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Out-of-equilibrium dynamics of Bose-Bose mixtures in optical lattices
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We examine the quench dynamics across quantum phase transitions from a Mott insulator (MI) to a superfluid
(SF) phase in a two-component bosonic mixture in an optical lattice. We show that two-component Bose mixtures
exhibit qualitatively different quantum dynamics than one-component Bose gas. In addition to second-order
MI-SF transitions, we investigate quench dynamics across a first-order MI-SF phase boundary. The Bose
mixtures show the critical slowing down of dynamics near the critical transition point, as proposed by the
Kibble-Zurek mechanism. For MI-SF transitions with homogeneous lattice-site distributions in the MI phase,
the dynamical critical exponents extracted by the power-law scaling of the proposed quantities obtained via
numerical simulations are in very close agreement with the mean-field predictions.
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I. INTRODUCTION

Ultracold atoms in quantum gas experiments provide an
ideal platform to explore exotic quantum phases with unprece-
dented control over many-body dynamics [1,2]. These atoms
confined within an optical lattice create a strongly correlated
quantum system [3,4] with tunable parameters like interpar-
ticle interactions, lattice geometry, particle statistics, lattice
depth, filling factors, and so on. The minimal model that
describes the ground-state properties of bosonic atoms in an
optical lattice is the Bose-Hubbard model (BHM) [3,5]. The
BHM is crucial for exploring the quantum phase transitions
[6] and the feasibility of quantum computing with cold atoms
in optical lattices [7].

Studying out-of-equilibrium dynamics in interacting quan-
tum systems and searching for an adiabatic state for quantum
computation is an active research area [8]. Various methods
can take a quantum system out of equilibrium, such as con-
necting it to an external bath, applying a driving field, or
modifying one of the parameters in the underlying Hamil-
tonian during a quantum quench. The Kibble-Zurek [9,10]
mechanism (KZM) offers a comprehensive theoretical frame-
work to understand the nonequilibrium dynamics of such
systems and predicts a universal power-law scaling of exci-
tations as a function of the quench rate, with an exponent
directly related to the equilibrium critical exponents [9–12].
Initially proposed to explain the evolution of the early uni-
verse [9], the KZM has been experimentally explored in
various classical and quantum phase transitions. Its appli-
cation has been demonstrated in numerous systems such as
cosmic microwave background [13], liquid helium [14], su-
perconductors [15], and liquid crystals [16]. More recently,
studies on the KZM have been extended to ultracold quantum
gases [17–19], where theoretical [20–25] as well as experi-
mental studies [18,26,27] till now have focused on the one
component Bose-Hubbard model.

In the present work, we theoretically examine the quench
dynamics of Mott insulator-superfluid (MI-SF) phase transi-
tions in the two-component Bose-Hubbard model (TBHM).
A two-component Bose mixture in an optical lattice is not
just an extension of a one-component Bose gas in a lat-
tice as the phases of multicomponent and spinor systems in
such scenarios are considerably more intricate [28]. In the
miscible domain with equal intraspecies interactions, both
components of the binary mixture occupy the same lattice
site in an even-integer Mott lobe and the superfluid phase,
yielding homogeneous atomic occupancy distributions of the
two components, whereas for the odd-integer Mott lobes,
the atomic occupancy distributions are inhomogeneous. Due
to stronger interspecies repulsion in the phase-separated do-
main, neither component can occupy the same lattice site in
any phase. The inhomogeneity of the phases in the TBHM
may lead to novel dynamics. Moreover, the MI-SF transition
in the one-component BHM is continuous. In contrast, the
TBHM exhibits a tricritical point, after which the MI-SF
transition changes to a first-order transition [29]. Although
the KZM predicts the breakdown of adiabaticity for contin-
uous transitions, both experimental [30,31] and theoretical
studies [23,24] also confirm the critical slowing down for
the first-order phase transitions. Motivated by these studies,
we explore the first- and second-order MI-SF transitions of
the TBHM in the present work and discuss the effects of
the inhomogeneity of phases and order of transitions on the
impulse regime and scaling exponents.

This paper is organized as follows. In Sec. II, we in-
troduce the TBHM and describe the mean-field approach
to determine the equilibrium phase diagram for three dif-
ferent values of the interspecies interactions corresponding
to the miscible-immiscible phase transition. The dynamical
Gutzwiller equations and the KZM are presented in Sec. III.
Section IV discusses the quantum quench dynamics across
MI(2)-SF and MI(1)-SF transitions of the TBHM, where
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the number in the parentheses represents the total average
atomic occupancy. Finally, we summarize our findings in
Sec. V.

II. TWO-COMPONENT BOSE-HUBBARD MODEL

We consider a Bose-Bose mixture of two spin states from
the same hyperfine-spin manifold in a two-dimensional (2D)
square optical lattice at zero temperature. The TBHM de-
scribes a mixture of two bosonic species with the following
model Hamiltonian [32]:

Ĥ = −
∑
p,q,σ

[(
Jσ

x b̂†σ
p+1,qb̂σ

p,q + H.c.
) + (

Jσ
y b̂†σ

p,q+1b̂σ
p,q

+ H.c.
) − Uσσ

2
n̂σ

p,q(n̂σ
p,q − 1) + μσ n̂σ

p,q

]

+
∑
p,q

U↑↓n̂↑
p,qn̂↓

p,q, (1)

where (p, q) is the index of lattice sites with p and q as the
indices along the x and y directions, respectively. The lattice
coordinates are x = pa and y = qa, where a is the lattice
spacing. Here σ = (↑,↓) is the spin-state index, Jσ

x (Jσ
y ) is the

nearest-neighbor hopping strength along the x (y) direction,
b̂†σ

p,q (b̂σ
p,q) is the creation (annihilation) operator, n̂σ

p,q is the
number operator at the site (p, q), Uσσ is the intraspecies in-
teraction strength, U↑↓ is the interspecies interaction strength
between the two components, and μσ is the chemical potential
of the σ spin component.

A. Static Gutzwiller mean-field theory

To examine the ground-state properties of the model
Hamiltonian [Eq. (1)], we use the single-site Gutzwiller
mean-field (SGMF) theory [33,34]. We decompose annihi-
lation (b̂σ

p,q) and creation (b̂†σ
p,q) operators into the mean-field

and fluctuation parts as b̂σ
p,q = φσ

p,q + δb̂σ
p,q and b̂†σ

p,q = φσ∗
p,q +

δb̂†σ
p,q, where φσ

p,q (φσ∗
p,q) is the superfluid order parameter.

The above approximation decouples the Hamiltonian [Eq. (1)]
in lattice sites, and the Hamiltonian can be written as the
sum of single-site Hamiltonians. The local Hamiltonian at the
(p, q)th site is

ĥp,q = −
∑

σ

[
Jσ

x

(
b̂†σ

p+1,qφ
σ
p,q + φ∗σ

p+1,qb̂σ
p,q

) + H.c.

+ Jσ
y

(
b̂†σ

p,q+1φ
σ
p,q + φ∗σ

p,q+1b̂σ
p,q

) + H.c.

− Uσσ

2
n̂σ

p,q

(
n̂σ

p,q − 1
) + μσ n̂σ

p,q

]
+ U↑↓n̂↑

p,qn̂↓
p,q. (2)

The total mean-field Hamiltonian of the system is Ĥ =∑
p,q ĥp,q. To obtain the ground state, we self-consistently di-

agonalize the Hamiltonian at each lattice site. The many-body
Gutzwiller wave function for the ground state is [35]

|�〉 =
∏
p,q

|ψ〉p,q =
∏
p,q

∑
n↑,n↓

c(p,q)
n↑,n↓ |n↑, n↓〉p,q. (3)

Here |n↑〉 and |n↓〉 are Fock states with nσ ∈ [0, Nb − 1],
where Nb is the dimension of the Fock space. The c-

numbers c(p,q)
n↑,n↓ are the complex coefficients that satisfy the

normalization condition
∑

n↑,n↓ |c(p,q)
n↑,n↓ |2 = 1. The superfluid

order parameters of the two components are

φ↑
p,q = p,q〈ψ |b̂↑

p,q|ψ〉p,q =
∑
n↑,n↓

√
n↑c(p,q)∗

n↑−1,n↓c(p,q)
n↑,n↓ , (4a)

φ↓
p,q = p,q〈ψ |b̂↓

p,q|ψ〉p,q =
∑
n↑,n↓

√
n↓c(p,q)∗

n↑,n↓−1c(p,q)
n↑,n↓ . (4b)

The atomic occupancies of the components at a lattice site
(p, q) are the expectation of the number operators and are
given by

ρ↑
p,q = p,q〈ψ |n̂↑

p,q|ψ〉p,q =
∑
n↑,n↓

n↑
∣∣c(p,q)

n↑,n↓

∣∣2
, (5a)

ρ↓
p,q = p,q〈ψ |n̂↓

p,q|ψ〉p,q =
∑
n↑,n↓

n↓
∣∣c(p,q)

n↑,n↓

∣∣2
. (5b)

Since the local Hamiltonian ĥp,q depends on φσ
p,q and n̂σ

p,q,
therefore, in our numerical computations the initial state is
considered as a complex random distribution of the Gutzwiller
coefficients across the lattice. We then solve for the ground
state of each site by diagonalizing the corresponding single-
site Hamiltonian. The ground state of the following lattice site
is computed using the updated superfluid order parameters.
This process is repeated until all the sites of a square lattice
are covered. One such sweep is identified as an iteration, and
we repeat the process for the next iteration. The iterations are
repeated until the requisite convergence criteria are satisfied.
Our study used 50 initial random configurations to compute
the equilibrium phase diagrams. This is to ensure that the min-
imum energy state has been achieved. We consider a lattice
size of 8 × 8 and Nb = 6 and checked that by increasing the
system size or Nb the phase diagrams do not alter.

B. Equilibrium phase diagrams

In the present work, we consider equal hopping strengths
in both directions, i.e., Jσ

x = Jσ
y = J , and identical chemical

potentials μσ = μ and intraspecies interactions Uσσ = U . We
scale all energies with respect to U . Following the phase-
separation criterion of the two components, determined by the
strength of the interspecies interaction, we investigate the two
regimes: U↑↓ < 1 and U↑↓ > 1. We use the Gutzwiller mean-
field approach to obtain the phase diagrams of the TBHM. The
model exhibits two phases: MI and SF phases [36–39].

1. Interspecies interaction U↑↓ < 1

We first consider U↑↓ = 0.5 and 0.9 in the miscible regime
of the TBHM. In the MI phase, φσ

p,q is zero but nonzero in
the superfluid phase. We use this criterion to determine the
phase boundary between MI and SF phases in the J-μ plane;
Figs. 1(a) and 1(b) show the phase diagrams for U↑↓ = 0.5
and 0.9, respectively.

At U↑↓ = 0.5, the MI-SF quantum phase transitions for
both odd- and even-occupancy Mott lobes are second-order
transitions. However, at U↑↓ = 0.9, the MI-SF transitions are
not entirely second order. We find that the change in the
order-of-transition, near the tip of the MI(2) lobe, occurs at
U↑↓ = 0.65. For U↑↓ = 0.9, as shown in Fig. 1(b), the tri-
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FIG. 1. Phase diagrams of the TBHM in J-μ plane for (a) U↑↓ =
0.5 and (b) U↑↓ = 0.9. The number in parentheses is the to-
tal average atomic occupancy

∑
σ ρσ , where for the MI(1) phase,

the component average occupancies ρσ = ∑
p,q ρσ

p,q/Nlattice are 0 <

ρ↑ < 1, and ρ↓ = 1 − ρ↑, and for the even-integer MI(2) phase,
ρ↑ = ρ↓ = 1 [36]; here Nlattice is the number of lattice sites. In J = 0
limit, the size of the MI regions on the μ axis for odd and even total
fillings are U↑↓ and 1, respectively. The order of phase transition
across all boundaries in (a) and (b) is second order except for the
green curve in (b) across which the MI(2) to SF transition is of
the first order. For U↑↓ = 0.9, the |�| as a function of J are shown
for (c) MI(1)-SF transition at μ = 0.39 and (d) MI(2)-SF transition
at μ = 1.32. In the third and fourth panels (e)–(h), sample atomic
occupancy distributions (ρσ

p,q) on a 8 × 8 square lattice are shown.
(e) and (g) correspond to ρ↑

p,q and ρ↓
p,q, respectively, in the MI(1)

phase. The same for MI(2) phase are shown in (f) and (h).

critical points on the μ axis exist at 0.99 and 1.67 between
which the MI(2)-SF transition is of the first order [29,37,38].
To confirm the order of these transitions, we calculated the
amplitude of the superfluid order parameter as a function of J
for a fixed μ across the critical hopping strength. The contin-
uous variation of |�| = ∑

p,q,σ |φσ
p,q|/Nlattice with J represents

a second-order phase transition as illustrated in Fig. 1(c) for

FIG. 2. (a) The phase diagram of the TBHM in J-μ plane in
the immiscible regime. (b) The variation of |�| as a function of J
with μ = 0.415, corresponding to the MI(1)-SF phase transition and
(c) with μ = 1.45 corresponding to MI(2)-SF transition; these are
plotted for U↑↓ = 1.5. The sample ρ↑

p,q distributions in (d) MI(1), (e)
MI(2), and (f) SF phases for U↑↓ = 1.5. Similarly, corresponding ρ↓

p,q

distributions are in (g), (h), and (i).

an MI(1)-SF phase transition with μ = 0.39 and U↑↓ = 0.9.
However, a discontinuity in |�| across the MI(2)-SF phase
boundary in Fig. 1(d) for μ = 1.32 and U↑↓ = 0.9 is indica-
tive of the first-order phase transition. Using the perturbative
mean-field theory in the SF domain near the MI(2m)-SF phase
boundary, where the SF order parameter is small with m as
an integer, the single-site Ginzburg-Landau energy density
function can be defined as E (φ) = ∑

i=0,2,4,6 aiφ
i. Here, the

ith-order coefficient ai can be expressed in terms of J , μ, U ,
U↑↓, m, and φ = φσ (order parameter) [29,38]. The transition
across the MI(2m)-SF phase boundary changes from second
order to first order with a4 changing from positive to negative
with tricritical point(s) corresponding to a4 = 0. It is to be
noted that, in the single-component BHM, a4 is always posi-
tive [40,41]. In addition, the study of the excitation spectrum
across the MI(2)-SF phase boundary in the TBHM (using
the Gutzwiller approximation) has shown that the excitation
spectrum changes discontinuously across this first-order phase
boundary [37]. Across the second-order SF-MI(2) phase tran-
sition, with a decrease in J/U , the low-energy parts of two
gapped amplitude and two gapless sound modes merge at the
phase boundary, whereas across the first-order transition, no
gapped mode merges with the sound mode at the transition
[37]. The sample atomic occupancy distributions ρσ

p,q in MI(1)
and MI(2) phases confined in Nlattice = 8 × 8 square lattice are
shown in Figs. 1(e), 1(g) and Figs. 1(f), 1(h), respectively. The
atomic occupancy distributions in the SF phase are uniform
and identical for both components with real occupancy.

2. Interspecies interaction U↑↓ > 1

For U↑↓ > 1, phase separation in the mixture occurs. We
have shown the phase diagram for U↑↓ = 1.5 in Fig. 2(a),
which does not change with an increase in U↑↓. The continu-
ous nature of the amplitude of the average superfluid order
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parameter � as a function of J for μ = 0.415 and 1.45 in
Figs. 2(b) and 2(c), respectively, confirms the second-order
nature of the MI-SF phase transitions. In this regime, only
one of the components, chosen randomly, occupies the lattice
site; the occupancy of the other component remains zero at
that site. This applies to both the MI and SF phases. However,
for the latter, the occupancy of one of the components is a
real number and is zero for the other. The sample atomic
occupancy distributions for MI(1), MI(2), and SF phases are
presented in Figs. 2(d) and 2(g), Figs. 2(e) and 2(h), and
Figs. 2(f) and 2(i), respectively.

III. QUENCH DYNAMICS

A. Time-dependent Gutzwiller approach

To study the out-of-equilibrium dynamics, we quench the
hopping parameter in time, J −→ J (t ), whereas all other model
parameters remain fixed in time. The system will make the
transition from the MI phase to the SF phase as J is ramped up
in quench. The time-dependent Gutzwiller equation governs
the time evolution of the single-site Gutzwiller wave function

ih̄∂t |ψ〉p,q = ĥp,q|ψ〉p,q. (6)

This leads to a system of coupled linear partial differential
equations for the coefficients c(p,q)

n↑,n↓ (t ). To solve the coupled
equations, we employ the fourth-order Runge-Kutta method.
In this method, we first obtain the equilibrium solution and
the corresponding coefficients c(p,q)

n↑,n↓ , which define the initial
state at t = 0. Then, the system is dynamically evolved using
Eq. (6) to obtain c(p,q)

n↑,n↓ (t ). However, quantum fluctuations are
needed to initiate and drive the quantum phase transition. To
introduce the effects of quantum fluctuations, we add initial
noise to the equilibrium coefficients c(p,q)

n↑,n↓ of the state at the
start of the quench. We first generate univariate random phases
within the [0, 2π ] range and add them to the (phases of)
nonzero coefficients. Next, we add density fluctuations by
applying noise to the amplitudes of the coefficients. This is
achieved by generating univariate random numbers within the
[0, δ] range, where δ is set to be 10−4 in the present study.
We consider ten randomized initial states to ensure reliable
results using the previously described methods. Each initial
state evolves in time by performing the appropriate param-
eter quench. We further calculate the physical observables
of interest averaged over all these ten samples. Additionally,
the observable is averaged across the entire lattice for each
sample. To study the quench dynamics, we consider Nlattice =
64 × 64.

B. Kibble-Zurek mechanism

In the present work, we consider a linear quench protocol
given as

J (t ) = Ji + (Jc − Ji )

τQ
(t + τQ), t ∈ [−τQ, t], (7)

which involves a quench time τQ to determine the quench rate.
The critical value of J , denoted by Jc, is crossed at t = 0. It is
assumed that the quench is initiated at time t = −τQ, such
that J (−τQ) = Ji. The system’s relaxation time determines
the fate of the evolving state. The relaxation time is short

FIG. 3. The relaxation time (blue) and the inverse transition rate
t/τQ (red) as a function of the t . The relaxation time equals the
inverse transition rate at −t̂ and t̂ . The shaded region between −t̂
and t̂ is the impulse regime, where the system’s relaxation time is
larger than the timescale of the transition [42]. t is measured in units
of h̄/U .

when the quenched parameter is far from the critical point,
resulting in an adiabatic evolution. However, as the critical
point approaches, the divergence of relaxation time breaks the
adiabaticity, leading to a frozen state. The time interval during
which the state remains frozen is termed the impulse regime,
followed by adiabatic evolution again from t = t̂ (delayed
time or transition time). Various regimes and timescales of the
KZM are shown in Fig. 3. The nonadiabatic evolution of the
system during the quench inevitably leads to excitations and
defects in the evolved state.

In the Kibble-Zurek hypothesis, for a second-order phase
transition, the scaling relation between τQ and t̂ is [42]

t̂ ∝ τ
νz/(1+νz)
Q , (8)

where ν is the critical exponent of the equilibrium correlation
length ξ and z is the dynamical critical exponent associated
with the relaxation time τ . Additionally, the scaling relation
between the density of defects (Nd ) and τQ in two dimensions
is given by [42]

Nd (t̂ ) ∝ τ
−2ν/(1+νz)
Q . (9)

These relations predict the critical behavior of the system near
the phase transition and the formation of topological defects
during the nonadiabatic evolution of the system. In our case,
i.e., during the transition from MI to the SF phase, the global
U(1) symmetry spontaneously breaks and gives rise to the
vortices. The density of vortices in an optical lattice system
can be computed as [20–22,24]

Nσ
v =

∑
p,q

∣∣�σ
p,q

∣∣, (10)

with

�σ
p,q = 1

4

[
sin

(
θσ

p+1,q − θσ
p,q

) + sin
(
θσ

p+1,q+1 − θσ
p+1,q

)
− sin

(
θσ

p+1,q+1 − θσ
p,q+1

) − sin
(
θσ

p,q+1 − θσ
p,q

)]
. (11)

Here, θσ
p,q is the phase of the SF order parameter φσ

p,q.
The excess energy above the ground-state energy, termed as
residual energy, is another quantity analogous to the defect

013308-4



OUT-OF-EQUILIBRIUM DYNAMICS OF BOSE-BOSE … PHYSICAL REVIEW A 109, 013308 (2024)

FIG. 4. The time evolution of |�| for the MI(2)-SF transition
with U↑↓ = 0.5, μ = 1, and τQ = 100; quench is stopped at t = τQ.
|�| is nearly zero until adiabaticity is restored at t̂ . The stable |�|
is marked at t = 160. In the inset, we show the enlarged view of the
dynamical evolution at shorter times from t = 20 to t = 200. Unit of
time is h̄/U .

density [43–45]. This residual energy Eres(t̂ ) is given by
Eres(t̂ ) = Efin(t̂ ) − Egs(t̂ ), where Efin(t̂ ) = 〈�(t̂ )|Ĥ (t̂ )|�(t̂ )〉
denotes the energy of the system at time t̂ , while Egs =
〈�gs|Ĥ (t̂ )|�gs〉 is the ground-state energy for the Hamiltonian
at time t̂ . The scaling relation for residual energy is Eres(t̂ ) ∝
τ

−2ν/(1+νz)
Q [43–45]. The scaling relations are valid at t̂ , but

it is not easy to estimate t̂ from numerical simulations. Prior
works are based on determining t̂ based on � [20–23,25]. The
growth time of the superfluid order parameter depends on the
number of random fluctuations, as pointed out in Ref. [46].
We choose the protocol in Ref. [24] to determine t̂ . We calcu-
late the overlap O(t ) = |〈�(0)|�(t )〉|. Since the dynamics are
frozen in the impulse regime, O(t ) would be equal to unity
in this regime; as soon as it deviates from unity, it indicates
that the adiabatic regime has begun and that time instant is
t̂ . The observables �, Nσ

v , Eres, and O(t ) relevant to quench
dynamics are obtained by averaging over ten initial states
perturbed by different random noise distributions.

IV. RESULTS AND DISCUSSIONS

A. U↑↓ = 0.5

1. MI(2) to SF phase transition

Starting from Ji = 0.02 deep within the MI lobe, we
quench the hopping parameter to Jf = 0.064 within the SF
phase for μ = 1. We confirm the slowing down of transition
from the growth of the superfluid order parameter that starts
after the critical value Jc is passed at t = 0. We show one such
dynamics for τQ = 100 in Fig. 4. After t = t̂ = 31, |�| shows
a sudden increase followed by rapid oscillations; at a longer
time, the |�| stabilizes after small oscillatory transients. Due
to the random noise added to the initial Gutzwiller coeffi-
cients, there are many vortices at the beginning of the quench.
During the MI to SF phase transition, when the system enters
the SF phase, one expects a coherent phase throughout the
system. This is due to breaking of U(1) global gauge sym-
metry. However, the quench dynamics leads to the formation

FIG. 5. |φ↑
p,q| at (a) t = −100, (b) t = 31, (c) t = 160, and

(d) t = 2000 for MI(2)-SF phase transitions corresponding to the
time evolution in Fig. 4. Similarly, |φ↓

p,q| at the same instants are in
(e)–(h). Phases corresponding to |φ↑

p,q| in (a)–(d) are shown in (i)–(l),
and the same for |φ↓

p,q| in (e)–(h) are in (m)–(p).

of domains in the system, indicating local choices of broken
symmetry in the SF phase. This results in a domain structure
as predicted by the KZM. The phase singularities at the do-
main boundaries correspond to the vortices, as confirmed by
the phase variations. As the system enters the deep SF phase,
the size of domains increases through domain merging. This
results in decreased topological defects due to pair annihi-
lation, and the system attains phase coherence at long-time
evolution.

To illustrate the domain formation and merging in the
quench dynamics starting with a single randomized initial
state at t = −τQ = −100, we presented the snapshots of
|φσ

p,q(t )| and the respective phases at various times in Fig. 5.
At the beginning of the quench, the φσ

p,q have random lattice-
site distributions with peak values of |φσ

p,q| nearly zero (see
the first column of Fig. 5). At t = t̂ , |φσ

p,q| acquire relatively
large peak values accompanied by domain formation (cf. the
second column of Fig. 5). At t = 160, |φσ

p,q| acquire almost
uniform distributions while their respective phases still have
some phase singularities (see the third column of Fig. 5). After
a very long time of evolution at t = 2000, the system relaxes
into an almost uniform state where the component densities
and phases are both quasi-uniform, as in the last column of
Fig. 5.

To study the scaling laws, we consider a range of quench
times from τQ = 30 to τQ = 400. We determine t̂ correspond-
ing to each τQ following the overlap protocol. t̂ increases
with an increase in τQ as is evident in Fig. 6(a). However,
the residual energy Eres decreases with τQ [cf. Fig. 6(b)] as
J (t̂ ) approaches the critical tunneling strength Jc with an in-
creasing τQ, (see Table I). Both observables follow power-law
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FIG. 6. For MI(2)-SF transition with U↑↓ = 0.5: (a) t̂ as a func-
tion of τQ on a log-log scale with the critical exponent of 0.49 ± 0.01
and (b) Eres as a function of τQ on the log-log scale with −0.46 ±
0.02 as the critical exponent. (c) and (d) are, similarly, the t̂ and Eres

as functions of τQ on the log-log scale for MI(1)-SF transition with
U↑↓ = 0.5. Unit of time is h̄/U and Eres is in units of U .

scaling with the critical exponents ν = 0.45 and z = 2.13. It is
pertinent to note that the critical values obtained in our scaling
analysis are in good agreement with the values predicted by
the mean-field theory (ν = 0.5 and z = 2) [5].

2. MI(1) to SF phase transition

The key difference between MI(2) and MI(1) of the TBHM
is the density in-homogeneity, as shown in the equilibrium
lattice-site distributions [see Figs. 1(e) to 1(h)]. This results
in several differences in quench dynamics. One is that the
impulse-regime size increases compared to the MI(2)-SF tran-
sition for each τQ. This is supported by the fact that, for the
MI(2)-SF transition J (t̂ ) always lies between Jc to 2Jc − Ji,
but here it is not the case. Fixing μ at 0.25, we quench J from
Ji = 0.01 to a sufficiently high hopping strength Jf = 0.0604,
so that J (t̂ ) lies in between Ji and Jf . The critical value Jc

of the MI(1)-SF transition is 0.0268. For smaller τQ up to
about τQ = 150, J (t̂ ) is greater than 2Jc − Ji = 0.0436. Even
for the largest value of τQ = 400 considered in the present
study, J (t̂ ) is 0.041 as reported in Table II. Another difference
is that, due to the absence of particles of at least one species
at each lattice site, the vortex density does not give a fair idea
about the actual number of vortices. Due to the increase in
transition time compared to the MI(2)-SF case, the exponent
of transition time with τQ is higher, whereas the magnitude of
the exponent of residual energy is lower. However, transition

TABLE I. The J (t̂ ) for different τQ’s during quench dynamics
from MI(2) to SF phase with μ = 1 and U↑↓ = 0.5. The critical value
of hopping strength Jc = 0.042.

τQ 30 50 80 100 150 200 300 400
J (t̂ ) 0.055 0.052 0.050 0.049 0.048 0.047 0.046 0.045

TABLE II. The J (t̂ ) for different τQ’s during the quench dy-
namics from MI(1) to SF phase with μ = 0.25 and U↑↓ = 0.5. The
critical hopping strength is Jc = 0.0268.

τQ 30 50 80 100 150 200 300 400
J (t̂ ) 0.054 0.05 0.047 0.046 0.044 0.043 0.042 0.041

time and residual energy still follow power-law scaling with
τQ as shown in Figs. 6(c) and 6(d).

We have shown the evolution of the superfluid order pa-
rameter for τQ = 100 in Fig. 7; quench is stopped at t = 130
in this case. |�| is close to zero till t = t̂ = 116, after which
it increases rapidly, followed by oscillations persisting over
long periods during which it increases gradually. This starkly
contrasts with the MI(2)-SF transition, where the order pa-
rameter stabilizes much sooner. To see how differently the
state relaxes after the quench, we provide snapshots of the
amplitude and corresponding phases of φσ

p,q at various time
instants in Fig. 8. At the start of the quench at t = −100,
φσ

p,q are randomized (see the first column of Fig. 8). Later, at
t = t̂ = 116, a few superfluid domains have started to appear
(cf. the second column of Fig. 8). The number of superfluid
domains has increased and phases of the order parameters also
exhibit domain formation in the third column at t = 155; this
is when oscillations in |�| are triggered. Even after a long
period of evolution at t = 2000, the φσ

p,q do not achieve ho-
mogeneous distributions, unlike for the MI(2)-SF transition.

B. U↑↓ = 0.9

We further discuss quench dynamics at higher interspecies
interaction strength close to the immiscibility criterion but
still in the miscible domain. From Fig. 1, the phase transi-
tion for μ = 1.33 is a first-order MI(2)-SF transition. This,
as mentioned earlier, is in contrast to the MI(2)-SF and
MI(1)-SF transition for U↑↓ = 0.5. Although some traits of
second-order MI(2)-SF transition, discussed in Sec. IV A 1
like slowing down of the transition, oscillations of |�| about a

FIG. 7. |�| as a function of time t for MI(1)-SF transitions at
U↑↓ = 0.5, μ = 0.25, and τQ = 100. |�| remains nearly zero for
t < t̂ = 116. The hopping quench is performed until t = 130. The
exponential increase in |�| followed by oscillations are shown in the
inset with t varying from t = 0 to t = 200. Unit of time is h̄/U .
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FIG. 8. |φ↑
p,q| at (a) t = −100, (b) t = 116, (c) t = 155, and

(d) t = 2000 for MI(1)-SF phase transitions corresponding to the
time evolution in Fig. 7. Similarly, |φ↓

p,q| at the same instants are in
(e)–(h). Phases corresponding to |φ↑

p,q| in (a)–(d) are shown in (i)–(l),
and the same for |φ↓

p,q| in (e)–(h) are in (m)–(p).

fixed value, order parameter relaxing into an almost complete
uniform state after free evolution, and power-law scaling of
t̂ and Eres with τQ are present, there is a striking difference
in the exponents. The scaling for t̂ and Eres(t̂ ) with respect to
τQ with critical exponents of 0.36 ± 0.02 and −0.35 ± 0.02,
respectively, is shown in Fig. 9.

The quench dynamics and the exponents in the scaling laws
of the second-order MI(1)-SF transition for U↑↓ = 0.9 remain
almost similar to the MI(1)-SF transition for U↑↓ = 0.5 as
discussed in Sec. IV A 2 and are not shown here for brevity.

C. U↑↓ = 1.5

Finally, we discuss quench dynamics for the phase-
separated regime, where one of the two components occupies
the lattice site. Starting from μ = 1.45 and J = 0, correspond-

FIG. 9. For first-order MI(2)-SF phase transition at U↑↓ = 0.9
and μ = 1.33: (a) t̂ as a function of τQ with the critical exponent
of 0.36 ± 0.02 and (b) Eres as a function of τQ on log-log scale with
−0.35 ± 0.02 as the critical exponent. Unit of time is h̄/U and Eres

is in units of U .

FIG. 10. The evolution of |�| with t for MI(2)-SF transitions at
U↑↓ = 1.5, μ = 1.45, and τQ = 100. |�| is close to zero until t̂ = 67,
followed by a rapid increase period. The exponential increase in |�|
followed by oscillations are shown in the inset with t varying from
t = 0 to t = 150. Unit of time is h̄/U .

ing to the MI(2) lobe, we perform a quench that terminates at
J = 0.0516, lying well within the SF phase. The transition
is indicated by the growth of the superfluid order parameter
at t = t̂ and occurs after crossing the critical Jc = 0.0258,
as demonstrated in Fig. 10 for τQ = 100. The J quench is
terminated at t = τQ, but the system is freely evolved up to
t = 2000 with the tunneling strength fixed at J (τQ). Figure 11
provides snapshots of |φσ

p,q| and the corresponding phase of
φσ

p,q at different times. Domain formation begins at t = t̂ =
67, and at a later time t = 130, |φσ

p,q| have acquired many do-
mains with respective phases exhibiting domain merging (cf.

FIG. 11. |φ↑
p,q| at (a) t = −100, (b) t = 67, (c) t = 130, and

(d) t = 2000 for MI(2)-SF phase transitions corresponding to the
time evolution in Fig. 10. Similarly, |φ↓

p,q| at the same instants are in
(e)–(h). Phases corresponding to |φ↑

p,q| in (a)–(d) are shown in (i)–(l),
and the same for |φ↓

p,q| in (e)–(h) are in (m)–(p).
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FIG. 12. For MI(2)-SF phase transition at U↑↓ = 1.5: (a) t̂ as a
function of τQ with the critical exponent of 0.76 ± 0.01 and (b) Eres

as a function of τQ on log-log scale with −0.29 ± 0.01 as the critical
exponents. The critical exponents are similar to those displayed in
Figs. 6(c) and 6(d). Unit of time is h̄/U and Eres is in units of U .

the second and the third columns of Fig. 11). The component
order parameters at t = 2000 show no discernible difference
from those at t = 130 (see the last column of Fig. 11). The late
time evolution as seen in these figures, especially of phases, is
indicative of the phase ordering.

Similarly, the dynamics at the other two U↑↓ values dis-
cussed previously, t̂ and Eres, follow power-law scaling as
shown in Figs. 12(a) and 12(b) and with the critical ex-
ponents similar to those for the MI(1)-SF transition in the
miscible domain. This is evident from Figs. 6(c) and 6(d) and
Figs. 12(a) and 12(b). Since the system is in the immiscible
phase, both MI(1) and MI(2) have inhomogeneous atomic
occupancy distributions ρσ

p.q. This may be the reason that the
quench dynamics of MI(1)-SF for U↑↓ = 1.5 (not presented
here) is similar to that of the MI(2)-SF transition.

V. CONCLUSION

We studied the out-of-equilibrium dynamics of the two-
component Bose-Hubbard model when the tunneling strength
J is quenched across the MI-SF criticality. The equilibrium
phase diagram and related phase transitions depend on in-
terspecies interaction strength. We observed that the average
filling of the MI lobes and the order of the phase transi-
tions lead to different dynamics from what was observed in
a single-component BHM. The MI-SF phase transitions, in
the miscible regime, from the Mott lobes with an average

occupancy of 1 or 2 are second-order for U↑↓ less than a
critical strength above which the transitions at and around the
tip of the MI(2) lobe are first order. The critical exponents
of the second-order phase transition from homogeneous MI
to superfluid phase, calculated using scaling analysis, are in
good agreement with the mean-field predictions. Due to the
inhomogeneity of the atomic occupancy in MI(1), the impulse
regime is extended across the MI(1)-SF phase transition at
U↑↓ = 0.5. In the immiscible regime, the power-law scaling
of the exponents is maintained with exponents similar to those
for the MI(1)-SF phase transition in the miscible regime.
Although the KZM is unsuitable for the first-order quantum
phase transition, defining scaling relations is possible. How-
ever, the nature of the dynamical evolution is very different.
The use of beyond mean-field methods such as the projection-
operator method [47] is expected to yield qualitatively similar
quench dynamics of the order parameter, as discussed in the
present work. Furthermore, the cluster Guzwiller mean-field
approach, which enhances the intersite atomic correlations,
may advance the critical exponents towards the equilibrium
values [48]. We hope the phenomena discussed in the present
work can be realized in cold-atom experiments on strongly
correlated bosonic mixtures in optical lattices. The explo-
ration in this direction may unveil the role of coupling in
quantum mixtures and the applicability of the Kibble-Zurek
mechanism to two-component Bose-Hubbard models. The
presence of synthetic spin-orbit coupling in Bose-Bose mix-
tures leads to novel finite-momentum superfluids [34,49,50].
Thus, the investigations of the quench dynamics and criticality
of spin-orbit-coupled mixtures in optical lattices could be a
natural extension of the present work.
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