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Entanglement in an expanding toroidal Bose-Einstein condensate
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Recent experiments have employed rapidly expanding toroidal Bose-Einstein condensates (BECs) to mimic
the inflationary expansion in the early universe. One expected signature of the expansion in such experiments
is spontaneous particle creation (of phonons) which is observable in density-density correlations. We study
entanglement of these particles, which are known to result in a two-mode squeezed state. Using techniques
for Gaussian states of continuous variable systems, we quantify the entanglement generated in this system,
including effects such as decoherence and the use of an initially squeezed state, which can suppress and enhance
entanglement, respectively. We also describe a protocol to experimentally measure the correlations entering the
covariance matrix, allowing an experimental quantification of the entanglement properties of the inflationary
BEC.
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I. INTRODUCTION

In 1966, Parker made an important discovery [1,2]:
The expansion of the universe can create particles out
of the vacuum (see Ref. [3] for earlier intuition about
this phenomenon by Schrödinger). Parker considered
Friedman-Lemaître-Robertson-Walker (FLRW) spacetimes
that are asymptotically Minkowskian in the future and past,
and showed that (nonconformal invariant) quantum fields that
at early times are prepared in the vacuum state generically end
up in an excited state. The underlying translational invariance
of the gravitation field leads to momentum conservation for
the quantum field, which in turn implies that particles are
created in pairs, with wave numbers �k and −�k. Phrased in a
modern language, Parker showed that, for each pair (�k,−�k),
the initial vacuum evolves to a two-mode squeezed vacuum,
with squeezing intensity and squeezing angle determined
by the expansion history of the universe. This means, in
particular, that the two particles in each created pair are
entangled.

Parker’s ideas were formulated using the theory of lin-
earized quantum fields propagating on a fixed gravitational
background where the quantized fields are test fields which do
not disrupt or modify in any way the underling geometry. This
same formalism was later applied to black holes by Hawking
in the mid-1970s, leading to the Hawking effect [4,5], and also
to the paradigm of cosmic inflation in the early 1980s [6–12].
These two phenomena constitute important predictions of
quantum field theory in curved spacetimes. In particular,
the latter provides a possible explanation for the origin of the
density perturbations in the early universe, which seeded the
matter distribution we observe today. This would imply that
the structures in our universe have emerged from a process of
squeezing of the quantum vacuum. This raises the question of
how to test the quantum origin of this possibility. Concretely,
efforts to answer this have focused both on quantifying the
genuine quantum correlations of squeezing due to inflation

(i.e., measures of quantum entanglement generated) and how
to observe it [13–24].

Independently, Unruh in Ref. [25] proved that the physics
of quantum fields propagating on nontrivial geometries can
be simulated in the laboratory, laying the groundwork for
the field of analog gravity [26]. Analog models offer a test
bed to recreate Parker’s phenomenon of particle creation in
the laboratory in a controlled manner, and to confirm its
key predictions. In this paper, we focus attention on one of
the simplest analog systems leading to particle creation à
la Parker: a toroidal Bose-Einstein condensate (BEC) whose
radius is rapidly growing. This system has been realized
experimentally [27,28], and used to simulate an effectively
one-dimensional inflationary universe [29–31]. These exper-
iments observed the cosmological redshift and the damping
that the expansion induces on density perturbations in the
fluid. This is a promising platform to directly observe par-
ticle pair creation. Recent theory [30] has analyzed the
spectrum of particles created in this system under a finite
period of exponential expansion and computed the signatures
that these particles produce on density-density correlation
functions.

The focus of this paper is on entanglement. As mentioned
above, entanglement is the quantum hallmark of the process
of two-mode squeezing behind pair creation, and observing
it would assist in identifying and distinguishing the physi-
cal origin of the observed correlations. Indeed, pair creation
has a long history in optical and atomic physics settings,
including probing the Einstein-Podolsky-Rosen paradox and
Bell inequality violation using correlated photons [32–35]
and the study of similar phenomena with correlated atomic
beams [36–38]. The present paper builds on this theoretically,
by probing the observability of the entanglement generated
during the pair-creation process in an inflationary toroidal
BEC. The rest of the paper is organized as follows: in Sec. II,
we briefly review how the perturbations inside a rapidly ex-
panding toroidal BEC setup lead to spontaneous creation of
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phonon pairs in modes (n,−n) in two-mode squeezed states
(see Ref. [30] for more details). In Sec. III, we first quan-
tify the entanglement generated in this process by using an
entanglement measure (logarithmic negativity) well adapted
to the physical setup. Next, this quantification allows us to
analyze the way entanglement is affected by the presence
of thermal noise and losses, ubiquitous in real experiments.
Using the tools put forward in Refs. [39,40], we show that
noise and losses degrade the entanglement in the final state,
possibly eliminating it entirely and rendering a classical fi-
nal state. Next, following the ideas in Refs. [39,40], we
propose a way of amplifying the entanglement generated in
this scenario, possibly compensating for the aforementioned
deleterious effects. This is done by considering stimulated
particle creation using appropriate initial states—stimulated in
the standard sense of atomic physics, to be contrasted with the
spontaneous effects arising when the input is merely vacuum
fluctuations. In particular, we study the use of single-mode
squeezed inputs as a way of stimulating additional creation
of entangled pairs, increasing the observability of this ef-
fect. In Sec. IV, we propose an experimental protocol to
reconstruct the final state and to measure the entanglement
it contains between phonons in the mode pair (n,−n). Sec-
tion V provides some concluding remarks. In Appendix A,
we provide details of our calculations of particle creation in
an expanding toroidal BEC, in Appendix B we present a brief
review of Gaussian states and entanglement measures, and in
Appendix C we discuss a C2-smooth expansion protocol for
the toroidal BEC.

II. PARTICLE CREATION IN a TOROIDAL BEC

In this section, we briefly review and expand upon the work
done in Ref. [30], that analyzed properties of a toroidal BEC
with a time dependent radius, and the phenomenon of pair
creation of phonons therein. For clarity, in Appendix A we
provide additional details of the results of this section.

The system experimentally created in Refs. [27,28] is made
of a BEC with toroidal shape and time dependent radius
R(t ). In the thin-ring limit, variations in the condensate in the
radial direction can be neglected, and the problem becomes
effectively one-dimensional, parametrized by the angle θ . The
BEC is described in terms of a complex scalar field �̂(θ, t )
[41], which can be decomposed in terms of density n̂(θ, t )
and phase φ̂(θ, t ):

�̂(θ, t ) =
√

n̂(θ, t ) ei φ̂(θ,t ). (1)

This is the Madelung representation. We are interested in lin-
ear perturbations [φ̂1(θ, t ), n̂1(θ, t )] of the phase and density,
respectively, over a background [φ0(t ), n0(t )] describing the
average phase and density, such that

φ̂(θ, t ) = φ0(t ) + φ̂1(θ, t ), n̂(θ, t ) = n0(t ) + n̂1(θ, t ). (2)

The canonical commutation relation of the condensate �̂

implies that (n̂1, φ̂1) form a canonical operator pair. The quan-
tization of the pair (n̂1, φ̂1) is standard [30]. We begin with

an expansion of these operators in terms of annihilation and
creation operators (ân, â†

n):

φ̂1(θ, t ) =
√

U

2πV0h̄

∞∑
n=−∞

[einθχn(t ) ân + H.c.], (3a)

n̂1(θ, t ) =
√

UV0

2π h̄

∞∑
n=−∞

[einθηn(t )ân + H.c.], (3b)

where H.c. indicates the Hermitian conjugate, U = 4πas h̄2

M is
the interaction parameter with as being the scattering length,
M is the mass of the atoms in the condensate, 2πV (t ) is the
volume of the condensate, and V0 ≡ V (0). The time depen-
dent functions χn(t ) are the mode functions, and they form
a basis of the vector space of complex solutions to the equa-
tions of motion [30]

χ̈n + (1 + γ )
Ṙ

R
χ̇n + α

n2c2

R2
χn = 0. (4)

The steps leading to Eq. (4), provided in detail in Appendix A,
involve expressing the equations of motion for φ̂1(θ, t ) and
n̂1(θ, t ) as equations of motion for χn(t ) and ηn(t ) via Eqs. (3).
Combining the latter and applying approximations relevant to
the toroidal geometry then leads to Eq. (4). In these equations,
that are analogous to the Mukhanov-Sasaki equations [42–44]
from cosmology, c is the wave speed and γ and α are cor-
rections due to quantum pressure coming from the boson
kinetic energy in the original system Hamiltonian which we
shall take to be constants, although they generally depend on
the density, the radius of the ring, and the mode index. As
discussed in Ref. [30] and Appendix A, realistic values for
the latter parameters are γ � 0.1 (close to zero) and α � 1.
For simplicity, we take α = 1 (equivalent to absorbing it into
c) and, since particle production only occurs for nonzero γ ,
we generally assume 0 < γ < 1.

Let us write the time dependent radius of the toroid as
R(t ) = R0 a(t ), with R0 being a constant. Then, if the mode
functions are chosen to be normalized such that (χnχ̇

∗
n −

χ∗
n χ̇n) = i a(t )−(1+γ ) for all n at any instant, then this normal-

ization is preserved throughout the evolution. Furthermore, ân

and â†
n in (3) satisfy the algebra of creation and annihilation

operators, i.e., [ân, â†
n′ ] = δnn′ and [ân, ân′ ] = 0.

Notably, Eqs. (3) and (4) are formally analogs to the equa-
tions describing the propagation of a scalar field in a spatially
flat FLRW universe, with scale factor a(t ).1 Hence, the system
under consideration makes it possible to recreate the physics
of quantum fields propagating in an expanding universe, by
appropriately engineering a time dependent radius R(t ) of the
toroidal BEC, as was done in Refs. [27,28].

Following the experimental platform described in
Refs. [27,28], we consider R(t ) that is time independent

1If the quantum pressure γ were to vanish, Eq. (4) would be equiv-
alent to the equation one would find for the modes of a massless,
minimally coupled scalar field in a FLRW spacetime with one spatial
dimension. But such a field is conformally invariant, and since the
FLRW geometry is conformally flat, there would be no particle cre-
ation in that situation. The presence of γ �= 0 in (4) breaks conformal
invariance and makes it possible for phonon pair creation to occur.
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in the past, then varies monotonically, and finally becomes
constant again. These early- and late-time regions where
R(t ) is time independent are the “in” and “out” regions,
respectively, in which the system is stationary and there
is a well-defined notion of ground state—the in and out
vacuum, |0in〉 and |0out〉, respectively—each associated with
a set of annihilation and creation operators, which we will
denote as (â(in), â(in)†) and (â(out), â(out)†), respectively. (If
nonexpanding in and out regions were absent, it would be
necessary to make a choice of specific initial and final creation
and annihilation operators. The calculation of the particles
and entanglement generated by the expansion would then rely
on this choice.)

One question of interest is the following: if the condensate
is prepared in the mean-field ground state at early times, what
is the state at late times? The answer to this question is well
known [1,2,30]:

Û |0in〉 =
∏
n∈Z

1√|αn|
e

β∗
n

2α∗
n

â(out)†
n â(out)†

−n |0out〉, (5)

where Û is the time-evolution operator, and αn and βn are the
Bogoliubov coefficients relating the in and out creation and
annihilation operators:

â(out)
n = αn â(in)

n + β∗
n â(in)†

−n . (6)

By expanding the exponential in (5), we see that the result
of evolving the in vacuum produces a state at late times
that is made of linear combinations of states of the form
(â(out)†

n â(out)†
−n )N |0out〉. These states contain 2N phonons, half

of them with label n and the other half with label −n. This
implies that phonons are created in pairs (n,−n). Since modes
with label n and −n describe counter- and clockwise propa-
gating plane waves, respectively, the creation of these pairs
respects angular momentum conservation. Furthermore, it is
not difficult to check that there are |βn|2 phonons, on average,
in the mode n at late times. In the next section, we will write
the final state in a different form, which will make manifest
that (5) is a Gaussian state resulting by applying a process of
two-mode squeezing to the vacuum for each pair (n,−n), and
we will describe a way of quantifying the entanglement in this
state.

Our next task is to choose a specific function for
the toroidal BEC radius R(t ) entering Eq. (4). Following

Ref. [30], we choose

R(t ) =
⎧⎨
⎩

R0, for t < 0,

R0et/τ , for 0 < t < t f ,

R0et f /τ , for t > t f .

(7)

Thus, for early times t < 0, the radius is a constant R0, with
the exponential expansion beginning at t = 0. In this expo-
nential regime, we can write R(t ) = R0 a(t ) with a(t ) = et/τ

being the scale factor, thereby mimicking an inflationary uni-
verse, where the constant τ plays the role of the “Hubble
time.” For later times t > t f , the radius is again a constant
R f = R0etf/τ .

It is important to emphasize that the conceptual analysis
and the tools presented in this paper are applicable to any form
of the expansion history R(t ). We use the simple expression
(7) merely for illustrative purposes. All the plots shown be-
low can be straightforwardly recomputed for R(t ) adapted to
concrete experimental platforms.

The simplicity of this choice leads to an issue: the function
R(t ) in Eq. (7) is continuous but not differentiable at t = 0 and
t f . We expect that, in a real experiment, the ramp up and down
will be smoother (with its own timescale), and as a result, this
abrupt model expansion we include here may lead to spurious
particle production outside of the central inflationary regime.
This issue was pointed out by Glenz and Parker (GP), who
argued that such artifacts can be avoided as long as R(t ) is at
least C2 [45]. The experiments of Refs. [27,28] use an error-
function profile for the trap expansion to minimize such slope
discontinuities.

To justify our use of Eq. (7) despite this issue, we note
that, as emphasized by GP, artifacts of a C0 scale factor are
most significant at large mode index, i.e., density fluctuations
at short distances. We argue that, since such high mode indices
are probably inaccessible to real toroidal BEC experiments,
Eq. (7) is sufficient for our goal of studying entanglement
of particle production. In addition, Eq. (7) has the advantage
of providing closed analytic expressions for the Bogoliubov
coefficients αn and βn [30].

Nevertheless, for completeness, in Appendix C we con-
sider an expansion history R(t ) of differentiability class C2,
also containing an inflationary period. There, we show that the
resulting mean number of created quanta |βn|2 behaves uni-
versally as n−γ for sufficiently large n, directly reflecting the
dissipative role of the quantum pressure γ in the equation of
motion (4).

Now returning to our model Eq. (7) for the BEC radius, we
quote the resulting Bogoliubov coefficients [30]:

αn = 1

2

e− t f
2τ

J 1+γ

2
(z0)J 1−γ

2
(z0) + J− 1+γ

2
(z0)J−1+γ

2
(z0)

×
[{

J 1−γ

2
(z0) + iJ− 1+γ

2
(z0)

}{
J 1+γ

2
(z f )−iJ−1+γ

2
(z f )

}
+
{

J−1+γ

2
(z0) − iJ 1+γ

2
(z0)

}{
J− 1+γ

2
(z f )+iJ 1−γ

2
(z f )

}]
, (8)

βn = 1

2

e− t f
2τ

J 1+γ

2
(z0)J 1−γ

2
(z0) + J− 1+γ

2
(z0)J−1+γ

2
(z0)

×
[{

J 1−γ

2
(z0) + iJ− 1+γ

2
(z0)

}{
J 1+γ

2
(z f )+iJ−1+γ

2
(z f )

}
+
{

J−1+γ

2
(z0) − iJ 1+γ

2
(z0)

}{
J− 1+γ

2
(z f )−iJ 1−γ

2
(z f )

}]
, (9)
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FIG. 1. Plot of the mean number of quanta |βn|2 created in mode
n. The red circles indicate the exact theoretical result from the
absolute value squared of Eq. (9), and the black curve shows the
approximate result in Eq. (10), valid in the limit of small γ and large
n. The green curve shows |βn|2 as a continuous function to emphasize
its overall dependence on the discrete mode indices. For this plot, we
took the quantum pressure to be γ = 0.5, the speed of sound to be
c = 2/s, the initial radius to be R0 = 10 µm, the expansion timescale
to be τ = 6.21, and the duration of expansion to be t f = 10.

where Jn(x) are Bessel functions of the first kind, and we
define parameters z0 ≡ |n|cτ

R0
and z f ≡ |n|cτ

R f
.

Next, we examine various limits for the particle production
|βn|2. A simple approximation for |βn|2 (valid in the limit γ �
1 and n  1) is given by Ref. [30]

|βn|2 ≈ 1

n2

(γ

4

)2(cτ

R0

)−2[
1 + a2

f − 2a f cos(2nθH)
]
, (10)

where a f = e
t f
τ is the ratio of final and initial radii R f /R0, and

θH = cτ
R0

(1 − a−1
f ) is the angular horizon size at the end of the

expansion. Although this approximation is obtained as a large
n limit, it is quite accurate for n � 3 in relevant parameter
ranges as can be seen in Fig. 1. The parameters chosen in this
figure, and elsewhere in the paper, are approximately based
on the experiments of Ref. [27], as discussed in Ref. [30],
although below we also explore how phenomena change with
these parameters. This approximation makes it clear that oscil-
lations in the particle creation number shown in Fig. 1 reflect
the value of the angular size of the Hubble horizon θH (see
Ref. [30] for details). Note also that the pair creation in the
expanding ring does not produce a particle distribution with a
blackbody spectrum, as happens for analog models for which
causal horizons are present.

We can still recover the inflationary regime |βn|2 ∼ n−γ

with assumptions which simplify the Bessel functions with
arguments z0 and z f in Eq. (9). First, we assume that the
modes n are initially well within the horizon. In this limit,
z0 → ∞, and the Bessel functions with argument z0 become

Jα (z0) ∼
√

2
πz0

cos(z0 − απ
2 − π

4 ). Second, if we assume that

the toroid expands for a very long time (an experimentally
challenging assumption) the modes n exit the horizon and
attain very large wavelengths compared to the horizon size,
i.e., R f /n  cτ , and the Bessel functions with argument z f

FIG. 2. Plot of the mean number of quanta |βn|2 created in mode
n. The red circles indicate the exact theoretical result from the abso-
lute value squared of Eq. (9), and the green curve is its continuous
version to emphasize its overall dependence on the discrete mode
indices. We compare this with the dashed purple curve that shows
the approximate result in Eq. (11), where the black curve is obtained
by averaging the two cosine square terms in (11). For this plot, we
took the same parameters as Fig. 1, but with a much longer expansion
time t f = 1 × 104.

become Jα (z f ) ∼ 1
(α+1) ( z f

2 )α . In this regime, the particle cre-
ation number in Eq. (9) takes the following form:

|βn|2 ≈ π

4

( R f

2cτ

)γ cos2
(
z0 − πγ

4

)+ cos2
(
z0 + πγ

4

)
sin2

( 1+γ

2 π
)
2
( 1+γ

2

) n−γ .

(11)
As can be seen from Fig. 2, this approximation fits well

with the exact expression for |βn|2 for large expansion times,
leading to the universal behavior of n−γ as predicted by GP
[45]. However, for smaller expansion times (where R f is not
so large), it is more appropriate to use the n−2 asymptotic form
in Eq. (10). In addition to being experimentally challenging,
long expansions lead to an increase in the coherence length2

and a decrease of the ring width with increasing time, to the
point that the hydrodynamic limit (which requires the mode
wavelength to be large compared to the coherence length)
is violated. Intuitively, long expansion times decrease the
density to a point where individual atoms are spread out
sufficiently that they cannot interact and form the coherent
mean-field ground state.

The preceding two regimes of the particle creation number,
Eqs. (10) and (11), approximately hold in the regimes n  R f

cτ

and R0
cτ � n � R f

cτ , respectively. The crossover between these
two regimes can be clearly seen in a log-log plot of |βn|2 vs
n, as shown in Fig. 3. In the third regime of n � R0

cτ , |βn|2
is approximately independent of mode index. In Ref. [30], it
was shown that the pair creation represented by |βn|2 produces

2For a BEC, the coherence length is defined as the length scale
over which the condensate maintains coherence in its density given
by ξ = h̄√

2Mc
, where M is the mass of the bosonic atoms and c is the

speed of sound.
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FIG. 3. Log-log plot of the mean number of quanta |βn|2 created
in mode n, for the case of et f /τ = 108 and γ = 0.3 (solid green
curve). The red dashed lines are linear fits with the fitted power law
shown on the plot, showing that |βn|2 indeed approximately exhibits
n−2 behavior at large n and n−γ behavior at smaller n, consistent with
Eqs. (10) and (11), respectively.

distinctive features in density-density correlations of the con-
densate, which could be observed in the laboratory. The main
effect is a kinklike feature in the density-density two-point
correlation function, located at an angular separation deter-
mined by the angular size of the horizon θH. The amplitude
of this kink increases with increasing quantum pressure and
BEC temperature. In the zero-temperature limit, the kink de-
generates into a “cusp”-like feature.

Having described both the perturbations in an expanding
toroidal BEC and how such expansion leads to spontaneous
phonon pair creation in a two-mode squeezed state (5) de-
termined by βn given in Eq. (9), we are ready to discuss the
entanglement of these phonon pairs, i.e., how to quantify it
and what factors lead to its degradation and enhancement.

III. ENTANGLEMENT

In this section, we reformulate the evolution of phonon
perturbations propagating in the expanding toroidal BEC, us-
ing the language of continuous variable quantum systems and
Gaussian states [46] (see Ref. [40] for applications to analog
gravity). This formalism is useful because the equations of
motion (4) of phonon perturbations are linear, and therefore
preserve the Gaussianity of the quantum states.

Using this language, the evolution of phonon perturbations
is described by a collection of two-mode squeezers, each
acting on a pair (n,−n) of modes. Classically, a two-mode
squeezer represents a non-energy-conserving process, able to
amplify (or damp) waves. Quantum mechanics adds two key
features. On the one hand, even the vacuum can be amplified.
On the other hand, the amplification process creates pairwise
entanglement between quanta. The formalism used in this
section provides an efficient toolbox to quantify this entan-
glement.

Gaussian states include vacua, coherent, thermal, and
squeezed states. Therefore, although our analysis is re-
stricted, the family of Gaussian states is sufficiently general to

approximately describe most of the states one can create and
manipulate in the laboratory.

A. Evolution: Two-mode squeezers and pair creation

The background condensate (described by n0 and φ0) is ho-
mogenous, in the sense that neither n0 nor φ0 depends on the
location θ along the ring. Consequently, the evolution of con-
densate perturbations χ (θ, t ) is such that Fourier modes with
spatial dependence e−inθ , n ∈ Z, evolve independently of each
other. This is manifest in Eq. (4). For a fixed n, there are only
two modes with such spatial dependence, namely χn and χ∗

−n,
using the notation introduced in the previous section. Hence,
the evolution of the perturbations factors out in the evolution
of pairs (n,−n) of modes, with no interaction among different
pairs. Since each pair corresponds to a quantum-mechanical
linear system with two degrees of freedom, we can apply the
formalism summarized in Appendix B (we refer the reader to
this Appendix for details omitted here).

Let Â
(in)
n be the (column) vector of in creation and annihi-

lation operators for a pair (n,−n) of modes

Â(in)
n ≡ (

â(in)
n , â(in)†

n , â(in)
−n , â(in) †

−n

)�
, (12)

and let Â(out)
n be similarly defined for the out modes. Expres-

sion (6) above implies that the matrix S(A,n) describing the
in-out scattering process, Â(out)

n = S(A,n) · Â(in)
n , is

S(A,n) =

⎡
⎢⎢⎣

αn 0 0 β∗
n

0 α∗
n βn 0

0 β∗
n αn 0

βn 0 0 α∗
n

⎤
⎥⎥⎦. (13)

This is precisely the form of a two-mode squeezer (see, e.g.,
Appendix A of Ref. [40] for a short summary of this type
of symplectic transformation). From S(A,n), we can obtain
the scattering matrix Sn describing the evolution of canonical
pairs

x̂n = 1√
2

(ân + â†
n), (14a)

p̂n = − i√
2

(ân − â†
n), (14b)

by simple multiplication with the “change of basis matrix”
B, Sn = B · S(A,n) · (B)−1, where B is written in Eq. (B5) of
Appendix B.

In experimental settings, the initial state of the system is
well approximated by a thermal state in equilibrium with
the environment at temperature T . This is a mixed Gaussian
state, which means it is completely determined by its first
(μ) and second (σ) moments, with the latter being termed the
covariance matrix. [See Appendix B, where these are defined
in Eqs. (B9) and (B10), respectively.] In the present case, we
find

μ
(in)
(n) = (0, 0, 0, 0)�, (15)

σ
(in)
(n) = [1 + 2nB(En)] I4, (16)

where I4 is the identity matrix and nB(x) = (eβx − 1)−1

is the mean number of thermal quanta, given by the
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Bose-Einstein distribution with β = (kBT )−1, and kB the
Boltzmann constant. Here, the Bogoliubov energy disper-
sion is En =

√
εn(εn + 2Mc2), where c is the speed of sound

and εn = h̄2n2

2MR2 is the single-particle energy in the toroid. In

the hydrodynamic limit of interest here, in which the mode
wavelength is large compared to the coherence length, we
approximate En � h̄c

R |n|. From this, we obtain the final state,
which is again Gaussian and described by

μ
(out)
(n) = Sn · μ

(in)
(n) = (0, 0, 0, 0)�,

σ
(out)
(n) = Sn · σ

(in)
(n) · S�

n = (1 + 2nB)

⎡
⎢⎢⎢⎢⎣

|αn|2 + |βn|2 0 α∗
nβn + αnβ

∗
n i(α∗

nβn − αnβ
∗
n )

0 |αn|2 + |βn|2 i(α∗
nβn − αnβ

∗
n ) −(α∗

nβn + αnβ
∗
n )

α∗
nβn + αnβ

∗
n i(α∗

nβn − αnβ
∗
n ) |αn|2 + |βn|2 0

i(α∗
nβn − αnβ

∗
n ) −(α∗

nβn + αnβ
∗
n ) 0 |αn|2 + |βn|2

⎤
⎥⎥⎥⎥⎦. (17)

Note the Bogoliubov coefficients αn and βn were written in
Eqs. (8) and (9) above for the dynamical expansion given by
Eq. (7). Here and below we have suppressed the argument
of the Bose-Einstein distribution, which is always En. This
covariance matrix is of the form

σ
(out)
(n) =

[
σ

(red)
(n) C(n)

C�
(n) σ

(red)
(−n)

]
, (18)

where σ
(red)
(n) and σ

(red)
(−n) are the covariance matrices of the

reduced state describing the modes n and −n, respectively,
which are equal to each other. The matrix C(n) encodes the
correlations between these two modes. We will see in the
next section that these correlations contain entanglement for
sufficiently low environment temperatures.

From Eq. (17), we extract all predictions about the final
state such as the mean number of phonons in one of the two
modes, say the mode n:

〈N̂n〉 = 1

4
Tr
{
σ

(red)
(n)

}+ 1

2

(
μ

(red)
(n)

)�
μ

(red)
(n) − 1

2
, (19)

where

μ
(red)
(n) = (0, 0),

σ
(red)
(n) = (1 + 2nB) (|αn|2 + |βn|2) I2 (20)

are the first moments and covariance matrix of the reduced
state describing the mode n alone. We obtain

〈N̂n〉 = 1
2 [(1 + 2nB) (|αn|2 + |βn|2) − 1] (21)

= nB + |βn|2 + 2nB|βn|2, (22)

where in the second line we have used the identity |αn|2 −
|βn|2 = 1. This last expression offers a simple interpretation.
On the one hand, we see that, in the zero-temperature limit,
nB → 0, we obtain 〈N̂n〉 = |βn|2, as expected. For finite tem-
perature, 〈N̂|n|〉 has three contributions. The first one, given by
nB, simply corresponds to the thermal quanta already present
in the initial state. The second term, |βn|2, corresponds to the
quanta created from the vacuum. The third term contains the
product nB|βn|2, which has the interpretation of stimulated
or induced phonon creation (i.e., the mere presence of initial
quanta induces further pair creation).

The number of quanta in the mode −n has exactly the same
value, in such a way that 〈N̂n〉 − 〈N̂−n〉 remains constant in

the course of time. In other words, quanta are created in pairs
(n,−n).

B. Entanglement

In this subsection, we investigate under what conditions the
out state written in Eq. (17) for the (n,−n) pair is entangled.
Appendix B contains a summary of a few ways of answering
this question (see Ref. [46] for further details on entanglement
measures for Gaussian states; see also Refs. [39,40] for appli-
cations to Hawking radiation).

The state (17) is a mixed state for any nonzero environ-
ment temperature T . This can be seen by computing the
purity of the state, which, as summarized in Appendix B, is

equal to P(σ (out)
(n) ) = 1/

√
detσ (out)

(n) . A quick calculation pro-

duces P(σ (out)
(n) ) = (1 + 2nB)−2. The mixed nature of the out

state (17) implies, in particular, that entanglement entropy
(which quantifies entanglement only when the state of the total
system is pure) is not an appropriate measure to quantify the
entanglement between modes (n,−n).

Instead, we use logarithmic negativity (EN ), defined in Ap-
pendix B, which is based on the Peres-Horodecki or positivity
of the partial transpose (PPT) criterion [47–49]. For Gaussian
states, EN can be computed from the symplectic eigenvalues
of the “partially transposed” covariance matrix. Furthermore,
for the systems we are interested in here—single-mode sub-
systems and Gaussian states—EN is a faithful entanglement
quantifier, in the sense that EN is different from zero if
and only if the state is entangled. It is also an entangle-
ment monotone—higher EN means more entanglement. EN
is measured in entangled bits (ebits), defined as the amount of
entanglement contained in a Bell pair.

Applying expression (B17) to the state (17), we obtain

EN [n] = max(0,− log2[(1 + 2nB)(|αn| − |βn|)2])

= max(0,− log2[(1 + 2nB)(
√

1 + |βn|2 − |βn|)2)],

(23)

where we have used the identity |αn|2 − |βn|2 = 1 in the last
equality. Note that the argument of the logarithm here is the
minimum symplectic eigenvalue of the partially transposed
covariance matrix.
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FIG. 4. Logarithmic negativity between phonons labeled by n
and −n, for zero ambient temperature T = 0, for three values of the
quantum pressure parameter: γ = 0.2 (green triangles), γ = 0.35
(blue squares), and γ = 0.5 (red circles). The mode index n is
discrete; we have added a continuous dashed line to increase the
visibility of the overall dependence of EN with n. For this plot, all
other parameters are the same as in Fig. 1

We first discuss the situation in which the ambient
temperature is zero. Substituting nB = 0 in Eq. (23), we

obtain EN [n] = Max(0,− log2 [(
√

1 + |βn|2 − |βn|)2)]. This
expression is equal to zero if and only if βn = 0, and grows
monotonically with βn. This result tells us, on the one hand,
that the members within each created phonon pair are en-
tangled. Furthermore, since, for T = 0, |βn|2 is equal to the
number of pairs created, the total entanglement grows mono-
tonically with the number of pairs created. Figure 4 shows
EN vs the mode index n, for the expansion history given
in (7), where we can recognize the shape of |βn|2 shown in
Fig. 1, namely a rapid falloff with increasing n and oscillations
dictated by the angular size of the horizon.

The second important lesson from expression (23) is the
effect of ambient thermal noise on the generation of entan-
glement. This expression tells us that EN is zero when the
argument of the logarithm is larger than 1. The effect of
thermal noise is to add the factor (1 + 2nB) (recall, nB is the
mean number of thermal quanta). This factor is larger than 1,
and we can always make EN equal to zero by increasing nB. In
other words, thermal noise degrades the entanglement between
modes n and −n, even making it disappear completely above
a threshold temperature, which we will denote by Tv (n). The
value of this critical temperature can be easily obtained from
expression (23), by writing nB in terms of Tv (n). We obtain3

Tv (n) = En

kB

[
ln

{
1 + 1

|βn|(|βn| + √
1 + |βn|)

}]−1

. (24)

The interpretation of this expression is simple: when thermal
noisy phonon quanta dominate over the quanta created by the
expansion, the entanglement in the pair (n,−n) vanishes. In

3The same result for Tv (n) can be obtained from the Bell-like
inequality � < 0, with � defined in Eq. (B18), as explained in
Appendix B.

FIG. 5. Logarithmic negativity EN [n] vs the mode index n, for
various values of the environment temperature, T = 0 nK (red cir-
cles), T = 0.3 nK (blue squares), T = 0.5 nK (green triangles), and
T = 0.7 nK (orange diamonds ). The figure shows that entanglement
in the final state is degraded by ambient thermal noise, and that the
entanglement in pairs with small n is more fragile. For this plot, we
use quantum pressure γ = 0.5, with all other parameters being the
same as in Fig. 1.

other words, the entanglement in the final state results from a
competition between the pair creation and the environmental
noise. But recall that the number of created pairs is dictated by
|βn|2, which falls off approximately as n−2, while the number
of thermal quanta nB falls exponentially fast with n. Hence,
thermal noise will degrade more easily the entanglement in
pairs with lower value of the mode index n. Indeed, this is
shown in Fig. 5, where we plot EN vs n for different ambient
temperatures, showing that EN [n] is more strongly suppressed
at small mode index n. This behavior is also exhibited in
Fig. 6, which shows the threshold temperature Tv at which
EN [n] approximately increases (with small oscillations) with

FIG. 6. Critical temperature Tv (n) (in nK) at which the entan-
glement in the mode pair (n, −n) completely vanishes. The blue dots
represent the data for each mode index and the continuous red dashed
line shows the overall dependence of Tv with n. Larger ambient
temperature is needed to degrade the entanglement in pairs with large
mode index n. The oscillations originate in the oscillatory character
of |βn|2. For this figure, we consider the same parameters as in Fig. 5.
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increasing n. We emphasize again that, while the method is
general, the results plotted in Figs. 4–6 apply specifically to
the expansion history (7).

In summary, in the idealized situation of no initial den-
sity fluctuations, the spontaneous phonon-pair creation comes
together with the generation of entanglement. We find that
the presence of thermal noise drastically changes this picture.
The stimulated pair creation dominates over the spontaneous
emission. On the other hand, thermal noise degrades the en-
tanglement in the final state, rendering the state classical. The
expressions derived in this section quantify these quantum
effects and their degradation.

C. Losses and efficiency

The discussion until now assumes an ideal situation where
the process of expansion is a quantum channel with no losses.
Thus, there is no decoherence, and the probes used to detect
perturbations in the final static BEC have perfect efficiency.
Losses and inefficiencies are, however, ubiquitous in realistic
situations, and the goal of this section is to quantify the effects
they have on the quantum coherence of the final state using a
simple model.

A simple yet useful model is provided by the so-called
quantum attenuator channel (see, e.g., Ref. [46]) characterized
by a loss factor η ∈ (0, 1). This is a Gaussian channel, in
the sense that the Gaussianity of the state is preserved. More
concretely, the channel transforms the final state as(

μ
(out)
(n) , σ

(out)
(n)

)
→
(√

η μ
(out)
(n) , η σout

(n) + (1 − η) I4

)
. (25)

Simply, quanta are detected with probability η or are other-
wise lost (η = 1 corresponds to the ideal situation discussed
above). Following previous sections, we can reevaluate the
logarithmic negativity EN [n] for a pair of modes (n,−n) and
quantify entanglement in the final state after losses and/or
inefficiencies. We obtain

EN [n] = max(0,− log2 νT,η[n]) (26)

where

νT,η[n] = 1

4
√

2

√
X −

√
Y , with

X = 16[2(1 − η)2 + 2(1 + 2nB)2η2(|αn|4 + |βn|4)

+ 4(1 + 2nB)η(1 − η)(|αn|2 + |βn|2)

+ 12 (1 + 2nB)2η2|αn|2|βn|2], (27)

Y = (16η(1 + 2nB))2[64(1 − η)2|αn|2|βn|2
+ 64(1 + 2nB)2η2(|αn|4 + |βn|4)|αn|2|βn|2
+ 128(1 + 2nB)η(1 − η)(|αn|2 + |βn|2)|αn|2|βn|2
+ 128(1 + 2nB)2η2|αn|4|βn|4]. (28)

As a check, this expression reduces to Eq. (23) obtained in the
previous section in the limit η → 1 (no losses). Furthermore,
EN [n] vanishes when η → 0, as expected, since in this limit
none of the pairs created by the expansion get registered in the
detectors. In between these limits, EN [n] decreases monoton-
ically when η → 0. Unsurprisingly, losses and inefficiencies

FIG. 7. Logarithmic negativity between phonons labeled by n
and −n, for various values of the efficiency parameter η = 1 (red
circles), η = 0.80 (blue squares), η = 0.6 (green triangles), and
η = 0.4 (orange diamonds). For this plot, we took the parameters
in Fig. 1, the environment temperature T = 0.5 nK, and the quantum
pressure γ = 0.5.

are sources of dissipation of quantum coherence or entangle-
ment. Figure 7 shows EN [n] for different values of η, showing
that more efficient detectors (i.e., with smaller η) have more
depletion of entanglement.

D. Single-mode squeezed states and inputs

In view of the fragility of quantum entanglement to thermal
noise and losses, it is of interest to envisage mechanisms
to amplify these quantum correlations. Such a mechanism
would assist in keeping alive the quantum signature of the
pair-creation process in situations where the conditions of the
experiment would otherwise render the final state completely
classical.

We use a mechanism proposed in Refs. [39,40], consisting
of replacing the initial vacuum, before the expansion of the
BEC ring, by a single-mode squeezed state. Such a state is
separable, in the sense that it does not contain entanglement
between any mode with index n. However, it contains initial
quanta which stimulate the production of additional entangled
pairs. This stimulated creation strengthens the entanglement
in the final state, making it more robust under deleterious ef-
fects. However, this mechanism does not create entanglement
by itself: the final system entanglement would be zero if the
BEC ring does not expand (since the initial excitations are un-
entangled), and in this sense the entanglement in the final state
can all be attributed to the expansion. The initial squeezing
acts as a “catalyzer” for the generation of entanglement.

From the point of view of quantum resource theory [50,51],
single-mode squeezing (along with entanglement) is an avail-
able quantum resource, and the strengthening of entanglement
during expansion can be regarded an interconversion of these
resources. An alternative approach to augmenting entangle-
ment production involves incorporating two-mode squeezing
into the initial state. However, two-mode squeezing also
introduces entanglement. Consequently, if entanglement is
detected in the final state, it would not be feasible to attribute
it solely to the expansion process. Note that here we do not
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consider other nonclassical initial states, such as Fock states
(which are difficult to create experimentally), since they lie
outside the realm of Gaussian states that are our primary
focus.

The limitation of our strategy to amplify or catalyze the
production of entanglement is the difficulty of generating
phonons in single-mode squeezed states in the laboratory. We
postpone for future work the question of how a toroidal BEC
experiment may realize a single-mode squeezed initial state,
taking the point of view that the strategy presented in this
section can be of interest as a concrete example for increasing
the visibility of the quantum signatures of the pair-creation
process.4

We proceed to consider an initial phonon state for the mode
pair (n,−n) corresponding to a single-mode squeezed state
with thermal noise in it. This is a Gaussian state of the form
(suppressing the mode index label)

μ(in)
r = (0, 0, 0, 0)�, (29)

σ in
r = (1 + 2nB)

⎡
⎢⎢⎣

e2r 0 0 0
0 e−2r 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦. (30)

In this state, the mode −n is in a thermal state, while the
mode n is in a thermal-squeezed state with squeezing inten-
sity r ∈ R. The modes are uncorrelated. In the limit r → 0
this state reduces to the thermal state used in the previ-
ous section. We have chosen the squeezing in a particular
“direction”—namely, we have squeezed the state in the p̂n

direction, and antisqueezed in x̂n direction. The direction of
the squeezing can be controlled by introducing a squeez-
ing angle φ. The results of this section are independent of
the choice of φ, so we will use φ = 0 for simplicity in
the presentation.

Following the strategy used in the previous section, we can
compute the covariance matrix of the final state as σ (out)

r =
S · σ (in)

r · S�, and compute from it the logarithmic negativity.
Note that we also include losses parametrized by η in this
calculation. We obtain

EN [n] = max(0,− log2 νT,r,η[n]) (31)

where

νT,r,η[n] = 1

4
√

2

√
Xr − √

Yr, (32)

Xr = 16[2(1 − η)2 + 2(1 + 2nB)2η2(|αn|4 + |βn|4)

+ 4(1 + 2nB)η(1 − η) cosh2 r(|αn|2 + |βn|2)

+ 4(1 + 2nB)2η2[1 + 2 cosh(2r)]|αn|2|βn|2], (33)

4The process of preparing a single-mode squeezed state may intro-
duce supplementary noise into the initial state. If this noise exceeds a
certain threshold, it could offset the advantages gained from squeez-
ing. Consequently, when considering a mechanism for generating
squeezing, it is important to evaluate the interplay between squeezing
and the introduced noise. This paper provides the necessary tools to
quantify this interplay.

FIG. 8. Logarithmic negativity EN [n] for pairs (n,−n), vs the
squeezing intensity r and ambient temperature T = 0.5 nK. Various
values of initial squeezing r are shown. This plot corresponds to
quantum pressure γ = 0.5 and η = 1, with the rest of the parameters
being the same as in previous plots.

Yr = (16η(1 + 2nB))2[16 sinh4 r(1 − η)2(|αn|4 + |βn|4)

+ 4(1 − η)2[3 + 12 cosh(2r) + cosh(4r)]|αn|2|βn|2
+ 64(1 + 2nB)2η2 cosh2 r(|αn|4 + |βn|4)|αn|2|βn|2
+ 128(1 + 2nB)η(1−η) cosh4 r(|αn|2 + |βn|2)|αn|2|βn|2
+ 128(1 + 2nB)2η2 cosh2 r cosh(2r)|αn|4|βn|4]. (34)

These expressions reduce to Eqs. (26) and (27) obtained in
the last section in the limit r → 0. The physical content
in these expressions is shown in Fig. 8, which corresponds
to a situation with no losses (η = 1). This plot shows the
way initial squeezing amplifies the entanglement in the final
state, and compensates for the deleterious effects of thermal
noise. Figure 9 shows how the entanglement degrades due to

FIG. 9. Logarithmic negativity between phonons labeled by n
and −n, for various values of the efficiency parameter η = 1 (red),
η = 0.80 (blue), η = 0.6 (green), and η = 0.8 (red). For this plot,
we took the parameters in Fig. 1, the environment temperature
T = 0.5 nK, the quantum pressure γ = 0.5, and the single-mode
squeezing parameter r = 1.0.
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imperfect detectors even if we start with a thermal single-
mode squeezed state of phonons.

To summarize, in this section, we have discussed that, in
order to quantify entanglement, we need to construct the co-
variance matrix which is basically a collection of all possible
correlations between phonon modes. The PPT criterion and
logarithmic negativity then help us quantify the amount of
entanglement in the phonon pairs for different choices of the
initial quantum state, i.e., vacuum, thermal, and single-mode
squeezed states. In the next section, we propose a protocol that
can measure these mode correlations, thereby experimentally
revealing the entanglement structure of phonons in an expand-
ing toroidal BEC.

IV. PROTOCOL TO MEASURE ENTANGLEMENT

Observing entanglement in realistic situations is a chal-
lenging task. In this section, we discuss a possible strategy
to achieve this goal adapted to the system we study in this
paper. This proposal contains several idealized ingredients,
which could give rise to challenges in realistic situations. It
nevertheless provides a concrete set of ideas which can be
useful as the starting point of a more refined protocol adapted
to concrete experimental setups.

As discussed in Appendix B, there is a tradeoff in the
use of logarithmic negativity compared to simpler entan-
glement witnesses, such as the Bell-like inequality � < 0
[with � defined in Eq. (B18)]. While � involves only a
few moments of the final state, it only indicates whether
entanglement is present in the final state in certain circum-
stances. More precisely, the limitations of this inequality
are two.

(i) It is not faithful, in the sense that � � 0 does not rule
out the existence of entanglement.

(ii) It is not a quantifier, because a stronger violation of the
inequality does not necessarily imply more entanglement.

On the other hand, logarithmic negativity is a faithful
quantifier for the simple systems we are interested in, namely
Gaussian states and single-mode subsystems. The tradeoff is
that its evaluation requires knowledge of the entire covariance
matrix of the final state, which amounts to having full knowl-
edge of the state.

To measure the elements of the covariance matrix of an
inflationary toroidal BEC, we propose a generalization of the
method due to Hellweg et al. [52], who measured the phase
correlation function of a trapped BEC via a scheme that is
analogous to the well-known stellar interferometry measure-
ments of Hanbury-Brown and Twiss [53–55]. Hellweg et al.
[52] accomplished this in two steps: first, by using Bragg
diffraction to split the BEC into two identical copies (with
a controllable phase difference between them); importantly,
these two copies were shifted spatially relative to each other.
The second step is to interfere the two separated condensates,
measuring density correlations in the final system. The result
of this final measurement reflects phase correlations of the
original BEC.

In generalizing this scheme to the present case, it is
not sufficient to merely extract phase correlations. Indeed,
we also require density-density and phase-density correla-

tions, as a function of angle, i.e., we need the correlation
functions

Cn̂1n̂1 (α) := 〈{n̂1(α), n̂1(0)}〉, (35)

Cφ̂1φ̂1
(α) := 〈{φ̂1(α), φ̂1(0)}〉, (36)

Cn̂1φ̂1
(α) := 〈{n̂1(α), φ̂1(0)}〉, (37)

where α is the separation angle. From these functions, we can
obtain the correlations between modes (n,−n) by a simple
Fourier transform, as we discuss below. Since a Gaussian
state is completely determined by the set of quadratic cor-
relation functions, it makes sense that these three functions
are sufficient to reproduce the full covariance matrix. Math-
ematically, the connection comes from Eqs. (3) that relate
density and phase fluctuations to the mode operators â†

n and
ân, and via Eq. (14) that connects the mode operators to x̂n

and p̂n.
To see how these correlation functions could be measured,

we now describe a natural generalization of the Hellweg et al.
[52] steps to the present case of an expanding toroidal BEC,
as illustrated in Fig. 10. The first step assumes it is possible
to use Bragg diffraction to split the original toroidal BEC
into two identical copies, with an induced phase δ between
them (that is experimentally controllable). We also assume
the resulting clouds can be rotated an angle α relative to
each other, after which they are allowed to evolve freely
for some time. Finally, the clouds are interfered, with den-
sity correlations being measured in the final system. The
preceding steps can be encapsulated in the following expres-
sion for the final condensate field operator as a function of
angle θ :

�̂(θ ) = 1
2

[√
n0 + n̂1(θ − α/2)ei(φ0+φ̂1(θ−α/2))

+ eiδ
√

n0 + n̂1(θ + α/2)ei(φ0+φ̂1(θ+α/2))
]
, (38)

which also depends on the controllable angular displacement
α and controllable phase difference δ. Here, we have made
use of the Madelung representation �̂(θ ) = √

n̂ eiφ̂ , with n̂ =
n0 + n̂1(θ ) and φ̂ = φ0 + φ̂1(θ ), as described in Eqs. (1) and
(2). Equation (38) is precisely an angular version of Eq. (5) of
Hellweg et al. [52].

Now we show that a measurement of the condensate
density two-point correlation function at coincident points,
〈N̂ (θ )N̂ (θ )〉α,δ , where N̂ (θ ) = �̂†(θ )�̂(θ ), contains the cor-
relations we are looking for, as we describe now—the labels
α and δ remind us about the rotation angle α and induced
Bragg phase δ chosen in the procedure. Let us focus on
an arbitrary point of the final cloud, which, without loss of
generality, we can choose as θ = 0. Then, the symmetric
correlator 〈{N̂ (0), N̂ (0)}〉α,δ obtained is related to phase φ̂1(θ )
and density n̂1(θ ) two-point correlators by

〈{N̂ (0), N̂ (0)}〉α,δ

= 1

2
n2

0(1 + cos δ)2 + 1

16

[
C̃n̂1n̂1 (α) (1 + cos δ)2

+ C̃φ̂1φ̂1
(α) 4n2

0 sin2 δ
]

(39)
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FIG. 10. A schematic figure showing the protocol to measure mode entanglement in the BEC. The first stage (first panel) is where the
expanded BEC is Bragg diffracted using a laser, which then splits into two parallel clouds with an induced phase difference of δ. Then, in the
second stage (second panel), one of the rings is rotated by some angle α which brings the two points (shown in green and orange colors) in
front of each other. In the third stage (third panel), the two clouds are made to interfere with each other and the atom density correlations are
obtained. This setup would allow the extraction of all types of correlations between phase and density fluctuations, and thus the covariance
matrix can be built.

where we have defined

C̃n̂1n̂1 (α) ≡ −2[Cn̂1n̂1 (α) − Cn̂1n̂1 (0)], (40)

C̃φ̂1φ̂1
(α) ≡ −2[Cφ̂1φ̂1

(α) − Cφ̂1φ̂1
(0)]. (41)

Therefore, by measuring 〈{N̂ (0), N̂ (0)}〉α,δ for two different
induced phases, say δ1 and δ2, and fixing the relative rotation
angle α, the above linear equation can be solved for C̃n̂1n̂1 (α)
and C̃φ̂1φ̂1

(α). From these correlations it is simple to obtain the
correlations functions we are actually interested in—Cn̂1n̂1 (α)
and Cφ̂1φ̂1

(α)—by noticing that

1

4π

∫ 2π

0
dα Cn̂1n̂1 (α) = 0. (42)

This is because Cn̂1n̂1 (α) does not include the zero mode n = 0
in its Fourier series, since this homogeneous mode has been
absorbed in the background condensate n0. Thus, integrat-
ing (40) over all possible rotation angles α, and making use
of (42), produces 2Cn̂1n̂1 (0). The same argument applies to
Cφ̂1φ̂1

(α). Thus, the elementary density-density and phase-
phase correlations can be extracted as follows:

Cn̂1n̂1 (α) = −1

2
C̃n̂1n̂1 (α) + 1

4π

∫ 2π

0
dα C̃n̂1n̂1 (α), (43)

Cφ̂1φ̂1
(α) = −1

2
C̃φ̂1φ̂1

(α) + 1

4π

∫ 2π

0
dα C̃φ̂1φ̂1

(α). (44)

[Note that Cn̂1n̂1 (α) can be directly measured in the original
toroidal BEC, without the interferometry steps; so, as a check,
one could compare such a direct observation with the result
obtained from (43).]

It remains to determine the mixed density-phase correla-
tions Cn̂1φ̂1

(α). Since φ̂1 and n̂1 are related by n̂1 = − h̄V
U

d
dt φ̂1,

the missing correlation function can be obtained by taking
time derivative of Cφ̂1φ̂1

(α)(t ). This requires a repetition of
the above steps for different times after expansion t > t f , in
discrete time intervals. That is, after expansion, Bragg diffrac-
tion, rotation, and interference, we require a measurement

of the correlations at time t = t f and a measurement of the
same for an identically prepared condensate at t = t f + �t .
The time interval �t should be small compared to any other
timescales in the problem, such as the frequency associated
with the smallest mode ωf

n=1 ≡ c/R(tf ), or the timescale asso-
ciated with the damping of density fluctuations, as was seen
in Ref. [27]. This procedure yields the time evolution data for
the phase-phase correlations, from which we can obtain the
mixed correlation function:

Cn̂1φ̂1
(α) ≡ 〈{n̂1(α, t ), φ̂1(0, t )}〉 = −1

2

h̄V f

U

d

dt
Cφ̂1φ̂1

(α, t ),

where we have defined V f ≡ V (t f ), and have made use of
Eq. (A7) that relates the density operator to the time derivative
of the phase operator and approximated the quantum pressure
operator D̂θ � 1.

Once the two-point correlations in real space are known,
we can obtain the covariance matrix of the final state as
follows. First, from Cn̂1n̂1 (α), Cφ̂1φ̂1

(α), and Cn̂1φ̂1
(α) we can

obtain the symmetrized second moments of the creation and
annihilation operators as follows:

〈{
â(out)

n , â(out)
−n

}〉 = p f

∫ 2π

0
dα e−inα

[
(χ∗

n )2Cn̂1n̂1 (α)

+V2
f (η∗

n )2Cφ̂1φ̂1
(α) − 2V f χ

∗
n η∗

nCn̂1φ̂1
(α)
]
,

〈{
â(out)

n , â(out) †
n

}〉 = −p f

∫ 2π

0
dα e−inα

×[|χn|2Cn̂1n̂1 (α) + V2
f |ηn|2Cφ̂1φ̂1

(α)
]
, (45)

where we have defined the proportionality constant to be p f =
−a1+2γ

f
U

h̄V f
, and we have suppressed the term “out” in the

mode functions for phase χ (out)
n = (2ω

f
n a1+γ

f )−1/2e−iω f
n (t−t f ),

and density η(out)
n = −i h̄

U

√
ω

f
n

2a1+γ

f

e−iω f
n (t−t f ). The rest of

the independent second moments, 〈{â(out)
n , â(out)

n }〉 and
〈{â(out)

n , â(out) †
−n }〉, are zero.
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With these moments we have full information of the covari-
ance matrix of the final state in the creation and annihilation
variables

σout
(A,n) = 〈{

Â(out)
n , Â(out)

n

}〉
, (46)

out of which we obtain the covariance matrix we are look-
ing for as σout

(n) = B · σout
(A,n) · B−1, where the change-of-basis

matrix B is given in Eq. (B5). Then, following the procedure
outlined in Sec. III, we can quantify the quantum correlations
in this system via the logarithmic negativity EN [n], that deter-
mines the amount of entanglement in the phonon mode pairs
(n,−n) in the expanding toroidal BEC.

The preceding analysis also gives us a hint as to what types
of quantum correlations in the toroidal BEC lead to more
entanglement, i.e., larger logarithmic negativity. Following
the discussions in Sec. III and Appendix B, we note that in
the present two-mode case the covariance matrix is a 4 × 4
matrix, so that there are two symplectic eigenvalues of the
partially transposed covariance matrix. Since only the mini-
mum of these two (which we call νmin) can be less than unity
(and contribute to the logarithmic negativity), it is sufficient
to focus on νmin, which can be written in terms of the mode
space correlators given in Eq. (45):

νmin = 〈{
â(out)

n , â(out) †
n

}〉− ∣∣〈{â(out)
n , â(out)

−n

}〉∣∣. (47)

Since the logarithmic negativity EN [n] is related to the loga-
rithm of νmin, in order to maximize entanglement, we need this
eigenvalue to approach zero. Using Eq. (45), we can express
this condition in terms of real space correlators:

νmin = −A+ −
√

A2− + B2, (48)

where the functions A± and B are defined as follows:

A± = |χn|2Cn̂1n̂1 (n) ± |ηn|2Cφ̂1φ̂1
(n), (49)

B = 2|χn||ηn|Cn̂1φ̂1
(n), (50)

where we define the Fourier transforms of the real-space cor-
relators:

Cn̂1n̂1 (n) = p f

∫ 2π

0
dα e−inαCn̂1n̂1 (α), (51)

Cφ̂1φ̂1
(n) = p f V2

f

∫ 2π

0
dα e−inαCφ̂1φ̂1

(α), (52)

Cn̂1φ̂1
(n) = p f V f

∫ 2π

0
dα e−inαCn̂1φ̂1

(α). (53)

To maximize entanglement, we need νmin to be small. Setting
Eq. (48) to vanish, putting the square root on one side, and
squaring both sides leads to

Cn̂1n̂1 (n)Cφ̂1φ̂1
(n) = [Cn̂1φ̂1

(n)]2, (54)

a condition on the correlation functions, as a function of mode
index, that maximizes EN [n].

V. CONCLUDING REMARKS

This paper provides a quantitative analysis of the genera-
tion of quantum entanglement in the process of pair creation
in a thin toroidal BEC with a time dependent radius. This

system constitutes an analog simulator for the behavior of
quantum fields propagating in an expanding universe, and in
particular during inflation. Such expanding BEC rings have
been experimentally produced [27,28], where the redshift
of density perturbations induced by the expansion and an
analog of the process of reheating have been observed. The
phonon pair-production phenomenon in this system, triggered
by the expansion, was then studied theoretically in Ref. [30],
using a model based on the Bogoliubov–de Gennes (BdG)
Hamiltonian, which in the thin-ring limit produces equa-
tions of motion for azimuthal phonons that are analogous to
the Mukhanov-Sasaki equation that describes scalar curvature
perturbations in cosmology.

The generation of entanglement constitutes the quantum
signature of the pair-creation process and its observation
would be a smoking gun for the quantum origin of the ob-
served density perturbations. The goal of this paper is to
quantify such entanglement and to propose ways of measuring
it. Special attention has been paid in this paper to include the
effects of thermal noise, losses, and detector inefficiencies.

Our analysis can be applied to any expansion history of
the thin ring, as long as the ring is not expanding in the
initial and final regions. Having early- and late-time regions
where the radius of the ring is time independent permits one
to talk about particle creation, which in turn provides a way
to talk about entanglement production. Note that in the real
inflationary universe such in and out regions are not available,
since the universe keeps expanding after inflation ends (and
what happened before inflation is not yet understood); this
implies that there is no unambiguous way to define particle
creation and, consequently, the quantification of entanglement
also becomes ambiguous [21]—except if one restricts atten-
tion to Fourier modes whose wavelengths are much shorter
than the Hubble radius. In this sense, being able to engineer
nonexpanding in and out regions is advantageous in the study
of entanglement generation.

Techniques based on Gaussian states for continuous vari-
able quantum systems are a powerful and efficient tool to
quantify entanglement in this scenario. Our analysis has
shown that, as one could intuitively expect, quantum entan-
glement is fragile to noise and losses. When losses can be
approximated by a Gaussian channel, we have quantified the
region in the parameter space where thermal noise and losses
completely decohere the phonon pairs that would be otherwise
entangled. Under such circumstances, all quantum signatures
of the pair-creation process are gone, and one is left with
the amplification of thermal noise by the expanding ring, a
process that can be entirely accounted for in classical terms.
Our analysis, therefore, helps to delineate the boundary where
one could hope to observe genuine quantum effects.

We have further explored and introduced ideas, adapted
from Refs. [39,40], to amplify the generation of entanglement,
based on seeding the process with single-mode squeezed
states, in order to compensate for the deleterious effects afore-
mentioned, and to maintain the genuine quantum features
generated by the expansion present in the final state. In addi-
tion, we have sketched a protocol (inspired by the experiments
of Hellweg et al. [52]) to measure entanglement in the infla-
tionary toroidal BEC. Although our protocol may require a
prohibitively large amount of practical resources, it constitutes
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a concrete example of what would be needed to fully recon-
struct the final phonon state and to quantify entanglement.

We conclude this section by suggesting some directions for
future work. We note that, although we have focused on an
expanding BEC ring, our idea applies to other scenarios for
simulating pair creation in expanding (or contracting) back-
grounds, such as the two-dimensional quantum field simulator
considered in Refs. [56,57].

Future studies could look into constructing protocols to de-
tect entanglement in quantum states that have non-Gaussianity
present in them. It would also be interesting to compare the
procedure and results of this protocol with the experiments
of Chen et al. [58], that explore how to witness entanglement
inside a BEC using the Peres-Horodecki criterion.

In this paper, we studied how initial squeezing of one mode
can amplify entanglement [39,40]; extensions of this analysis
can include the case where modes n and −n are individually
squeezed, which may provide even more amplification of en-
tanglement in the final state. Additionally, future work may
investigate how such squeezing of the initial states may be
accomplished in a realistic toroidal BEC experiment.
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APPENDIX A: BEC IN AN EXPANDING TOROIDAL TRAP

In this Appendix, we fill in details, omitted from the
main text, that connect the BdG formalism for an expanding
toroidal BEC to the Mukhanov-Sasaki equation for inflation-
ary perturbations [Eq. (4) of the main text]. We start from
the following Hamiltonian for bosons in a position and time
dependent toroidal potential V (r, t ), with �̂(r, t ) the boson
field operator

Ĥ =
∫

d3r
[
�̂†(r, t )ĥ(r, t )�̂(r, t ) + 1

2
U |�̂(r, t )|4

]
, (A1)

where ĥ(r, t ) ≡ [− h̄2

2M ∇2 + V (r, t ) − μ], μ is the chemical

potential, U = 4πas h̄2

M is the interaction parameter, as is the
scattering length, h̄ is Planck’s constant, and M is the mass
of the bosonic atoms. The toroidal atom trap can be modeled
using a “flat-bottomed” potential which, in cylindrical coordi-
nates (ρ, θ, z), is

V (r, t ) = λ|ρ − R(t )|nt + 1
2 Mω2

z z2, (A2)

where λ and ωz characterize the confinement in the radial
and vertical directions, respectively, and R(t ) is the exter-
nal radius of the toroid. In the experiment of Ref. [27], the
parameter nt = 4. The condensate field operator obeys the
commutation relation [�̂(r, t ), �̂†(r′, t )] = δ(3)(r − r′). Plug-
ging the Hamiltonian into the Heisenberg equation of motion
−ih̄ dÂ

dt = −ih̄ ∂Â
∂t + [Ĥ , Â], and making use of the commuta-

tion relations for �̂(r, t ), leads to the operator equations of
motion:

ih̄∂t�̂(r, t ) = ĥ(r, t )�̂(r, t ) + U �̂†(r, t )�̂(r, t )�̂(r, t ). (A3)

For a study of perturbations, we make use of the Bogoliubov
approximation that expresses the condensate field in terms of
a coherent background �̂0 and perturbations δϕ̂:

�̂ = �0(1 + δϕ̂). (A4)

The strategy is to plug Eq. (A4) into Eq. (A3) and expand
order by order in δϕ̂, finding approximate equations of motion
at each order. The zeroth order in δϕ̂ simply yields the Gross-
Pitaevskii equation for �0(r, t ), which has the same form as
Eq. (A3) but with the replacement �̂ → �0. Importantly, we
will not assume �0(r, t ) to be static, but rather exhibit time
dependent dynamics due to the expanding toroidal trap.

Our main interest is the equation of motion to first order
in δϕ̂, essentially the BdG equations for this system. In doing
this, we find it convenient to switch to the Madelung represen-
tation for the fluctuations, by expressing the condensate field
in terms of density n̂(r, t ) and phase φ̂(r, t ) field operators:
�̂(r, t ) = √

n̂(r, t )eiφ̂(r,t ). Introducing linear perturbations for
the phase φ̂ = φ0 + φ̂1 and the density n̂ = n0 + n̂1, to first
order we get an expression for the condensate perturbation δϕ̂

in terms of perturbations in density n̂1(r, t ) and phase φ̂1(r, t ):

δϕ̂(r, t ) = n̂1(r, t )

2n0(r, t )
+ iφ̂1(r, t ), (A5)

where φ0(r, t ) and n0(r, t ) ≡ |�0(r, t )|2 denote the back-
ground phase and density, respectively, and the perturbations
satisfy [n̂1(r, t ), φ̂1(r′, t )] = iδ(3)(r − r′).

In terms of these perturbations, the linear-order equation of
motion following from Eq. (A3) can be written compactly as

ih̄∂t
(
δϕ̂) = − h̄2

2m

(2∇�0 · ∇
�0

+ ∇2
)
δϕ̂ + Un̂1. (A6)

This formula includes both representations of the linear per-
turbations, and below we seek formulas only including n̂1 and
φ̂1. When we do this we will also make some simplifying
approximations due to the geometry of the toroid. The first
approximation is to neglect the ρ and z dependencies of the
phase and density perturbations, thereby replacing φ̂1(r, t ) →
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φ̂1(θ, t ) and n̂1(r, t ) → V−1n̂1(θ, t ), where V = RA is a vol-
ume scale with A the cross-sectional area of the toroid (so that
2πV is the toroid volume).

The preceding steps hold in the thin-ring limit, where the
toroidal radius R(t ) is much larger than the typical length
scales characterizing the ring cross-sectional area. This im-
plies that an initial angle-dependent perturbation around the
ring will not excite density variations in the ρ and z direc-
tions. Next, we assume that, since the toroid is symmetric
with respect to angular variations, we can assume that the
background phase φ0 and density n0 are independent of the
angle θ . Finally, we assume that the superfluid velocity equals
the ring velocity v = h̄

M ∇φ0 = Ṙρ̂ (here Ṙ ≡ dR
dt ), implying

that the gradients of perturbations are orthogonal to the con-
densate velocity, i.e., v · ∇φ̂1 = 0 and v · ∇n̂1 = 0. However,
note that the divergence of condensate velocity is not zero:
∇ · v = h̄

M ∇2φ0 ≈ Ṙ
R .

Substituting the relation (A5) into (A6), using the above
approximations, and taking the real and imaginary parts of the
resulting expression, we finally obtain

− h̄

U
∂t φ̂1 = D̂θ n̂1, (A7)

∂t n̂1 = − Ṙ

R
n1 − h̄n0

MR2
∂2
θ φ1, (A8)

essentially the Euler and continuity equations for the phase
and density perturbations in the thin-ring limit. Here, D̂θ ≡
1 − h̄2

2MU ( ∂2
θ

2n0R2 − ∇2n0

2n2
0

+ (∇n0 )2

2n3
0

) accounts for quantum pres-
sure contributions to the equations of motion.

The next step is to plug in the operator expansion formulas
Eqs. (3), which leads to

− h̄

U
χ̇n = Dnηn, (A9)

η̇n = − Ṙ

R
ηn + h̄n0

MR2
n2χn, (A10)

where now

Dn ≡ 1 + h̄2

4MUn0

( n2

R2
+ ∇2n0

n0
− (∇n0)2

n2
0

)
, (A11)

where we emphasize that, generally, n0 depends on ρ, z, and
t . Upon eliminating ηn in favor of χn, we finally arrive at

χ̈n + (
1 + γn

) Ṙ

R
χ̇n + αn

n2c2

R2
χn = 0, (A12)

where we have defined the speed of sound c =
√

Un0
M (which

also generally depends on ρ, z, and t since it is a function of
n0) and the quantum pressure parameters

γn = −RḊn

ṘDn
, (A13)

αn = Dn. (A14)

In general, γn and αn are dependent on the local atom density
in the expanding toroidal trap (via n0), as well as the time
dependent ring radius R and the mode index n. These param-
eters will therefore be sensitive to the precise details of the
experimental setup (such as the shape of the trapping poten-

tial). Nonetheless, following Ref. [30] we can make estimates
based on the experiments of Ref. [27].

In making such estimates, we neglect the first term in
parentheses on the right side of Eq. (A11), since it is ∝ R−2,
while the latter terms are ∝ 1/w2, with w the condensate
width across the toroid. Since we expect w � R, if the mode
index n is not too large then neglecting this term is valid.
Strictly, w is the width of the background condensate, and
if we assume a Gaussian spatial profile for the condensate
n0(ρ, z) = e−(ρ2+z2 )/(2w)2

, then we get

Dn � 1 − 3

8

h̄2

c2M2w2
= 1 − 3

4

ξ 2

w2
(A15)

where c is now a constant, defined by approximating n0(ρ, z)
by its value at ρ → 0 and z → 0 (the central density in the
toroid). To get Eq. (A15), we made a similar approximation
to the derivative terms of Eq. (A11), evaluating the derivatives
before taking the limits ρ → 0 and z → 0. In the final equality
of Eq. (A15), we expressed the result in terms of the coherence
length ξ = h̄√

2Mc
.

If we assume ξ � w, which indeed holds for the ex-
periments of Ref. [27], then we expect Dn � 1. It is thus
tempting (and arguably reasonable) to take αn � 1 and γn � 0
in Eq. (A12). As discussed in Ref. [30] (where the estimate
γn ≈ 0.1 is also found), this is valid for αn, since a small
deviation of α from unity can be absorbed into the speed
of sound parameter c. Taking γn → 0, however, qualitatively
changes the behavior of Eq. (A12), since in that limit it can
be written as (reintroducing time arguments which were pre-
viously suppressed)

1

R(t )

d

dt
[R(t )χ̇n(t )] + n2c2

R(t )2
χn(t ) = 0, (A16)

that is solved by

χn(t ) = χnexp
[

± in
∫ t

0
dt ′ c

R(t ′)

]
, (A17)

a solution that preserves the mode amplitude as a function of
time during expansion. This means that, within our analysis,
a toroidal BEC expanded according to Eq. (7) with γn = 0
will have zero particle production, i.e., |βn|2 = 0. By contrast,
at nonzero γn = γ the solution changes qualitatively, being
given [for the case of R(t ) = R0et/τ ] by

χn(t ) = e− t
2τ

(1+γ )[AnJ 1+γ

2
(z) + BnJ− 1+γ

2
(z)], (A18)

with z = ncτ
R(t ) and Jn(z) the modified Bessel function. This tells

us that, while the parameter γ is small, nonzero γ is crucial for
the phenomenon of particle creation. Using a Thomas-Fermi-
type approximation, along with parameters from Ref. [27], in
Ref. [30] the estimate γ ≈ 10−1 was found. Since γ is small,
but nonzero, in the main text we regard it as an experimentally
determined parameter with 0 < γ < 1.

APPENDIX B: GAUSSIAN STATES AND LINEAR
EVOLUTION: A SHORT REVIEW

For self-consistency, in this Appendix we provide a sum-
mary of some elements of Gaussian states for continuous
variable quantum systems and their evolution under quadratic
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Hamiltonians. See Ref. [46] for proofs omitted here. Note that
we choose units in which h̄ = 1 in this Appendix.

1. Evolution of linear systems with N degrees of freedom

Consider a dynamical system containing N classical de-
grees of freedom. Quantum mechanically the system is
described by N pairs of canonically conjugate operators
x̂I and p̂I , with I = 1, · · · , N . Let us define a vector r̂ made
of all canonical pairs:

r̂ = (x̂1, p̂1, · · · , x̂N , p̂N )�. (B1)

In the following, we will assume that x̂I and p̂I have been
rescaled using the dimensionful constants of the problem un-
der consideration to have dimensions of action, as commonly
done when working with harmonic oscillators. Let r̂i be the ith
component of r̂, where low case indices i, j, · · · run from 1 to
2N (capital letter indices I, J, · · · , instead, run from 1 to N).
Then, the canonical commutation relation can be succinctly
written as

[r̂i, r̂ j] = i �i j, � ≡
⊕

N

(
0 1

−1 0

)
, (B2)

where the antisymmetric matrix � is the (inverse of the)
symplectic form of the classical phase space.

We are interested in processes where there exist asymptotic
regions in the past and future, where one can define preferred
canonical operators r̂(in) and r̂(out), and an interaction region in
between. We want to describe the scattering process between
r̂(in) and r̂(out). In this paper we restrict attention to systems
whose Hamiltonians are quadratic in the canonical variables r̂.
Hence, the equations of motion are linear and, consequently,
the in and out modes are related by a simple matrix multipli-
cation:

r̂(out) = S · r̂(in), (B3)

where S is the scattering matrix. As shown below, this matrix
can be obtained by solving the classical equations of motion
(or equivalently, it can be constructed from the Bogoliubov
coefficients). Since the time evolution of a closed system is
a canonical transformation, S must leave the symplectic form
invariant, S · � · S� = �. In other words, S must belong to
the symplectic group, S ∈ Sp(R, 2N ).

The scattering process can be equivalently formulated us-
ing annihilation and creation variables, instead of canonical
operators. Define, for each canonical pair (x̂I , p̂I ), the non-
Hermitian operator âI = 1√

2
(x̂I + i p̂I ). If we define the vector

Â ≡ (â1, â†
1, · · · , âN , â†

N ), (B4)

then the relation between r̂ and Â reads

Â = B · r̂, B ≡
⊕

N

1√
2

(
1 i
1 −i

)
, (B5)

where we have denoted by B the “change of basis” matrix be-
tween Â and r̂. In these variables, the canonical commutation

relations read

[Â, Â] = B [r̂, r̂] B−1 = B i � B� = �.

This expression compactly captures the familiar commutation
relation of annihilation and creation operators.

The scattering matrix between in and out modes can now
be written as

Â(out) = S(A) · Â(in), (B6)

where S(A) is related to S(r) by S(A) = B · S(r) · B−1. It is
common to refer to the components of S(A) as Bogoliubov
coefficients αIJ and βIJ :

S(A) ≡

⎡
⎢⎢⎢⎢⎣

α11 β∗
11 · · · α1N β∗

1N
β11 α∗

11 · · · β1N α∗
1N

...
...

...
...

...

αN1 β∗
N1 · · · αNN β∗

NN
βN1 α∗

N1 · · · βNN α∗
NN

⎤
⎥⎥⎥⎥⎦. (B7)

The matrix S(A) also belongs to the symplectic group. The
property S(A) · � · S�

(A) = � is equivalent to the perhaps more
familiar constraints satisfied by Bogoliubov coefficients:∑

K

(αIKα∗
JK − β∗

IKβJK ) = δIJ ,

∑
K

(αIKβ∗
JK − αIKβ∗

JK ) = 0. (B8)

2. Gaussian states

We restrict our analyses to Gaussian states. Recall that
Gaussian states ρ̂, pure or mixed, are quantum states for which
the quantum moments 〈r̂i1 · · · r̂in〉 satisfy the same relations as
the statistical moments of a Gaussian multivariable probabil-
ity distribution. This implies, in particular, that the first and
second moments completely determine the rest. Therefore,
rather than working with the density matrix ρ̂, which is infinite
dimensional, one can alternatively describe in full a Gaussian
state by the 2N dimensional vector of its first moments

μ = 〈r̂〉, (B9)

and its symmetrized second moments (the so-called covari-
ance matrix)

σ = 〈{(r̂ − μ), (r̂ − μ)〉, (B10)

where the curly brackets denote the anticommutator.5

Gaussian states include vacua, coherent, thermal, and
squeezed states. Therefore, although our analysis is restricted,
the family of Gaussian states is sufficiently general to describe
most of the states one can easily create and manipulate in
the laboratory. To give a few examples, the vacuum of a set

5One subtracts μ in the definition of σ to avoid having redundant
information in the first and second moments. One focuses on the
symmetric part of the second moments because the antisymmetric
part is determined by the canonical commutation relations, and is
state independent. Therefore, the pair (μ, σ ) is the minimum infor-
mation needed to completely and uniquely characterize a Gaussian
state.
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of N oscillators is characterized by μ = 0, σ = I2N ; a coher-
ent state is characterized by μ �= 0, σ = I2N ; and a thermal
state is characterized by μ = 0, σ = ⊕

I (1 + 2 nI ) I2, where
nI is the mean number of thermal quanta in the mode I =
1, · · · , N . Thermal states are mixed Gaussian states.

Many properties of a Gaussian state can be extracted easily
from σ. One such property that we use in the main body of
this paper is the purity P. It is obtained from the covariance
matrix of the Gaussian state by P(σ ) = 1/

√
detσ ; it is 1 for

pure states and smaller than 1 for mixed states. Note the purity
does not depend on the first moments.

Evolving Gaussian states under quadratic Hamiltonians is
very simple. The linearity of the evolution guarantees that an
initial Gaussian state (μ(in), σ (in) ) evolves to another Gaussian
state (μ(out), σ (out) ) determined by

μ(out) = Sμ(in), (B11)

σ (out) = Sσ (in)S�. (B12)

3. Entanglement in Gaussian states

Consider a partition of the system of N modes in two
subsystems, each made of a subset of the canonical pairs
(x̂I , p̂I ) (these are Gaussian subsystems). The first moments
and covariance matrix of a Gaussian state for the entire system
have the following form:

μAB = (μA,μB)�, (B13)

σAB =
[
σ

(red)
A CAB

C�
AB σ

(red)
B

]
(B14)

where (μA, σ
(red)
A ) and (μB, σ

(red)
B ) describe the reduced Gaus-

sian state of each subsystem individually. The matrix CAB

describes the correlations between the two subsystems; these
correlations could be classical or contain entanglement.

If the total state is pure, the von Neumann entropies of
the reduced state of each of the subsystems are equal to each
other, and it provides a faithful quantifier entanglement be-
tween A and B—the so-called entanglement entropy. The von
Neumann entropy of a Gaussian state (μ, σ ) for an N-mode
system can be easily computed from the N symplectic eigen-
values of σ, denoted by νI , with I = 1 · · · N . The symplectic
eigenvalues are equal to the modulus of the eigenvalues of the
matrix σ ik�−1

k j . The von Neumann entropy reads

S[σ] =
N∑
I

[(
νI + 1

2

)
log2

(
νI + 1

2

)
(B15)

−
(

νI − 1

2

)
log2

(
νI − 1

2

)]
. (B16)

If the total state is mixed, the von Neumann entropy of the sub-
systems is no longer an entanglement measure. A convenient
measure for pure and mixed states alike is the logarithmic
negativity, EN . The logarithmic negativity is in one-to-one
correspondence with the violation of the PPT criterion for
quantum states [47–49], a criterion that all separable quan-
tum states obey. For a Gaussian state made of two Gaussian

subsystems A and B, it is given by

EN [σ] =
∑

I

max[0,− log2 ν̃I ], (B17)

where ν̃I are the symplectic eigenvalues of the partially trans-
posed covariance matrix σ̃, defined from σ by reversing the
sign of all components involving one momenta p̂I of the
subsystem B. If either of the Gaussian subsystems is made of
a single mode, (NA = 1), regardless of the size of the other
subsystem, EN is a faithful entanglement quantifier, in the
sense that EN = 0 if and only if the state is separable. It is
also an entanglement monotone, and hence it can be used to
quantify entanglement (see Ref. [46] for further details). For
Gaussian quantum states, the value of the EN has an opera-
tional meaning as the exact cost (measured in “Bell pairs” or
ebits) that is required to prepare or simulate the quantum state
under consideration [59,60].

In the analog gravity literature, there has been focus on
a particular Cauchy-Schwarz inequality to evaluate entangle-
ment between two single-mode systems in a state ρ̂AB, first
introduced in Refs. [61] and further discussed in Refs. [62,63]
(see also Ref. [64]). Consider the quantity

� ≡ 〈n̂A〉 〈n̂B〉 − |〈âAâB〉|2, (B18)

where âA and âB are annihilation operators for each mode,
and n̂A and n̂B are number operators defined from them, re-
spectively. The inequality � < 0 is a sufficient condition for
entanglement. It is not necessary though, in the sense that
some entangled states do not violate the inequality. It is not
an entanglement monotone either [40], even when restricted
to Gaussian states. But it is a useful criterion to signal the
presence of entanglement in many circumstances, particularly
convenient because its evaluation requires only knowledge of
three moments 〈n̂A〉, 〈n̂B〉, and 〈âAâB〉. In contrast, EN requires
knowledge of the entire covariance matrix, something that
demands full state tomography on the two-mode system.

APPENDIX C: THE CASE OF A C2 SCALE FACTOR

In this Appendix, we describe the expanding toroidal BEC
dynamics with a C2 scale factor which describes asymptoti-
cally static regions in the past and future with an inflationary
phase in between. I.e., we study a(t ) that is continuous and
also has continuous first and second time derivatives. This was
studied analytically by Glenz and Parker [45] for the case of a
scalar field in a (3 + 1)-dimensional spacetime.

As discussed in the main text, scalar modes χk in the ex-
panding toroidal BEC evolve on an analog FLRW background
characterized by scale factor a(t ) and satisfy the Mukhanov-
Sasaki equation [42–44]:

χ̈k + (1 + γ )
ȧ

a
χ̇k + k2

a2
χk = 0, (C1)

which can be derived from Eq. (4) by setting α = 1, substitut-
ing R(t ) = R0a(t ), and defining the wave number k = nc/R0

in terms of the mode index. The entire evolution of the scale
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factor consists of three regimes:

a(t ) =
⎧⎨
⎩

ai(t ), for t < t1,
ainf (t ), for t1 � t � t2,
a f (t ), for t > t2,

(C2)

where ainf (t ) is an exponential function in proper time and the
functions ai(t ) and a f (t ) are asymptotically constant in the fu-
ture and past, and match (in a C2 manner) with ainf (t ) at times
t1 and t2, respectively. To write explicit forms for these func-
tions, it is convenient to switch to the harmonic time variable
τ , defined in terms of proper time t by dτ = a(t )−(1+γ )dt . We
emphasize that this is distinct from the parameter τ used in
the main text to define the Hubble timescale.

The initial regime (denoted by subscript i) has the follow-
ing smooth scale factor:

ai(τ ) = [
a2γ

1i + (
a2γ

2i − a2γ

1i

)
nF(−τ/si )

] 1
2γ , (C3)

where nF(x) = (ex + 1)−1 is the Fermi-Dirac function. The
above scale factor approaches a1i at early times (τ → −∞)
and approaches a2i at late times (τ → ∞), with si the
timescale associated with this initial regime. Then, at some
time t1, an inflationary regime sets in where the scale factor is
given by an exponential in proper time:

ainf(t ) = a(t1)eHinf (t−t1 ), (C4)

where Hinf is the constant Hubble parameter whose inverse
determines the timescale of the expansion. To achieve C2, we

demand that at t = t1 the scale factors ai and ainf are equal,
and that the maximum value of the Hubble parameter H (t ) =
a−1da/dt of the first regime equals Hinf (ensuring continuity
of the first and second derivatives). This helps us obtain the
time τi = τi(t1) at which the first regime smoothly joins onto
the inflationary regime:

τi = si log
(1 + γ )

(
a2γ

1i − a2γ

2i

)+ Ci

4γ a2γ

2i

. (C5)

From this, we obtain the scale factor a(t1) at t1 [see Eq. (C4)]:

a(τi ) = a(t1) =
[−(1 + γ )

(
a2γ

1i + a2γ

2i

)+ Ci

2(−1 + γ )

] 1
2γ

. (C6)

Lastly, by equating the Hubble rate H (t ) at the junction t = t1,
we find the Hubble parameter Hinf during inflation to be

Hinf = [−2γ
(
a2γ

1i + a2γ

2i

)+ Ci](
a2γ

1i − a2γ

2i

)
si(−1 + γ )(1 + 3γ )

×
[−(1 + γ )

(
a2γ

1i + a2γ

2i

)+ Ci

2(−1 + γ )

]− (1+γ )
2γ

. (C7)

In all these expressions, i.e., Eqs. (C5)–(C7), we used the
function Ci which is defined as follows:

Ci =
√

(1 + γ )2a4γ

1i + (14γ 2 − 4γ − 2)2a2γ

1i a2γ

2i + (1 + γ )2a4γ

2i . (C8)

The preceding steps ensure that the first two regimes of
Eq. (C2) match in a C2 manner at t1. Now, we repeat these
steps at time t = t2, where inflation ends and the final regime
begins (denoted by subscript f ). We take the final regime scale
factor to have a form similar to Eq. (C3):

a f (τ ′) = [
a2γ

1 f + (
a2γ

2 f − a2γ

1 f

)
nF(−τ ′/s f )

] 1
2γ , (C9)

but with the replacement i → f , and using a different time
variable τ ′ for this regime. Again demanding the continuity
of the scale factors a f (τ ′) and ainf(t ) at t = t2 (equivalent
to τ ′ = τ ′

f ), we obtain the timescale of the final regime as
s f = si(i → f ), and the joining time to be τ ′

f = τi(i → f )
[obtained by replacing i → f in Eq. (C5)]. It is convenient
to express these results in terms of the number of e fold-
ings N that is defined to be logarithm of the ratio of the
final scale factor and initial scale factor. Thus we write
the following:

a2i = a1ie
Ni , a2 f = a2i eNinf+Nf . (C10)

In addition to this, if we also assume that the initial scale factor
in the remote past is unity, i.e., a1i = 1, then we end up with
four independent variables—Ni, si, Ninf, and Nf —that char-
acterize the C2 scale factor (C2) for the inflationary toroidal
BEC. Our next task is to solve Eq. (C1) in all three regimes,
matching the solutions.

To do this, it is convenient to rewrite the Mukhanov-Sasaki
equation (C1) in terms of harmonic time as follows:

χ ′′
k + k2a2γ χk = 0, (C11)

where the prime symbol denotes differentiation with respect
to the harmonic time τ . For the initial regime (C3), the general
solution to (C11) is a linear combination of hypergeometric
functions 2F1(a, b; c; d ):

χk (τ )

= δ1(k)√
2kaγ

1i

e−iaγ

1ikτ
2F1(−ai + bi,−ai − bi; 1 − 2ai; −eτ/si )

+ δ2(k)√
2kaγ

1i

e−iaγ

1ikτ
2F1(ai + bi, ai − bi; 1 + 2ai; −eτ/si ),

(C12)

where δ1,2(k) are coefficients that are fixed by imposing initial
conditions on the modes, ai = ikaγ

1isi and bi = ikaγ

2isi. As-
suming that the modes are in a vacuum state at early times
τ → −∞, we can take them to consist of only positive-
frequency plane-wave solutions:

lim
τ→−∞ χk (τ ) = 1√

2kaγ

1i

e−iaγ

1ikτ . (C13)
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This condition helps us pick out the correct form of the mode functions in the initial regime to be

χk (τ ) = 1√
2kaγ

1i

e−iaγ

1ikτ
2F1(−ai + bi,−ai − bi; 1 − 2ai; −eτ/si ). (C14)

In the inflationary regime with the exponential scale factor (C4), the Mukhanov-Sasaki equation yields the following mode
solution:

χk (t ) = i

2

√
π

Hinf
a

− 1+γ

2
inf (t )

[
E (k)H (1)

1+γ

2

( k

ainf(t )Hinf

)
− F (k)H (2)

1+γ

2

( k

ainf(t )Hinf

)]
,

where H (1) and H (2) are Hankel functions of first and second kind, respectively, and the coefficients E (k) and F (k) are fixed by
matching the modes and their first derivatives at t = t1. Finally, the solution to Mukhanov-Sasaki equation in the final regime
(C9) is similar to (C12) but with i → f :

χk (τ ′) = C(k)√
2kaγ

1 f

e−iaγ

1 f kτ ′
2F1(−a f + b f ,−a f − b f ; 1 − 2a f ; −eτ ′/s f )

+ D(k)√
2kaγ

1 f

eiaγ

1 f kτ ′
2F1(a f + b f , a f − b f ; 1 + 2a f ; −eτ ′/s f ), (C15)

where a f = ikaγ

1 f s f and b f = ikaγ

2 f s f , and the coefficients
C(k) and D(k) are fixed by matching the mode functions
and their first time derivatives at t = t2. At late times, the
scale factor (C9) approaches the constant value a2 f , and thus
we expect that the modes behave as a linear combination of
positive and negative frequency plane waves:

lim
τ→∞ χk (τ ′) ∼ 1√

2kaγ

2 f

(
αke−iaγ

2 f kτ ′ + βkeiaγ

2 f kτ ′)
, (C16)

where αk and βk are the Bogoliubov coefficients that satisfy
|αk|2 − |βk|2 = 1. Following the steps in Ref. [45], we get the
following expressions for the Bogoliubov coefficients:

αk =
(

a2 f

a1 f

)γ /2

[C(k)B(k) + D(k)Bt (k)], (C17)

βk =
(

a2 f

a1 f

)γ /2

[C(k)A(k) + D(k)At (k)], (C18)

where we define the following functions:

A(k) = (1 − 2a f )(2b f )

(−a f + b f )(1 − a f + b f )
,

B(k) = (1 − 2a f )(−2b f )

(−a f − b f )(1 − a f − b f )
, (C19)

and the other two functions are related to these via At (k) =
A(k)[a f → −a f ] and Bt (k) = A(k)[b f → −b f ].

The preceding equations determine the particle creation
number |βk|2 for an inflationary toroidal BEC undergoing
an expansion that is C2 everywhere with a exponential (“de
Sitter”-like) central regime. Next, we show that this particle
creation exhibits a universal behavior reflecting intrinsic prop-
erties of the inflation (such as the damping parameter γ ). To
do this, in Fig. 11, we show a log-log plot of the particle
creation probability |βk|2 vs the normalized wave number q

defined as follows:

q = k√
γ

2 + γ 2

4 Hinfa f (τ ′
f )

. (C20)

To focus on inflationary physics, we chose the number of e
foldings to be small in the initial and final regimes [Ni =
Nf = log(1.1)] and large in the de Sitter regime (Ninf = 20).
Figure 11 shows that there exists an intermediate regime of
wave numbers for which the modes only experience the infla-
tionary expansion with the particle creation spectrum showing

FIG. 11. Log-log plot of particle creation number |βq|2 vs the
normalized wave number q (red circles). For small wave numbers,
|βq|2 is constant, for intermediate wave numbers it shows a universal
linear behavior due to inflation, and for large wave numbers it rapidly
decays. In the linear inflationary regime, |βq|2 ∼ q−γ and thus the
slope of the log-log plot is γ (green circles, which decay exactly as
q−γ , have been added for comparison). For this plot, and without loss
of generality, we take in the initial regime the scale factor to be a1i =
1, number of e folds Ni = log(1.1), and timescale for expansion si =
1. We chose the inflationary regime to have a large number of e folds
Ninf = 20, whereas for the final regime we took Nf = log(1.1), and
we chose the quantum pressure to be γ = 0.1.
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the power-law behavior:

|βq|2 ∼ q−γ , (C21)

that reflects the damping parameter γ . This is precisely what
is expected from an analysis of the asymptotic behavior of the
Hankel function H (1)

1+γ

2

. Thus, the particle-production spectrum

in a expanding toroidal BEC indeed shows universal behavior
due to inflation when the scale factor is C2 [45].

Note that in the main text we have focused on a C0

expansion; i.e., the radius R(t ) [or the scale factor a(t )] is
continuous, but its derivatives are not. In such cases, we get a
different power law |βq|2 ∼ q−2 at asymptotically large mode
wave vector [see Eq. (10)] with the power law |βq|2 ∼ q−γ

holding at intermediate wave vectors [see Eq. (11)]. In addi-
tion, the C0 case exhibits oscillations. One might ask whether
the C2 case with insignificant initial and final regimes (i.e.,
Ni, si, Nf , and s f are all very small) is able to reproduce
these features of the C0 case. We find that in this limit, |βq|2

pertaining to the C2 case indeed starts exhibiting oscillations,
but its overall magnitude and power law with respect to the
mode index do not agree with the C0 case. Thus some of
the features of the C0 case are not rooted entirely in the
inflationary regime, and some of them result just from the
C0 character of R(t ) (a discontinuity in the derivative), i.e.,
they would not appear for any smooth R(t ). In the laboratory,
any R(t ) that one can create is smooth, and in this sense
some of the features of the C0 could be called mathematical
artifacts. On the other hand, the C0 expansion has advantages
in that it allows us to solve for the β coefficients analytically.
Additionally, even though the C2 case more plausibly avoids
such artifacts, the universal linear feature due to inflation
only appears in the limit of large number of inflationary e
foldings, which might not be possible to achieve in a real
experiment.

In any case, the formulas developed in this paper apply
equally well to all expansion histories that are time indepen-
dent in the past and future.
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