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Determination of dynamical quantum phase transitions for boson systems
using the Loschmidt cumulants method
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We study the dynamical quantum phase transition (DQPT) of the Bose-Hubbard model utilizing the recently
developed Loschmidt cumulants method. We determine the complex Loschmidt zeros of the Loschmidt am-
plitude analogous to the Lee-Yang zeros of the thermal partition function. We obtain the DQPT critical points
through identifying the crossing points with the imaginary axis. The critical points show high accuracy when
compared to those obtained using the matrix product states method. In addition, we show how the critical points
of DQPT can be determined by analyzing the energy fluctuation of the initial state, which makes it a valuable
tool for future studies in this area. Finally, DQPT in the extended Bose-Hubbard model is also investigated.
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I. INTRODUCTION

Nonequlibrium dynamics has drawn much attention in re-
cent years [1–8]. One major achievement is the investigation
of dynamical quantum phase transitions (DQPTs). DQPTs
concern the critical behavior of many-body systems that are
driven out of equilibrium via sudden quenches. In fact, There
are two types of DQPTs. The first one concerns the nonan-
alytical change of order parameter along the nonequilibrium
evolution [8,9]. For instance, in the reference [8], it was ob-
served that the evolution dynamics of the spin order parameter
undergoes a significant change when the perturbation exceeds
a certain threshold value. In this study, we specifically con-
centrate on the second type of DQPT that has been proposed
in recent years [10,11]. This type of DQPT are inspired by the
similarity between the Loschmidt amplitude

G(t ) = 〈ψ0|e−iĤt |ψ0〉, (1)

where |ψ0〉 is the ground state of the prequench Hamiltonian
and the canonical partition function

Z (β ) = Tre−βĤ , (2)

where β is the inverse temperature. When a DQPT occurs, the
Loschmidt rate function

λ(t ) = − 1

L
ln |G(t )|2 (3)

develops nonanalytic behavior, where L is the length of the
system.
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It is expected to capture unique features of nonequilibrium
dynamics [12–18]. Due to the absence of a direct connection
to local order parameters, experimental verification of this
particular type of DQPT remains challenging [19,20], partic-
ularly for systems with interaction.

The Bose-Hubbard model is a well-known model for in-
vestigating the many-body phases, with numerous studies
conducted on both equilibrium and nonequilibrium phases.
For nonequilibrium dynamics, the Kibble-Zurek mechanism
[21–23] and DQPTs [24] have been studied for the Bose-
Hubbard model. A DQPT occurs in the Bose-Hubbard model
when the system is quenched from the Mott-insulator phase
to the superfluid phase, as shown in Fig. 1(a). DQPT also
happens in the extended Bose-Hubbard model for an inter-
action quench through the Mott insulator-Haldane insulator
transition and the Haldane insulator-density wave transition
[25].

DQPTs have been investigated by exactly solvable models
[10,26,27]. Nonetheless, the dynamics of interacting quantum
many-body systems remains a formidable challenge. Tradi-
tionally, real time evolution of the Loschmidt rate function
is needed for determining the critical points. Usually large
system size is required to precisely locate the critical times.
Recently, a new method [28,29] has been proposed to deter-
mine the dynamical critical points. This method determines
zeros of the dynamical Loschmidt amplitude analogous to
the Lee-Yang zeros [30–32] of the thermal phase transition.
The critical points are determined from the crossing points of
the thermodynamics lines of zeros with the imaginary axis,
as shown in Fig. 1(b). Remarkably, this method works well
for spin chain with length about 10 to 20. So it is desirable
for implementation of this method for boson systems. More-
over, this method offers a viable approach to determine the
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FIG. 1. Dynamical quantum phase transition. (a) A sudden
quench of the hopping parameter causes a dynamical quantum phase
transition in a Bose-Hubbard chain. (b) The rate function’s singu-
larities are connected to the points where the Loschmidt amplitude
becomes zero within the complex-time plane. These zero points
coalesce to form continuous lines in the thermodynamic limit. Iden-
tifying the critical times involves locating the intersections between
these lines and the imaginary axis.

dynamical critical points by analyzing the energy fluctuations
of the initial state. Implementation of this method may also
provide experimental inspirations of DQPT to boson systems.

Here we focus on DQPTs in the Bose-Hubbard model
following a quench. In Sec. II, we introduce the basic ideas for
determining the critical points using Loschmidt cumulants, as
illustrated in Ref. [28]. In Sec. III, we investigate dynamical
phase transitions in the Bose-Hubbard model and accurately
determine the critical points. In Sec. IV, we consider the
nearest-neighbor interaction, and investigate quenches across
topologically distinct phases. In Sec. V, we show that how the
critical points of DQPT can be determined by analyzing the
energy fluctuation of the initial state. In Sec. VI, we present
our conclusions and offer an outlook on potential directions
for future advancements.

II. DYNAMICAL PHASE TRANSITION
AND LOSCHMIDT CUMULANTS

Here, we consider the Loschmidt amplitude on the com-
plex time plane

Z (τ ) = 〈ψ0|e−τ Ĥ |ψ0〉. (4)

For a finite system, the Loschmidt amplitude is an entire
function. According to the factorization theorem [33], the
Loschmidt amplitude can be witten as

Z (τ ) = eατ

∞∏
k=0

(
1 − τ

τk

)
, (5)

where α is a constant, and τk are complex zeros of the
Loschmidt amplitude. In the thermodynamics limit, the com-
plex zeros form lines or areas. When such a line intersects or
a boundary of a region touches the imaginary axis, a DQPT
takes place.

The approach which is used to determine the dynamical
critical points involves obtaining the line of zeros in the ther-
modynamic limit. As illustrated in Ref. [28], the Loschmidt
cumulants and the Loschmidt moments are used to calculate
the Loschmidt zeros. They are defined as

〈〈Ĥn〉〉τ = (−1)n∂n
τ ln Z (τ ), (6)

〈Ĥn〉 = (−1)n ∂n
τ Z (τ )

Z (τ )
= 〈ψ0|Ĥne−Ĥτ |ψ0〉

〈ψ0|e−Ĥτ |ψ0〉
. (7)

The Loschmidt cumulants can be obtained by calculating
the Loschmidt moments. At τ = 0, the Loschmidt moments
reduce to the ordinary moments (7) of the postquench Hamil-
tonian with respect to the initial state as 〈Ĥn〉 = 〈�0|Ĥn|�0〉.

On the other hand, the Loschmidt cumulants are related to
the Loschmidt zeros through

〈〈Ĥn〉〉τ = (−1)n−1(n − 1)!
∞∑

k=0

1

(τk − τ )n
. (8)

The Loschmidt cumulants are primarily influenced by the
zeros that are closest to the base point τ . The contribution of
each zero to the cumulants decreases rapidly with its inverse
distance to the power of the cumulant order n. Thus, by com-
puting 2m high-order Loschmidt cumulants, it is possible to
invert Eq. (8) and then obtain the m closest zeros to the base
point. Additional elaboration can be found in Appendix A of
Ref. [28].

III. THE BOSE-HUBBARD MODEL

In this study, we explore DQPTs in the one-dimensional
Bose-Hubbard model, characterized by the Hamiltonian:

Ĥ = −J
L∑

i=1

(a†
i ai+1 + a†

i+1ai ) + U

2

L∑
i=1

ni(ni − 1) (9)

Here a†
i is the creation operator for a boson on site i, ai

is the annihilation operator for a boson on site i, ni = a†
i ai

is the occupation operator for a boson on site i, J denotes
the hopping amplitude between nearest neighbors, U denotes
the onsite interaction strength. L is the length of the Bose-
Hubbard chain. To minimize boundary effects, we impose the
periodic boundary condition, i.e., aL+1 = a1, a†

L+1 = a†
1.

The properties of the Hamiltonian are determined by the
dimensionless ratio s = J/U , and a phase transition occurs at
the critical value of sc = 0.297 for unit filling, which sepa-
rates the system into a Mott-insulator phase for s < sc and a
superfluid phase for s > sc.

We are now prepared to study DQPTs in the Bose-Hubbard
chain. We initialize the system in the superfluid ground state
with a parameter value of s0 = 0.36. Probability of the atom
occupation number for noccu > 3 is less than 0.03% for the ini-
tial state. The local Hilbert space is truncated to atom number
occupation noccu = 3 for balance of efficiency and accuracy.
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FIG. 2. Determination of critical points for the Bose-Hubbard model. Complex zeros for different system sizes (L = 4–10) are shown.
We quench the system from the superfluid phase with initial parameter s0 = J/U = 0.36 to the Mott phase. In (a), horizontal lines with
Imτ U/h̄ = π, 3π, 5π are shown. The critical time tc is determined as the point where the imaginary axis intersects the line connecting the
zero τ− with the smallest negative real part (in absolute value) and the zero τ+ with the smallest positive real part. The critical time obtained
using MPS method (red cross) with length of 120 sites are drawn for comparison. (b)–(e) Same as in (a) but for different parameter values:
s = 0.05 in (b), s = 0.1 in (c), s = 0.13 in (d), and s = 0.22 in (e).

In our calculations, we limit the summation in Eq. (8) to
the range k = 0 to k = 6. Thus, we can extract the seven
zeros closest to the movable basepoint using Loschmidt cu-
mulants of order n = 9 to n = 22. In our time evolution of the
wavefunction, we select the Krylov subspace dimension to be
Nvec = 8 and the time step for evolution to be δτ = 0.01.

We perform a quench into the Mott-insulator phase with
s < 0.297 for later times. The same quench parameters have
been explored in Ref. [24] using matrix product states (MPS)
method. Here we employ the MPS method for benchmark.

Figure 2 shows the complex zeros of the Loschmidt am-
plitude. For the J = 0 case, the system undergoes periodic
evolution with period T = 2π h̄

U . The first critical time is
t1 = π

U . As expected, the zeros forms a line around t =
π h̄
U , 3π h̄

U , 5π h̄
U on the imaginary axis and the system expe-

riences periodic dynamics. As the tunneling amplitude is
incrementally increased, it can be observed in Figs. 2(b)–2(d)
that the Loschmidt zeros gradually shift the critical crossing
point with the imaginary axis towards later times. Finally
the thermodynamic lines of zeros no longer cross the imag-
inary axis and all zeros locate on the negative part of the
complex plane as in Fig. 2(e). We provide an explanation in
Appendix A.

The critical times obtained from the crossings of the ther-
modynamic lines of zeros with the imaginary axis are in
excellent agreement with the critical times obtained using the
MPS method. To quantify the accuracy of the Loschmidt cu-
mulants method, we determine the critical points and compare
them with those obtained using MPS method. We find that for
all typical cases in Fig. 2 the discrepancy is lower than 2%. It
is worth noting that these results are obtained for rather short
length from L = 4 to L = 10. The use of such system sizes
makes the approach very attractive for strongly interacting
systems.

IV. THE EXTENDED BOSE-HUBBARD MODEL

We will now explore DQPTs in the extended Bose-
Hubbard model, which includes nearest-neighbor interactions
and exhibits rich phase diagrams such as the Haldane insu-
lator and the charge density wave. The Hamiltonian for the

extended Bose-Hubbard model is given by

Ĥ = − J
L∑

i=1

(a†
i ai+1 + a†

i+1ai ) + U

2

L∑
i=1

ni(ni − 1) (10)

+ V
L∑

i=1

nini+1.

Here V denotes the nearest neighbor interaction strength. For
a ratio of interaction to hopping strength of U/J = 5, the
equilibrium phase transition point is p = V/J = 2.95 for the
Mott insulator-Haldane insulator transition and p = 3.53 for
the Haldane insulator-density wave transition [34]. We adopt
periodic boundary conditions in this study [35,36].

We quench from the Mott phase p0 = 1.0 to larger nearest
neighbor interaction [25]. The results are shown in Fig. 3.
From the thermodynamic line of the Loschmidt zeros, the
first critical point can be identified. Dynamical quantum phase
transition occurs at about p = 3.5. As we increase the ratio
p, dynamical phase transition happens at earlier times. For
typical cases in Figs. 2(c)–2(d), the discrepancy is lower than
6%. The discrepancy is larger near the equilibrium phase
transition points. This may be due to the finite-size effect
(see Appendix B). For further improvement, twisted bound-
ary conditions may be introduced [28]. Although our study
focuses on a narrow range of parameters, it is feasible to
investigate DQPTs for other parameter ranges in the extended
Bose-Hubbard model as well.

V. EXPERIMENTAL PERSPECTIVE
OF THE LOSCHMIDT ZEROS

Finally, we demonstrate the ability to predict DQPT solely
through measuring the energy fluctuations in the initial state.
At τ = 0, the Loschmidt moments transform into the regu-
lar moments (7) of the postquench Hamiltonian with respect
to the initial state, as indicated by: 〈Ĥn〉 = 〈�0|Ĥn|�0〉.
If we expand the wavefunction with respect to the post-
quench Hamiltonian |�0〉 = ∑

m am|�̃m〉, we get 〈Ĥn〉 =∑
m P(Em)En

m, where P(Em) = |am|2. Therefore, through a
series of successive preparations of the system in the state
|ψ0〉 and subsequent energy measurements concerning the
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FIG. 3. Determination of critical points for the extended Bose-Hubbard model. We quench the system from the Mott insulator phase
with initial parameter U/J = 5, p0 = V/J = 1.0. We quench the system to the final Hamiltonian of various p. (a)–(d) illustrate DQPTs
corresponding to various final parameters: p = 3.1 in (a), p = 3.7 in (b), p = 4.3 in (c), and p = 6.0 in (d).

postquench Hamiltonian, we can build the energy distribution
and derive the respective moments and cumulants. By follow-
ing same procedures presented in the method section, we can
obtain the Loschmidt zeros.

In Fig. 4, we present the procedure of determination the
critical points from 106 energy measurements. In this calcula-
tion, we limit the summation in Eq. (8) to the range k = 0 to
k = 11. Thus, we can extract the 12 zeros closest to the origin
using Loschmidt cumulants of order n = 4 to n = 27. This
predicts the critical time to be around t U/h̄ = 3.75 which is
the same as the critical time obtained using movable basepoint
as in Fig. 2(b). This demonstrates the ability to predict the first
DQPT critical time using initial energy fluctuations. The de-
termination of a dynamical Lee-Yang zeros was accomplished
in Ref. [37] through the measurement of high cumulants. It
should be noted that obtaining precise energy measurements
of a many-body quantum system is challenging. Thus, the
presented method offers an approach to establish a connection
between DQPTs in the Bose-Hubbard model and measurable
quantities i.e., energy fluctuations, at least in principle.

VI. CONCLUSION

In summary, we have investigated the Loschmidt zeros
associated with the dynamical quantum phase transitions in
the Bose-Hubbard model and the extended Bose-Hubbard
model. This analysis was conducted through the utilization
of the Loschmidt cumulants method. We have determined the
locations of zeros of the Loschmidt amplitude in the complex
plane of time. And by identifying the crossing point with the
imaginary axis we get the dynamical phase transition point to
an discrepancy lower than 2% for the Bose-Hubbard model.
For the extended Bose-Hubbard model, the first transition
point are determined. The discrepancy is lower than 6% for
final quench parameters that are distant from the equilibrium
critical points.

We use system size of 4 to 10. A modest system size
requirement can facilitate the investigation of DQPTs in
the Bose-Hubbard model of higher dimensions. Also, we
show an avenue for determining the dynamical phase transi-
tion by measuring the initial state energy fluctuation in the

FIG. 4. Determination of the critical time from the initial energy fluctuation. We quench the system from the superfluid phase s0 = 0.36
to the Mott insulator phase s = 0.05. (a) The energy distribution obtained from 106 energy measurements of the postquench Hamiltonian.
(b) Energy cumulants determined from the energy distribution. (c) Determination of the Loschmidt zeros using cumulants of orders n = 4 to
n = 27. The dashed lines are drawned to guide the eyes. The critical point can be identified as the intersection of the line with the imaginary
axis.
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FIG. 5. Energy distribution of the evolved state. (a) The energy distribution of the original state |ψ0〉 and the time evolved state e−τ Ĥ |ψ0〉
‖e−τ Ĥ |ψ0〉‖

at τ = −2. (b) Evolution of spectrum overlap S.

Bose-Hubbard model. This may pave way for experimental
observation of DQPTs in the Bose-Hubbard model.
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APPENDIX A: ENERGY DISTRIBUTION
OF THE EVOLVED STATE

Given the basic definition of DQPT: Z (τ ) = 〈ψ0|e−τ Ĥ |ψ0〉,
here we compare the energy distribution of |ψ0〉 and the

normalized wave function e−τ Ĥ |ψ0〉
‖e−τ Ĥ |ψ0〉‖ . In the case of Fig. 2(e),

|ψ0〉 is is the ground state of the prequench Hamiltonian.

For e−τ Ĥ |ψ0〉
‖e−τ Ĥ |ψ0〉‖ , if τ go to the left part of complex plane the

real time evolution would enlarge the high energy part of the

energy distribution. As a result, |ψ0〉 and e−τ Ĥ |ψ0〉
‖e−τ Ĥ |ψ0〉‖ will be

orthogonal. We calculate the case in Fig. 2(e) using lengths

of 8. As we see in Fig. 5(a), negligible overlap exists between
the energy distribution P(O)(E ) and P(E )(E ) when τ = −2. In
Fig. 5(b), we also show the evolution of the spectrum overlap

S = ∑
i

√
P(O)(Ei)

√
P(E )(Ei). As τ goes to the negative direc-

tion of the real axis, the overlap decreases continuously.

APPENDIX B: CORRELATION FUNCTION
AND THE FINITE-SIZE EFFECTS

Here we assess the finite-size effects by analyzing the cor-
relation function. For the case in Figs. 3(b)–3(d), the ground
state is the density wave phase. So we consider the den-
sity wave correlation function CDW (r) = (−1)r〈δn0δnr〉 [34],
where δnr = nr − n̄ denotes the number fluctuations from av-
erage filling. We compute the correlation function associated
with Figs. 3(b) and 3(c). The results are shown in Fig. 6.
Both the correlation functions approach constants in the long-
range limit. While in the short range, they behave differently.
The correlation function saturates to a constant quickly in
Fig. 6(b). While in Fig. 6(a) the correlation function saturates
to a constant around r = ±5 which is comparable to the length
scale we adopted. This may result in more pronounced finite-
size effects.

FIG. 6. Correlation functions in the DW phase. The red lines indicate r = ±5. (a) and (b) are the DW correlation with parameter p = 3.7
and p = 4.3.
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