superradiant region shows up at
higher pump depths V2/ER > 1. In this regime, the system
enters the superradiant phase, returns to the normal phase,
and then reenters the superradiant phase as the pump depth
V1 is ramped up, as illustrated in Fig. 5(b). In contrast to
the case in �a < 0, if a system is in the superradiant phase
with a single-pump laser, adding another pump will suppress
superradiance within a certain range.

B. Phase diagrams spanned by V1 and V2

In the phase boundary condition of Eq. (8), not only χ , but
also θc in �̃c has a dependence on V1 and V2. It is useful to
introduce the functions f± for sgn(�a) = ±1, where

f± = χ + (�c/NU0 ∓ θc)2 + (κ/NU0)2

4(�c/NU0 ∓ θc)
. (11)

Note that f± are dimensionless functions of V1/ER and V2/ER

if �c/NU0 and κ/NU0 are given. Here �̃c < 0 and �c <

0 restrict �c/NU0 < 0 for �a > 0 and �c/NU0 < −θc for
�a < 0. Here f± > 0 are the criteria for superradiance and
f± < 0 for the normal phase. In Fig. 6 we plot the phase
diagrams for different cavity detunings �c/NU0 at the decay
rate κ/NU0 = 0.1.

Within V1,V2 � 5ER, the area of the normal phase shrinks
as �c approaches 0 for both positive and negative �a, in
accordance with the above results. Now, if we keep the two
pump depths equal V1 = V2 and increase them simultaneously,
the system undergoes a transition from the normal phase to
superradiance in the case of positive �a, while for nega-
tive �a the system remains in the normal phase. Notice that
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FIG. 6. Phase diagrams in terms of two pump lattice depths
V1/ER and V2/ER with cavity detuning �c/NU0 fixed for (a) �a < 0
and (b) �a > 0. Here we set κ/NU0 = 0.1.

there exists a diagonal region around V1 = V2 for the normal
phase when �a > 0, even if �c approaches zero, as shown
in Fig. 6(b). Actually, one can derive that f+ < χ − θc/4
is true for arbitrary V1,V2 > 0 in this case. Numerical re-
sults show that χ − θc/4 ∼ −0.1, and thereby f+ < 0, as two
equal pump depths V1 = V2 = V change within 10ER. In other
words, if two pump depths are equal, the system will remain in
the normal phase as the pump depth increases within a wide
range (at least from 0 to 10ER), no matter how we choose
κ and �c. The same arguments apply to the neighborhoods
of V1 = V2. From another point of view, if a system is in the
superradiant phase with a single pump of depth V1, adding
another pump of V2 will suppress superradiance for V2 � V1.

IV. CONCLUSION

We compared susceptibilities of a BEC inside two crossed
pump fields for the red atomic detuning (�a < 0) and the blue

atomic detuning (�a > 0). We mapped out phase boundaries
separating the normal superfluid and the superradiance for the
red cavity detuning (�c < 0). Phase diagrams were examined
at the single-pump limit and they were also compared in
the double-pump regime. We found that if a system is in
the superradiant phase with one pump laser, adding another
pump will keep the system in the superradiant phase when
the atomic detuning is red (�a < 0), while for blue detuning
(�a > 0), increasing another pump potential has a suppressive
effect on the superradiance. Finally, we showed that equally
increasing two pump potentials can also induce a transition
from the normal phase to superradiance for red atomic de-
tuning (�a < 0), while in the case of blue detuning (�a > 0)
the system will remain in the normal phase as pump depths
increase within a wide range, which is independent of the cav-
ity detuning and decay rate. In this study, we focused on the
case where the relative spatial phase φ between the pumps and
the cavity field are zero. For nonzero φ, even the unperturbed
Hamiltonian Ĥ0 remains the same; the scattering operator
	̂ now depends on φ, which renders the susceptibility χ

dependent on φ as well. This can affect the density pattern
in superradiance and the phase boundaries. How the phase
boundaries and associated physical quantities vary with φ de-
serves further study. We believe that experimental verification
of our predictions will contribute to a better understanding
of superradiant transitions with ultracold gases in optical
cavities.
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