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Precision limits of magnetic T 3-atomic gravimetry due to atomic cloud expansion
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A promising alternative for atomic gravimetry has been proposed using a magnetic-field gradient, which has
a T 3 scaling on the phase and does not require counterpropagating Raman beams. We analyze the limits in the
precision of this method coming from the thermal expansion of the atomic cloud. We determine the requirements
of microwave power and magnetic-field gradient to keep a resonant excitation. We find that there is a minimum
microwave power required for the measurement. At high microwave powers, the relative precision in gravimetry
(σg/g) approaches 10−7 in a single measurement, which is good enough for many field applications.
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I. INTRODUCTION

In the last decades, atom interferometry has emerged as
an important tool for a wide range of applications [1,2] that
include gyroscopes [3,4], gradiometers [5], and gravimeters
[6] for inertial sensing and navigation [7]; gravitational-wave
detection [8–10]; measurement of the fine-structure constant
[11] and the gravitational constant G [12]; and tests of gen-
eral relativity [13]. Furthermore, portable gravimetric sensors
based on atom interferometry [14–16] have promising appli-
cations in climate research [17], geodesy [18], archaeology
[19,20], determination of water content [21], and monitoring
of volcano activity [22]. A comprehensive review of the field
of atom interferometry can be found in Refs. [23,24], and a
brief review of atom gravimetry is given in Ref. [25].

Due to its fundamental and practical importance, special
attention has been put to the light-pulse atom interferometer
originally proposed by Kasevich and Chu in 1991 [26,27].
Several alternatives have been proposed to improve this in-
terferometer. Some of them try to increment the sensitivity
by increasing the relative phase between the arms of the
interferometer. This can be achieved by increasing the size
of the momentum-space splitting. Typically, the momentum
transferred by a two-photon process is 2h̄k where k is the
wave number. However, various techniques have been ex-
plored to achieve larger relative momentum transfer. Early
studies demonstrated momentum transfers in the order of a
few multiples of photon recoil momentum (h̄k) [28–30]. Sub-
sequent advancements pushed the limits, achieving transfers
of tens [31–34] and more than 100 [35–37] multiples. No-
tably, a remarkable milestone was reached with an impressive
momentum transfer of 408h̄k [38].

Nevertheless, large momentum transfer is not the only way
to increase the relative phase between the coherent superpo-
sition of states. Recently, atomic interferometers for which
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the relative phase scales up as T 3 instead of T 2 (where T
is the time between pulses) have been reported. In this type
of interferometer, the T 3 behavior is obtained by separating
both paths with the help of a constant acceleration differ-
ence between them, instead of a relative velocity difference
[39]. To the best of our knowledge, the first experimental
realization of an atomic interferometer showing a T 3 scal-
ing of the phase (that was not due to gravity gradients or
configurations sensitive to rotations) was obtained by using
the continuous-acceleration Bloch technique [40,41]. In this
method, the difference in acceleration is achieved by perform-
ing Bloch oscillations in an optical lattice. This interferometer
did not exhibit a purely cubic phase, as it also contained a
quadratic phase term that was introduced by the initial mo-
mentum separation created by the use of a Bragg-diffraction
pulse acting as a beam splitter. In order to observe a purely
cubic phase, the relative difference in acceleration has to be
caused by an external field [39,42]. As far as we know, the first
implementation of this type of atomic interferometer showing
a sole cubic phase was reported by Zimmermann et al. [43].

In field-enhanced atom interferometry, the matter waves in
the two arms of the interferometer are split due to a differ-
ence in acceleration, rather than velocity, resulting from the
application of an external field that acts distinctly on the two
arms. The external field can either be electric or magnetic in
nature [42,44]. The T 3 interferometer proposed in Ref. [43]
and subsequent experiments have been carried out using an
external magnetic-field gradient that interacts with the total
magnetic moment of the atom to induce an acceleration [39].
Implementing such interferometers is challenging as the field
gradients must be controlled with high accuracy to maintain
coherence, something necessary for the wave packets to be
successfully recombined at the output port [45–47]. Another
distinctive feature of this method is the need for four pulses
with zero net momentum transfer to close the interferometer.

In the literature, two main types of T 3 interferometers
are described. One type involves keeping the magnetic-field
gradient constant in time while the internal state of the atom

2469-9926/2024/109(1)/013304(11) 013304-1 ©2024 American Physical Society

https://orcid.org/0009-0005-3543-7194
https://orcid.org/0000-0002-7560-2650
https://orcid.org/0000-0001-9702-3265
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.013304&domain=pdf&date_stamp=2024-01-04
https://doi.org/10.1103/PhysRevA.109.013304


ZUNIGA, GOMEZ, AND CASTANOS-CERVANTES PHYSICAL REVIEW A 109, 013304 (2024)

is being changed in some way [43]. The other type, named
the Stern-Gerlach T 3-atomic interferometer, involves keeping
the atom in the same internal state while the magnetic-field
gradient is being changed through the use of magnetic pulses
[48]. Although both approaches are equivalent and can mea-
sure the same cubic interferometer signal with the right choice
of conditions [48], the extreme accuracy needed to control the
magnetic field makes the Stern-Gerlach T 3-atomic interfer-
ometer less suitable for precision measurements. Furthermore,
there exists a delay time set by the speed of the electronic
circuits that limits its precision [48]. Despite these drawbacks,
the Stern-Gerlach interferometer with cubic scaling of the
phase has been successfully used to measure magnetic-field
gradients [48]. An alternative implementation involves the
use of an atom chip to generate the magnetic-field pulses
[49]. By using a butterfly configuration, the T 3 interferometer
becomes insensitive to constant accelerations and has been
proposed as a method for measuring field gradients [50]. More
recently, this type of interferometer has been suggested as a
potential tool for performing interferometric experiments on
macroscopic objects doped with a single spin [49,51].

We analyze the precision of a T 3 interferometer similar
to the one proposed in Ref. [43]. The atom undergoes free
fall in the presence of a magnetic-field gradient in the vertical
direction. The interferometer takes advantage of the magnetic
acceleration to physically separate a coherent superposition
of hyperfine states with different sensitivities to the magnetic

field. The sequence of pulses π/2
T−→ π

2T−→ π
T−→ π/2 closes

the interferometer in position and momentum and results in
the characteristic T 3 dependence of the relative phase accu-
mulated between both states, which in this case is sensitive
to the gravitational acceleration g. Unlike the T 3 interferom-
eter proposed in Ref. [43], which uses Raman light pulses to
control the internal state of the atom, we consider excitation
using microwaves that eliminate the need for Raman beams,
simplifying considerably the experimental setup and reducing
problems related to aberrations [52], given the much bigger
wavelength of the microwaves. Simpler systems are highly de-
sirable for portable sensors given that they are robust and still
reach the minimum sensitivity required for field applications.

Obtaining good precision in this kind of interferometer
requires finding ways to account for the magnetic-field fluc-
tuations, nonlinearities both in the field and in the atomic
response to the field, and magnetic gradients in the transverse
directions [42]. Even when this interferometer is less affected
by wavefront aberrations [52] or Doppler shifts [53], there is
a Zeeman shift to consider. We show that the wave-packet
expansion introduces a limit on the duration of the interfero-
metric sequence, and therefore, on the measurement precision.
We identify the microwave power and magnetic-field gradient
combinations that give the best sensitivity.

This paper is organized as follows. Section II gives the
expression for the gravitational phase in the ideal case and
establishes the spatial extent where one has resonant excita-
tion. Section III presents the limits in the precision due to the
expansion of the atomic cloud. We include two regimes, one
for the case of a pure state, and the other for a trapped sample
in thermal equilibrium. Here, we include all the constraints
that must be fulfilled to have a properly working gravimeter,

FIG. 1. Position (upper pair of curves [in blue]) and velocity
(lower pair of curves [in red]) as a function of time for the upper
(solid lines) and lower (dashed lines) paths. The application of the π

pulses is indicated by the light gray vertical bars. We considered 87Rb
atoms, a gradient of η = 0.05 T/m, T = 100 ms, mF = m′

F = 1, and
gF = ±1/2 for the two levels respectively.

and we identify the values of microwave power and magnetic-
field gradient needed to implement the experiment.

II. ATOMIC GRAVIMETRY IN A MAGNETIC-FIELD
GRADIENT

Atomic gravimetry is based on the splitting and recom-
bination of an atomic wave packet. With vertical splitting,
each part of the superposition evolves at a different height,
giving an energy difference that is sensitive to the gravi-
tational potential. In traditional atomic gravimetry, the two
terms in the superposition have different momentum due to
the momentum transfer in a Raman transition [27]. Recently,
an atomic gravimeter has been proposed where the spatial
separation of the wave packet happens because of a difference
in acceleration [43].

Consider an atom initially in the hyperfine state |F, mF 〉.
A π/2 pulse prepares a superposition between two levels
|F, mF 〉 and |F ′, mF ′ 〉. In a magnetic-field gradient along the
z axis, the two states experience a different acceleration that
depends on their magnetic dipole moment, in addition to the
gravitational acceleration g. After a time T , a π pulse is
applied, then after 2T there is a second π pulse, and after an
extra T a π/2 pulse closes the interferometer (Fig. 1). The
scheme requires no momentum transfer so that microwaves
can be used for the excitation, eliminating the need for
counterpropagating Raman beams. This brings a significant
simplification for atomic gravimetry, considering the com-
plexity of the Raman beams and their sensitivity to aberrations
[52].

Comparing the wave-function splitting due to a difference
in position, velocity, or acceleration, the relative phase be-
tween the two paths scales with the total measurement time
(Tt ) as Tt , T 2

t , and T 3
t respectively [40], or even higher for a

varying acceleration. Therefore, there is an enhanced signal
when using the splitting with acceleration for a long enough
measurement time Tt . Here we show that there is a fundamen-
tal limitation on how long the measurement time can be due
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to the wave-packet expansion, and we determine the precision
that can be reached with this kind of atomic gravimeter. We
limit here to an analysis of the precision of the measurement,
leaving for future work the study of the systematic effects that
limit the accuracy.

A. Phase of a magnetic T 3-atomic gravimeter

Consider an atom within a magnetic-field gradient in the z-
axis direction subject to microwave excitation Bp(t ). Focusing
on the evolution along the z axis the Hamiltonian is [54]

H (t ) = 1

2m
P2

z + mgZ + HA − μ · [ηZ ẑ + Bp(t )], (1)

with HA the atomic structure Hamiltonian and μ the magnetic
dipole moment operator of the atom. The solution to this
Hamiltonian was studied in Ref. [54], and it was used to
demonstrate a velocity and position selector.

For concreteness, consider the 87Rb ground states |g1〉 =
|F = 1, mF = 1〉 and |g2〉 = |F ′ = 2, mF ′ = 1〉 with a coher-
ent state spatial wave function

ψ (z, 0) =
(

1

2πσ 2
z

)1/4

exp

[
−1

4

(
z − z0

σz

)2

+ i
p0

h̄
z

]
,

(2)

where z0 and p0 are the initial position and momentum, and
σz is the standard deviation in position or width of the atomic
wave packet. Using levels with opposite magnetic responses
(gF = 1/2 and gF ′ = −1/2) alongside the sequence of pulses
described below leads to a gravimeter phase [43,48] directly
proportional to g.

We suppose that the magnetic field is small so we consider
only the linear Zeeman effect, which is reasonable for the
relatively short measurement times that we are examining,
but at high precision, one must consider the effects of the
nonlinearities as well [42]. Due to the magnetic-field gradient,
there is a position-dependent detuning for the transition

δ(z) = ζ (z − zt ), (3)

where zt is the position where the microwaves are on reso-
nance, which we set to z0, and

ζ = (gF mF − gF ′mF ′ )μBη/h̄ = μBη/h̄, (4)

where μB is the Bohr magneton.
To be on resonance, the detuning δ(z) must be smaller

than the Rabi frequency �0 (that we assume to be real and
positive). We limit the detuning to the point at which a π pulse
results in no population transfer to the other state so that there
is an approximately resonant excitation while δ(z) <

√
3�0,

or in terms of position, as long as 	z = z − z0 < 	zr , with

	zr =
√

3πξ
�0

ζ
, (5)

where 0 < ξ < 1 is a constant that we introduce to quantify
how close we are to the resonant condition. We assume reso-
nant excitation as long as σz < 	zr [55].

The evolution of a wave packet in a single internal level in
the absence of microwaves (Bp = 0) is given by [54]

ψ (z, t ) =
[

1

2πσ 2
z (t )

]1/4

exp

{
− 1

4

[
z − z(t )

σz(t )

]2

+ i�p(z, t ) − i

2
arctan

[
h̄t

2mσ 2
z (0)

]}
, (6)

which remains a Gaussian wave packet but centered at

z(t ) = z0 + v0t + a±
2

t2, (7)

where z0 and v0 are the initial position and velocity. The total
acceleration is given by

a± = g + (gF mF μBη/m), (8)

and depends on the value of gF . We write it as a± since for the
levels we are considering the magnitude of the acceleration
is basically the same for both but with a sign difference (gF

changes sign). The width of the wave packet increases as

σz(t ) =
√

σ 2
z (0) +

[
h̄

2mσz(0)

]2

t2. (9)

Finally, �p contains additional phase terms that determine
the evolution of the wave packet [54]. We consider a Rabi
frequency high enough that the atomic evolution during the
microwave pulses has a negligible effect on the Rabi oscil-
lations so that the wave functions associated with the external
degrees of freedom remain constant and there is only a change
in the internal state of the atom (see the discussion below).

By using the sequence of pulses π/2
T−→ π

2T−→ π
T−→ π/2,

the phase difference between the two paths turns out to be
given by [39,43]

	� = m

h
(a2

+ − a2
−)T 3 = 2

μBη

h̄
gT 3, (10)

where Tt = 4T is the total measurement time. A sufficient
condition to have an interferometer that is closed in position
and momentum (see Fig. 1), regardless of the specific value
of the total (constant) acceleration at each level, is to have the
above sequence of pulses and a linear magnetic-field gradient,
as can be shown by solving the equations of motion for each
path [43]. As a consequence, the interferometer will also be
closed in the x and y axes (with an additional transverse rela-
tive phase). The measurement of g from Eq. (10) requires the
control and determination of η to the same level of precision,
something that may be the most technically challenging part
of this measurement.

The above result neglects the existence of phase contribu-
tions due to the quadratic Zeeman effect, gravity gradients,
and nonlinear terms in the gravitational potential that cause
the classical phase-space trajectories not to close. In practice,
it is quite difficult to obtain a perfectly linear magnetic-field
gradient, and the quadratic Zeeman effect makes things even
more complicated [42], therefore clever solutions are needed
to overcome these experimental challenges. Fortunately, for
the measurement times considered here, the loss of visibility
due to the quadratic Zeeman effect and the gravity gradients
[56,57] can be neglected.

013304-3



ZUNIGA, GOMEZ, AND CASTANOS-CERVANTES PHYSICAL REVIEW A 109, 013304 (2024)

Besides the loss of visibility, the quadratic terms (in posi-
tion) in the gravitational potential also introduce an additional
contribution to the phase shift of Eq. (10) that causes a cor-
rection to the measured value of g [6,58]. This correction
must be known with the same level of precision as that de-
sired for the measurement and follows from considering an
acceleration for the ith level that depends on the position
(z) as ai = a± + γiz, where γi quantifies the quadratic cor-
rection to the potential. Then, the measured value of local
gravity changes to g̃ ∼ g + (γ1 + γ2)(z0 + v0T + 3gT 2) +
2(γ1 − γ2)[(a− − a+)T 2 + (v2

0 + gz0 + 3gv0T + 9g2T 2)/
(a+ − a−)] + · · · , where z0 and v0 are the initial position
and initial velocity. The first term of this correction has
been obtained before for light-pulse atom interferometers (see
Refs. [6,58]) whereas the second term (not present in conven-
tional light-pulse atom interferometers) is obtained following
the method described in Ref. [6]. Notice that for a correc-
tion due to the gravitational gradient γ1 = γ2, whereas for
a correction of magnetic origin (quadratic Zeeman effect or
nonlinear magnetic-field gradient) γ1 = −γ2 (for the levels
under consideration [54]). For the rest of this paper, we restrict
our analysis to the case of (ideal) linear potentials.

B. Considerations to analyze the magnetic gravimeter

1. Frequency sweep of the microwaves

For the first and last π/2 pulses the centers of the wave
packets for the two paths coincide, and there is an approx-
imately resonant excitation as long as each wave packet
satisfies σz < 	zr [Eq. (5)]. For the π pulses the two paths
are spatially separated and each one has a different reso-
nant frequency [Eq. (3)]. For a big enough separation, the
frequency that excites the wave packet in one path can be
set far from resonance with the other one and vice versa.
Using simultaneous excitation with two microwave sources
it is possible to implement the π pulse on the wave packet
of each path without affecting the other one by more than a
light shift. Let 	d (t ) be the separation distance between the
wave-packet centers of both paths at a time t . This distance
when the π pulses are applied is

	d (T ) = 	d (3T ) = (a+ − a−)
T 2

2
. (11)

We can excite the wave packet on each path with an indepen-
dent frequency as long as

	d (T )

	zr
= ζ√

3πξ�0

(a+ − a−)
T 2

2
� 1. (12)

In traditional atomic gravimetry, there is a frequency sweep
of the Raman beams that compensates for the Doppler shift of
the free-falling atoms. There is no Doppler shift here since
we have excitation with microwaves (although copropagating
Raman transitions could be used as well) that transfer little
momentum and can be set to propagate perpendicularly to the
free-falling atoms with Bp(t ) ⊥ ẑ. Still, it is necessary to add
a frequency sweep on the microwave frequency wm to stay
in resonance with the free-falling atoms as they change their
position

wm(t ) = wm0 + ζ (v0t + a±t2/2), (13)

with wm0 the initial resonant frequency. Since the acceleration
a± is different for the two paths, there will be a different
frequency change for the two microwave signals used for the
π pulses.

2. Decoherence of the Rabi oscillations due to finite pulse duration

The analysis leading to Eq. (10) is based on the assumption
of using pulses with a negligible duration (τ ). Nevertheless,
in practical scenarios, the phase shift will include an extra
component arising from the evolution during the finite pulse
duration. In this section, we describe how this phase contri-
bution is characteristic of T 3 interferometry and emerges due
to the distinct accelerations experienced at each level. Thus,
this contribution possesses a distinct origin compared to the
effect stemming from the finite pulse duration observed in
conventional light-pulse atom interferometers [58].

A requirement to have full visibility of Rabi oscillations
between two internal energy levels is that the spatial part of the
wave function corresponding to the external degrees of free-
dom of both states must coincide during the pulse. However,
in T 3 interferometry, this condition cannot be fulfilled because
once the atom transitions from one level to another, the accel-
eration changes as well. To see why, consider a π pulse that
is achieved by applying two consecutive π/2 pulses. The first
pulse creates a superposition of the two internal energy levels
but, as mentioned earlier, these two wave packets will have
different accelerations. Therefore, since the frequency sweep
can only be set up to follow the acceleration of one of the
two wave packets, the other one will be detuned with respect
to the microwaves during the application of the second π/2
pulse. What is more, the center of both wave packets will end
at different positions and with different mean velocities at the
end of the second pulse due to the distinct accelerations expe-
rienced by them. The effect is a reduction in the coherence of
the Rabi oscillations.

In order to quantify the phase shift due to this fundamental
problem, consider the phase difference between an atomic
wave packet evolving within the pulse duration in the lower
level (subject to acceleration a−) and another identical wave
packet undergoing evolution in the upper level (with acceler-
ation a+). Assuming that the centers of mass of both wave
packets initially share identical position and velocity, then
at the end of the pulse, each wave packet will end up with
a different position and velocity. Now, consider the interfer-
ence of these wave packets, specifically, the phase shift due
to a difference in the final position and momentum of the
wave packets on each path (i = 1, 2). This phase shift due
to a mismatch between the classical trajectories in position
and momentum space is well known [2,24,41,53,59] and is
given by 	�sep(τ ) = k2(τ )z2(τ ) − k1(τ )z1(τ ), where zi(τ )
and h̄ki(τ ) = mvi(τ ) can be regarded as the average position
and momentum at the end of the pulse of the atomic trajecto-
ries within the cloud. Therefore, the phase difference due to
the evolution during a π/2 pulse of duration τ = π/2�0 is
given by

	�sep(τ ) = m

2h̄
[3vrms(a+ − a−)τ 2 + (a2

+ − a2
−)τ 3], (14)

where we have considered a common initial position zi(0) = 0,
and a typical velocity deviation given by vrms = √

kBT0/m
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[60], and determined by the atomic cloud temperature T0.
The velocity deviation is relevant since the frequency sweep
follows the center of mass of the wave packet.

Observe that this phase difference disappears when we
have equal accelerations (a+ − a− = 0). The visibility of the
Rabi oscillations is reduced considerably if this phase shift is
larger than π by the end of the pulse, so the condition for a
short pulse is

|	�sep(τ )| < π. (15)

A more formal treatment and a numerical calculation of the
excitation with different accelerations show that Eq. (15) is
indeed a good indicator for the onset of decoherence during
the pulse. Later, we will show that other limitations become
more important than Eq. (15) for the experimental realization
and gravimetric precision. Moreover, this requirement is sat-
isfied by the pulse duration conditions explored later on in our
analysis [Eqs. (20) and (34)].

III. PRECISION OF THE MAGNETIC T 3-ATOMIC
GRAVIMETER

In many field applications, a precision of several µGal is
sufficient [15,17], especially if that means a simpler and more
robust sensor. The precision of the magnetic atomic gravime-
ter relies on long fall times. For an available microwave power
(P) and magnetic-field gradient (η), there is a limitation on the
measurement time due to the expansion of the wave packets.
To keep a resonant excitation the wave packets must remain
in a region smaller than 	zr [Eq. (5)] throughout the whole
sequence. We analyze the limits on the precision set by this re-
quirement for two different regimes. The first one (Sec. III A)
considers the case of a pure state corresponding to an initial
wave function on free fall starting from rest at a particular
position. It describes the ultimate limitation in precision due
to the expansion. Section III B analyzes the limits once the
thermal distribution is taken into account and therefore gives
the expected limitations on the precision in a more realistic
experimental setup.

A. Expansion from a pure state

We consider first the case where the initial width of the
wave function describing the external state of the atom cor-
responds to a pure state minimum uncertainty Gaussian wave
packet. This could be achieved approximately, for example,
by applying a tight selection pulse in position space [54]. The
expansion of the wave packet is given by the free wave-packet
expansion of Eq. (9) and its width must remain smaller than
	zr at all times during the interferometric sequence. A big
initial wave packet does not fulfill the condition, but also
one that is too small expands too quickly. An initial width
of σz(0) = 	zr/

√
2 gives the longest expansion time that is

equal to

t1 = m

h̄
	z2

r = 4T . (16)

The relation between power and the Rabi frequency is

�0 = 〈e|μz|g〉
h̄

√
2μ0P

cA
, (17)

with μ0 the vacuum magnetic permeability, c the speed of
light, A the beam area, and μz the magnetic moment along the
polarization of the microwaves. Looking at the expression for
	zr [Eq. (5)], the measurement time t1 [Eq. (16)] is propor-
tional to P/η2. Taking a power of P = 1 W, a magnetic-field
gradient of η = 0.05 Tm−1, an area of A = 100 cm2, and
ξ = 0.05 gives t1 = 25 ms. With higher power, it becomes
possible to achieve measurement times comparable with other
portable devices [14].

The precision in the measurement of g is given by

σg

g
= σ

	�

	�
= σ

	�
ζ 5

b1gξ 6

(
A

P

)3

, (18)

where σ
	�

is the uncertainty in the phase measurement that de-
pends on the experimental signal-to-noise ratio, 	� is given
by Eq. (10), and

b1 = 27π6

h̄9

(
mμ0

c

)3

〈e|μz|g〉6. (19)

The precision improves with the cube of the microwave power
because that extends the measurement time [Eq. (16)], and the
gravimeter phase [Eq. (10)] scales with the cube of that time.
Contrary to intuition, there is a decrease in precision with
the gradient η (note that ζ ∝ η). This can be understood by
noticing that the phase [	�, Eq. (10)] depends linearly with
the gradient but also grows as T 3. The available measurement
time T grows as η−2 [Eqs. (16) and (5)], giving the scaling on
precision as η5 [Eq. (18)].

In these interferometers, it is desirable to have a pulse
duration much smaller than the time between pulses. For a
π/2 pulse of duration τ = π/2�0 this means τ � t1/4 or, in
terms of the minimum microwave power required,

P � c

2μ0

(
1

〈e|μz|g〉
)2

(
2h̄4

3πm

)2/3

A

(
ζ

ξ

)4/3

. (20)

Also, the decoherence introduced by the pulses has a neg-
ligible effect when they have a duration smaller than the
maximum determined by the condition of Eq. (15). Consid-
ering only the term proportional to vrms in Eq. (14), we write
the condition of Eq. (15) as a condition for the power:

P >
3π h̄2c

16μ0〈e|μz|g〉2 Aζvrms. (21)

The free-fall time may be limited also by the size of the
apparatus because there is a maximum distance zmax for the
atoms in free fall. Starting from rest, the maximum measure-
ment time, in this case, is tz = √

2zmax/g, and equating this
time to t1 [Eq. (16)], we can relate it to the power and gradient
corresponding to that precision:

P � ch̄3

6π2mμ0〈e|μz|g〉2 A

(
ζ

ξ

)2
√

2zmax

g
, (22)

where we have considered the average of the total acceleration
(a+ + a−)/2 = g [Eq. (8)], as the acceleration during free fall.
Instead of being a requirement about minimum power like the
previous two, this constraint limits the maximum precision
that can be reached in the measurement. Going beyond this
microwave power limit would not improve the precision, as
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FIG. 2. Projected fractional precision of the measurement of g as
a function of the microwave power (P) and magnetic-field gradient
(η) for a pure Gaussian wave packet. The color code corresponds to
the number of significant digits attainable in a single measurement,
determined by the computation of log10(σg/g) using Eq. (18). We
use A = 100 cm2, σ	� = 0.003, ξ = 0.05, and zmax = 50 cm. We
show the boundaries set by Eq. (20) (black solid line), Eq. (22) (light
pink solid line [first solid line from right to left]), and Eq. (23) (red
dashed line). The limits set by Eq. (21) do not add any additional
restrictions in the parameter range shown. The region that fulfills all
the conditions is indicated by the mesh pattern.

the achievable time would then be limited by the chamber size,
something that would be a desirable goal to reach.

The condition for addressing the wave packets of the
two paths during the π pulses with independent microwave
sources [Eq. (12)] gives another constraint on the power. A
high power gives a bigger resonant region 	zr [Eq. (5)], so
one may intuitively think that one needs to reduce the power to
achieve an excitation with independent microwave sources for
the two paths during the π pulses. But the separation between
the two paths 	d (T ) [Eq. (11)] increases with the measur-
ing time T = t1/4 which grows with the power [Eq. (16)].
Since this last one grows faster, higher powers are favored.
The condition for excitation with independent microwave
sources given by Eq. (12) gives the following condition for the
power:

P � c

π2μ0〈e|μz|g〉2

(
8
√

6h̄4

9m

)2/3

A

(
ζ

ξ 3/2

)4/3

, (23)

where we have used a+ − a− = h̄ζ/m.
The power and the magnetic field used in the experiment

determine the precision to be obtained [Eq. (18)], but their
values must lie within the bounds set by the above inequal-
ities [Eqs. (20)–(23)]. Figure 2 shows the precision that can
be obtained in a single measurement as a function of the
microwave power and magnetic-field gradient, as well as the
regions excluded by the above conditions.

B. Expansion from an atomic sample trapped
in thermal equilibrium

Now, we analyze the case of an atomic cloud at a tempera-
ture T0 confined to a small region, as would be the case for an
optical dipole trap with spatial frequency ω. The atoms are no
longer in a pure state and we describe them by their density
matrix (Appendix A):

ρ(z, z′|β ) =
√

mω

2π h̄ sinh(2θ )
exp

{
−mω

2h̄
coth(2θ )

× [z2 − 2z′z sech(2θ ) + z′2]

}
, (24)

where θ = h̄ωβ/2 and β = 1/kBT0. For θ � 1 we have
near-classical behavior, whereas θ � 1 indicates the quantum
regime [60,61]. We take the case of a thermal gas that is in the
near-classical regime.

Starting from the ensemble described by Eq. (24), we turn
the trap off and let the atoms exist in free fall with an acceler-
ation a to obtain (Appendix B)

ρ(z, z′, t |β )

= 	 exp

{
i
mt

2h̄
[z − z′]

[a(2 + t2ω2) + ω2(z + z′)]
1 + ω2t2

}

× exp

(
−π

2
	2{[a2t4 − 2at2(z + z′) + 2(z2 + z′2)]

× cosh(β h̄ω) − [at2 − 2z][at2 − 2z′]}
)

, (25)

where

	 =
√

mω

2π h̄(1 + ω2t2) sinh(β h̄ω)
. (26)

The average position of the atomic cloud gives

z(t ) =
∫

zρ(z, z, t |β )dz∫
ρ(z, z, t |β )dz

= at2

2
, (27)

which is the expected result for a free fall starting at rest
[Eq. (7)]. The width of the atomic cloud is

σz(t ) =
√

z2 − z2

=
√

h̄(1 + t2ω2)

2mω
coth(θ )

�
√

σ 2
z (0) + (vrmst )2, (28)

where in the last expression we considered the near-classical
regime with σz(0) =

√
kBT0/mω2. The axial expansion veloc-

ity is given by vrms [60]. Note that σz(0) equals the position
at which the potential energy (mω2x2/2) matches the thermal
energy (kBT0/2). The term

√
h̄/2mω in Eq. (28) corresponds

to the standard deviation in position of the ground-state wave
function of the harmonic oscillator. Similarly, the width of the
atomic cloud in momentum space is

σpz (t ) =
√

mh̄ω

2
coth(θ ) �

√
mkBT0 = mvrms, (29)
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and at t = 0 we have

σ 2
z (0)σ 2

pz
(0) = h̄2

4
coth2(θ ), (30)

which approaches a minimum uncertainty wave function in
the quantum regime (θ � 1, T −→ 0).

Notice that the wave-packet expansion of Eq. (9) has a
similar time dependence as Eq. (28) with h̄/2mσz(0) replaced
by vrms. In both cases, the width remains constant at short
times and has a linear growth at long times with a velocity
determined by the uncertainty principle [Eq. (9)] or the tem-
perature [Eq. (28)], respectively. To reach a high precision
with the gravimeter, we are interested in long expansion times,
so we can ignore the initial size. Then, the interrogation time
before reaching the size 	zr is limited to

t2 = 1

vrms
	zr = 4T . (31)

Here, we see that the measurement time (t2) is proportional
to

√
P/η2T0. Taking a power of P = 1 W, a magnetic-field

gradient of η = 0.05 Tm−1, a temperature of 1 µK, an area
of A = 60 cm2, and ξ = 0.2 gives t2 = 2.3 ms. This time is
shorter than before, but it can still increase by changing the
power and the gradient. The precision in the measurement of
g gives

σg

g
= σ

	�
ζ 2

b2gξ 3

(
AT0

P

)3/2

, (32)

with

b2 = 3
√

6π3

16

(
μ0m〈e|μz|g〉2

ckBh̄2

)3/2

. (33)

This regime gives a different dependence on the experimental
parameters compared to Eq. (18).

We impose similar constraints as in the previous section.
Having pulses smaller than the time between pulses [analo-
gous to Eq. (20)] gives

P � c√
3μ0

(
h̄

〈e|μz|g〉
)2 Aζvrms

ξ
. (34)

Limiting the free fall to a maximum available distance zmax

[analogous to Eq. (22)] gives

P � c

3π2μ0g

(
h̄

〈e|μz|g〉
)2 Aζ 2zmaxv

2
rms

ξ 2
. (35)

The condition for the simultaneous application of the π pulses
for the wave functions at each path with two different frequen-
cies [analogous to Eq. (23)] gives

P �
(

512m2c

3π2μ0〈e|μz|g〉2

)
Av4

rms

ξ 2
. (36)

Notice that this last expression is independent of the magnetic-
field gradient. The reason for the nonintuitive direction of the
inequality was already explained in Eq. (23).

Figure 3 shows the precision that can be obtained in a
single measurement as a function of the experimental param-
eters, as well as the excluded regions from the conditions
above. The dominant constraint is the one given by Eq. (36),

FIG. 3. Projected fractional precision of the measurement of g as
a function of the microwave power (P) and magnetic-field gradient
(η) for a sample initially trapped in thermal equilibrium. The color
code corresponds to the number of significant digits attainable in a
single measurement, determined by the computation of log10(σg/g)
using Eq. (32). We use A = 60 cm2, σ	� = 0.003, ξ = 0.2, T0 =
1 µK, zmax = 50 cm. We show the boundary set by Eq. (34) (black
solid line). The limits defined by Eqs. (21) and (35) lie outside
of the figure and they do not add any restrictions. For the case of
two independent microwave sources, the limit imposed by Eq. (36)
defines a more strict condition that cannot be fulfilled in the region
shown. The mesh pattern indicates the region that fulfills all the
conditions for the case of a single microwave source.

which corresponds to the simultaneous excitation of the π

pulses with two different microwave sources. The boundary
of this restriction excludes all the regions shown, thus the
required microwave power might be prohibitively large and
an alternative approach is needed.

Instead of implementing the π pulses with two differ-
ent microwave sources as proposed from the condition of
Eq. (12), we switch to applying the π pulse for the wave
packets in both paths with a single microwave source. This
is achieved while the resonant region [	zr , Eq. (5)] is larger
than the separation distance between the center of the wave
packets [	d (T ), Eq. (11)], that is, 	zr � 	d (T ). This results
in an upper limit for the time between pulses of

T =
[

24μ0m2〈e|μz|g〉2

ch̄4ζ 4

(
ξ 2P

A

)]1/4

. (37)

Taking a power of P = 1 W, a magnetic-field gradient of
η = 0.05 Tm−1, an area of A = 60 cm2, and ξ = 0.2 gives
a measurement time of 4T = 8 ms. This time scales as 4

√
P/η

and sets the precision in the measurement of g as follows:

σg

g
= σ

	�
ζ 2

b3gξ 3/2

(
A

P

)3/4

, (38)
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where

b3 = 2

(
24μ0m2〈e|μz|g〉2

ch̄4

)3/4

. (39)

To compute the precision in the measurement of g, for a
given available power (P) and magnetic-field gradient (η), we
take the minimum time (T ) between Eqs. (31) and (37) (to be
compatible with both restrictions), giving either Eq. (32) or
Eq. (38) for the precision. For the parameter values shown in
Fig. 3, the limiting time is given by Eq. (31), giving the same
relative precision as described before [Eq. (32)]. The differ-
ence is that the restriction from Eq. (36) no longer applies
and there is a region now that fulfills all the conditions, as
indicated by the mesh pattern.

C. Discussion about the two regimes

The precision shown in Fig. 2 for the expansion from a pure
state is much higher than that of Fig. 3 for a sample initially
trapped at some temperature. Even when the first one shows
the ultimate limitations of this gravimetric method, it consid-
ers atoms initially at rest, with zero temperature. We recover
the contribution from the thermal motion in the second case,
and therefore, this gives a more appropriate calculation of the
precision limits at a finite temperature. Adopting a dipole trap
increases the complexity of the experimental setup. We can
consider instead having an atomic cloud in a magneto-optical
trap (MOT) at the same temperature. Then, by adding an ini-
tial position selection pulse, we can choose a slice of the cloud
of atoms in the MOT that would have a similar initial state as
the one used for the dipole trap, at the price of reducing the
number of atoms. The fractional precision that can be reached
in a single measurement of g for the parameters considered in
Fig. 3 approaches 10−7. This is very reasonable and allows for
a 1-µGal precision after an average time of about 1 h.

Figure 3 shows the parameter region (mesh pattern) that
fulfills all the conditions we have introduced and allows
therefore for an experimental demonstration. Out of those re-
strictions, the one given by Eq. (34) (black solid line in Fig. 3)
is the most important one, which corresponds to having pulses
with a duration much smaller than the time between them.
Equation (34) establishes a minimum power that must be ap-
plied for this kind of measurement. The use of cavities might
be helpful to reach the high microwave powers needed. In
reality, it is a requirement on the minimum value for the Rabi
frequency [�0 > (32/π

√
3)mv2

rms/h̄ξ 2], which in the case of
the microwave excitation depends on the power (P) and the
area (A). For example, an A = 60 cm2 and a P = 100 W
correspond to a minimum Rabi frequency of �0 � 105 s−1.
If copropagating Raman transitions are used instead, it is still
necessary to achieve that same Rabi frequency. This minimum
power scales as v4

rms ∝ T 2
0 . Therefore colder samples require

a smaller microwave power. Including an evaporative cooling
stage adds to the complexity of the gravimeter and might not
be the most desirable option for a portable device. An alterna-
tive might be to measure the signal at the end of the sequence
from just the atoms in the central slice of the atomic cloud
which correspond to atoms with a smaller velocity spread, at
the price of having a reduction in the number of atoms for the
measurement.

Lastly, it is noteworthy that the visibility loss stemming
from the quadratic Zeeman contribution [42], as well as from
factors such as gravity gradients [56,57] and nonlinear terms
in the gravitational potential [58], does not pose an issue
within the scope of the timeframes we consider [constrained
by Eq. (31)]. Nevertheless, if powers higher than 100 W are
used (situated to the right of the depicted region in Fig. 3),
the measurement time escalates to a point where the loss
of visibility caused by the aforementioned effects becomes
significant enough to warrant closer scrutiny.

IV. CONCLUSIONS

A magnetic T 3-atomic gravimeter is an attractive option
for portable devices due to its simplicity because it elimi-
nates the need for Raman beams. We analyzed the precision
limits of this gravimeter due to the expansion of the atomic
cloud. The thermal velocity spread of the cloud determines
the maximum measurement time (and therefore the preci-
sion) that maintains resonant excitation over all the atoms. A
higher microwave power or a lower magnetic-field gradient
increases the size of the spatial region of resonant excitation.
We analyzed the constraints that must be fulfilled to do the
measurement leaving for future work the analysis of the sys-
tematic contributions. The dominant requirement is that there
is a minimum power required to do the measurement, which
is related to the condition of having excitation pulses with a
duration smaller than the time between pulses. We found that
the limits in the precision of the method due to the cloud
expansion are still acceptable for many field applications,
making this an attractive alternative for the design of portable
devices.
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APPENDIX A: DENSITY MATRIX FOR AN ATOMIC
SAMPLE TRAPPED IN THERMAL EQUILIBRIUM

The following calculation to compute the density ma-
trix for a thermal ensemble in a harmonic potential follows
the method described in Ref. [62]. Let us define the non-
normalized density matrix by

ρu ≡ e−βH , (A1)

with β = 1/kBT0. Taking the derivative with respect to β in
the position representation gives

−∂ρu(z, z′|β )

∂β
= Hρu(z, z′|β ), (A2)

with the condition that in the limit where β −→ 0 (or T0 −→
∞), we recover the density matrix of a completely random
ensemble, i.e., ρu(z, z′|0) = δ(z − z′). This differential equa-
tion is known as a Bloch differential equation [60,63].

013304-8



PRECISION LIMITS OF MAGNETIC T 3-ATOMIC … PHYSICAL REVIEW A 109, 013304 (2024)

We approximate the potential in an optical dipole trap of
oscillating frequency ω with a harmonic oscillator [64]:

H = P2
z

2m
+ mω2Z2

2
. (A3)

Thus, Eq. (A2) becomes

−∂ρu

∂θ
= −∂2ρu

∂χ2
+ χ2ρu, (A4)

where we have introduced the nondimensional quantities

χ ≡
√

mω

h̄
z, θ ≡ h̄ω

2
β, (A5)

and the initial condition is given by ρ(χ, χ ′|0) =√
mω/h̄ δ(χ − χ ′). The solution is

ρu(χ, χ ′|β ) =
√

mω

2π h̄ sinh(2θ )
exp

{
−coth(2θ )

2

× [χ2 − 2χ ′χ sech(2θ ) + χ ′2]

}
. (A6)

The position distribution is given by the diagonal elements of
the density matrix:

ρu(z, z|β ) =
√

mω

2π h̄ sinh(2θ )
exp

[
−mω

h̄
z2 tanh(θ )

]
.

(A7)

This same result can be derived using alternative approaches
[65,66]. In the near-classical regime, i.e., θ � 1, Eq. (A6)
becomes

ρu(z, z′|β ) = 1

�
√

2π
exp

[
− (z − z′)2

2�2

]
, (A8)

where we have defined �2 = h̄2/(2mkT0). Note that

lim
θ→0+

ρu(z, z′|β ) = δ(z − z′), (A9)

as required, and that � is proportional to the thermal de

Broglie wavelength � =
√

h̄2

mkT0
, which is inversely propor-

tional to the partition function of a monoatomic gas and
establishes the condition of applicability of the Boltzmann

statistics when compared against the dimensions of the con-
tainer [60].

APPENDIX B: FREE-FALL EVOLUTION
OF THE DENSITY MATRIX

When atoms are trapped in an optical dipole trap and the
trap is turned off instantaneously, we can assume that the
state right after remains unchanged. Therefore, we use the
initial state given by Eq. (A6). The free-fall Hamiltonian with
acceleration a is

H = P2
z

2m
+ maZ. (B1)

We calculate the evolution of the density matrix in the mo-
mentum representation [67]

〈p|ρ(t )|p′〉 = 〈p|U †ρ(0)U |p′〉 = 〈p(t )|ρ(0)|p′(t )〉, (B2)

where ρ(0) is the momentum representation of ρ(χ, χ ′|β )
[Eq. (A6)], and

U = exp

[
− i

h̄

(
P2

z

2m
+ maZ

)
t

]
. (B3)

At first order (by ignoring quadratic terms in time) the

time evolution operator can be factorized as exp(− i
h̄

P2
z

2mt )
exp(− i

h̄ maZt ). Thus, by recognizing the second exponential
as the generator of translation in momentum space, the time
evolution of the momentum eigenstate can be calculated using
the split-operator method [68–71]. The result is

|p(t )〉 = exp

[
− i

2h̄m

(
p2t − pmat2 + m2a2t3

3

)]
×|p − mat〉. (B4)

Inserting this into Eq. (B2) we get

ρ(p, p′, t |β ) = e−iωp,p′ tρ(p − mat, p′ − mat, 0|β ), (B5)

where

ωp,p′ = 1

2mh̄
[(p2 − p′2) − (p − p′)mat]. (B6)

The density matrix in the momentum representation gives

ρ(p, p′, t |β ) = e−iωp,p′ t

√
csch(β h̄ω)

2π h̄mω

× exp

(
−{[(p − mat )2 + (p′ − mat )2] coth(β h̄ω) − 2[p − mat][p′ − mat] csch(β h̄ω)}

2mh̄ω

)
, (B7)

and the corresponding form in the position representation is

ρ(z, z′, t |β ) = 	 exp

{
i
mt

2h̄
[z − z′]

[a(2 + t2ω2) + ω2(z + z′)]
1 + ω2t2

}

× exp

(
−π

2
	2{[a2t4 − 2at2(z + z′) + 2(z2 + z′2)] cosh(β h̄ω) − [at2 − 2z][at2 − 2z′]}

)
, (B8)

with 	 defined in Eq. (26). The position distribution obtained from the diagonal elements is

ρ(z, z, t |β ) = 	 exp

{
−π

2
	2[(a2t4 − 4at2z + 4z2) cosh(β h̄ω) − (at2 − 2z)2]

}
. (B9)
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