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Triangular vortex lattices and giant vortices in rotating bubble Bose-Einstein condensates
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We show that three-dimensional spherical-shell condensates respond to rotation by forming two aligned
triangular Abrikosov-like vortex lattices on each hemispherical surface. The centrifugal force due to rotation
causes an elliptical deformation of the spherical shell condensate shape and for faster rotation rates, drives the
formation of a central multicharged vortex-antivortex pair at the poles surrounded by a ring of singly charged
vortices in the bulk density. The vortex distributions observed in each hemisphere take a similar form to those
found in rotating harmonic plus quartic traps.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) are versatile and highly
tuneable quantum systems that have been created in a vari-
ety of simply and multiply connected topologies, from disks,
cigars, and spheres, to toroids. BECs have been intensely
studied for their fundamental physics properties such as su-
perfluidity [1–3] and recently increasing attention has been
focused on their great promise in technological applications
in areas including precision inertial sensing [4] and atom-
tronics [5]. Although creating spatially dependent dressed
states by radio-frequency coupling was first proposed to en-
gineer a shell geometry a decade ago [6], achieving superfluid
condensate “bubbles” has been prohibitively difficult in a
terrestrial environment. The difficulty arises due to the need
to compensate for gravity [7,8], which otherwise causes the
condensate to sag into a hemispherical bowl. The realiza-
tion of Bose-Einstein condensates (BECs) confined to a thin
hollow shell in the microgravity environment of the Cold
Atomic Laboratory aboard the International Space Station
[9] circumvents this problem and has opened up the study
of this newly accessible simply connected topology [10].
Recently, optically trapped immiscible Bose-Bose mixture
experiments in a terrestrial environment have been shown to
provide an alternative avenue for realizing shell geometries
[11], with the creation of a shell condensate of one species
surrounding an inner spherically shaped condensate core of
a different atomic species [12]. Such ball and shell struc-
tures were also demonstrated in early terrestrial experiments
with magnetically trapped hyperfine states of 87Rb [13,14].
The sizes of shells achievable in terrestrial mixture exper-
iments are smaller than those attainable in a microgravity
environment. These experimental prospects have prompted
theoretical investigations into the unique properties of shell-
shaped condensates, including the critical temperature of
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Bose-Einstein condensation [15–17], collective excitation dy-
namics [18], and finite-size Berezinski-Kosterlitz-Thouless
(BKT) physics [19]. The closed curved surface of the bubble
geometry promises interesting responses to rotation and mo-
tivates further study into vortex dynamics on curved surfaces
[20–23].

Classical fluid flow on the surface of spheres has long
been of interest due to its relevance in describing planetary
atmospheric dynamics [24,25]. Studies have shown notable
differences in vortex dynamics in comparison to planar ge-
ometries, as the curvature of the surface leads to weaker
interaction between different parts of the flow [26]. Superfluid
flow on the surface of spheres similarly promises intriguing
physics arising from the curvature and topology of a spher-
ical shell as a simply connected surface. In superfluids, the
superfluid velocity is a continuous field v = h̄∇θ/m, purely
dependent on the gradient of the condensate phase θ . Here
h̄ is the reduced Planck’s constant and m the atomic mass.
For superflow in bubble condensates, a consequence of the
continuous nature of the superfluid velocity field is that single
vortices that begin on the outer surface of the bubble and end
on the inner surface of the bubble cannot exist in isolation. A
second vortex or topological defect must be present to heal the
velocity field. This requirement arises from a special case of
the Poincaré-Hopf theorem, known as the hairy-ball or Hedge-
hog theorem on a spherical-shell, and has been established
for classical point-vortex systems [27]. In superfluid bubbles,
long-range attractive interactions between vortex-antivortex
pairs result in their relaxation towards the equator and even-
tual annihilation being energetically preferred [28]. However,
in the presence of an external rotation, the minimum energy
configuration consists of vortex pairs, with the second vortex
rotating with opposite circulation aligned at the antipode of
the condensate shell [27]. The critical rotation velocity to
stabilize vortex-antivortex pairs at the poles and its depen-
dence on the dimensionality and thickness of the superfluid
bubble has been explored in detail in Ref. [28]. In particular,
the stability of vortices was found to be a distinguishing
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feature of shell geometries in comparison to their filled coun-
terpart, which may be a useful experimental indicator of the
underlying topology of the condensate [28].

Condensates confined to filled spheres and disks respond
to an externally imposed rotation above a critical velocity by
the formation of a triangular so-called Abrikosov lattice of
vortices. Triangular lattice formation in these geometries is
one of the hallmark’s of superfluidity and has been verified in
early BEC experiments [1,2,29] and extensively studied theo-
retically [30–33]. In bubble condensates, there has been little
investigation into the response to rotation beyond point-vortex
models. A study employing point-vortex model solutions as a
variational ansatz of the Gross-Pitaevskii equation suggested
rotating solutions of a ring of equally spaced positive (and
negative) vortices on each hemisphere [34]. Two vortex con-
figurations were found, one in which each vortex is aligned
with its antivortex pair, and another skewed solution in which
the vortex and antivortex rings are misaligned, with each an-
tivortex on one ring positioned half-way between each vortex
on the other ring [34]. Such vortex ring solutions contrast
to the typical Abrikosov vortex lattices observed in pancake
geometries, raising the question of if triangular lattices also
occur in superfluid shell structures and which configuration
is naturally occurring for bubble condensates under rota-
tion. A recent preprint we became aware of while preparing
this paper focused on studying fluid excitations known as
Rossby waves occurring on two-dimensional shells, forced
approximate vortex lattice solutions by applying an additional
potential compensating for the centrifugal force [35]. The
authors of Ref. [36] also applied vortex-lattice solutions in
two-dimensional condensate shells to investigate equatorial
waves.

In this article we establish the response of a three-
dimensional bubble condensate to an external rotation, going
beyond point-vortex models and variational calculations and
numerically solve the mean-field Gross-Pitaevskii equation.
We find at slow rotation rates, aligned triangular Abrikosov
vortex lattices develop in each hemispherical shell. As the
rotation rate is increased, we see a transition to a multicharged
vortex at each pole, surrounded by singly charged vortices
in the bulk. The vortex distribution in each hemisphere is
the same as that observed in disk-shaped condensates con-
fined in harmonic plus quartic potentials [44]. This similarity
can be explained by the local form of the shifted harmonic
shell potential at the poles, with quartic and higher-order
terms dominating the local effective trapping potential in
these regions. Additionally, we observe a distortion of the
spherical-shell shape as the rotation rate is increased due to
the centrifugal barrier which causes atoms to move away from
the poles and so the condensate takes on an elliptical shape
with greater density concentrated around the equator. Finally,
we discuss what this may imply for reaching the quantum-
hall regime in bubble geometries under rotation and future
challenges in experimentally verifying these findings.

II. MODEL

We model a Bose-Einstein condensate in the zero-
temperature limit by solving the three-dimensional Gross-
Pitaevskii equation for the mean-field condensate wave

function ψ . Under an external imposed rotation around the
z axis, the Gross-Pitaevskii equation in the corotating frame
takes the form

ih̄
∂

∂t
ψ =

(
− h̄2

2m
∇2 + V + Ng|ψ |2 − �zLz

)
ψ. (1)

The condensate bubble is confined to a shifted harmonic
potential V = mω2

r (r − r0)2/2, with a harmonic trapping fre-
quency ωr = 15.9 × 2π Hz shifted by the central shell radius
r0 = 15 µm = 5.5aosc where aosc = √

h̄/mωr is the harmonic
oscillator length. Here r2 = x2 + y2 + z2. The interaction be-
tween bosons in the condensate is described by g = 4π h̄2a/m
in terms of the three-dimensional scattering length a. We
numerically model a condensate of N = 2 × 105 Rb87 atoms
with an s-wave scattering length of 98a0. The condensate
wave function is normalized to unity

∫ |ψ |2dx3 = 1. The ro-
tation frequency around the z axis is given by �z, and Lz =
xpy − ypx is the angular momentum operator. In the absence
of rotation, the condensate density drops to below 5% of the
maximum density at radii smaller than 2.5aosc and greater than
8.37aosc. To find the minimum energy states for a particular
rotation frequency, we solve Eq. (1) using imaginary time
propagation, replacing t → −iτ [37]. We employ a split-step
method [38], scaling energy in units of h̄ωr and lengths in
units of harmonic oscillator length aosc. Equation (1) is mod-
eled on a three-dimensional grid of 2563 points over a spatial
extent of (16aosc)3 for small external rotation frequencies,
increasing up to (20aosc)3, as the rotation frequency and con-
sequently the radius of the condensate bubble increases.

III. RESULTS AND DISCUSSION

We first investigate the regime of small external rotation
frequencies, when the rotation frequency is less than a critical
frequency � < �c. In this regime, we find the condensate
responds to rotation by creating a triangular lattice of vortices
in each hemisphere. Each vortex in the lattice begins on the
outer edge of the bubble, extending through to and ending on
the curved central surface of the shell. The corotating vortices
in the top hemisphere of the bubble are mirrored by an aligned
lattice of antirotating vortices in the bottom hemisphere. The
direction of vortex rotation is defined as the direction of rota-
tion as seen from the outer surface of the shell. An example of
these lattice configurations are depicted in Fig. 1. The vortices
form a triangular lattice in each hemisphere of the shell, ex-
hibiting qualitatively the same Abrikosov-like distribution as
the triangular vortex lattices observed in harmonically trapped
condensates.

As the rate of external rotation is increased, there is a
transition to vortices that do not end on the inner surface of
the shell but begin and end in opposite hemispheres on the
outer surface of the shell [see Fig. 2(b)]. Such vortex lines
are known as U-shaped vortices, with the name originally
coined as their shape resembles a wide “U” [39]. These U-
shaped vortex lines traverse the bulk condensate density and
are longer in length (and therefore cost more energy) than
vortices that end on the inner surface of the shell. The appear-
ance of U-shaped vortices coincides with a visible distortion
of the spherical shell shape that occurs as a consequence of
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FIG. 1. Isosurfaces of constant density of shell-shaped Bose-Einstein condensates under rotation, with rotation frequencies from left to right
of 0.21ωr , 0.25ωr , 0.27ωr , and 0.3ωr . The minimum energy states show the numbers of vortices increase as the external rotation frequency is
increased. (a) Top row: Top view of holes in the isosurface (plotted at 50% of the maximum condensate density) show the position of vortex
cores. (b) Bottom row: Side view of lines in the isosurface (plotted at 10% of the maximum condensate density) show the line length of vortex
cores ending on an inner central sphere, which corresponds to the inner surface of the shell.

the centrifugal force, which takes the form −m�2r2/2, and
pushes atoms away from the center of the condensate. As a
result, the thickness of the condensate density varies around
the shell, with thicker regions closer to the equator and a
thinner condensate width at the poles. An example of such an
asymmetric density distribution can be seen in Fig. 2(b). The
unequal density distribution around the shell is also reflected
in the size of the vortex cores [see Fig. 2(a) column 1 and
Fig. 2(b)]. The vortex cores closest to the poles have a larger
core size than those closer to the equator, as the local co-
herence length (ξ =

√
h̄2/(2mng) [40] where n = |ψ |2 is the

local background condensate density) becomes smaller closer
to the equator, where the background condensate density is
greater. This distribution contrasts to vortices in harmonically
trapped condensates, which have larger core sizes at the edge
of the harmonic trap and thinner cores at the center of the con-
densate where the background condensate density is larger.
Deformation of a condensate due to the centrifugal force has
been observed for a superfluid under fast rotation and confined
in a shell trap [41].

The third distinctive regime we observe with a further in-
crease in the external rotation rate is marked by the transition
from a shell to a toroidal geometry, with the appearance of a
central multicharged vortex core of opposite winding at each
pole. An example of typical density configurations in this
regime is given for an external rotation frequency of 0.54ωr ,
shown in Fig. 2(a) column 2. Here, a ring of singly charged
vortices is observed surrounding a central hole that is formed
by the core of a multicharged vortex of winding 22. The corre-
sponding slice of the phase profile in the x − y plane for z = 0
is depicted in Fig. 2(c), where each phase slip in the outer
ring (of phase slips) indicates a singly charged vortex and the
inner ring of phase slips correspond to the circulation of the

multicharged vortex. This giant-vortex regime that occurs at
faster angular velocities is reminiscent of giant vortices ob-
served in rapidly rotating condensates confined in harmonic-
plus quartic traps [42–45] and indeed suggests that a single
pair of multicharged vortices at the poles may arise as the
external rotation rate is further increased. Giant vortices are
a feature of fast rotation of condensates in trapping potentials
that are steeper than harmonic, and consequently, also develop
in condensates trapped in rotating hard-walled buckets [46].

The observation of similar vortex configurations in both
harmonically shifted bubble potentials and rotating conden-
sates confined in harmonic plus quartic traps can be explained
by the locally quartic nature of the bubble potential around
the minimum in the trapping potential. This can be seen
by writing the trapping potential in Cartesian coordinates
and applying a Taylor expansion around the trap minimum.
The leading terms in the Taylor expansion around the trap
minimum are locally quartic: V (x, 0, r0) ∝ x4 [and similarly
V (r0, y, 0) ∝ y4 and V (0, r0, z) ∝ z4]. This locally quartic be-
havior goes some way to establishing the likeness between
the response to rotation of spherical shells in comparison to
harmonic plus quartic and other steeply confined BECs. Note,
however, the geometries are not entirely equivalent as due to
the shape of the shell trapping geometry, atoms can move from
the quartic - like region to lower z. Indeed atoms are pushed
out by the centrifugal barrier.

In addition to suggesting that a transition to a single
macroscopic giant vortex pair located at the poles may occur,
the locally quartic behavior also implies that quantum-hall
states may be difficult to reach for shell condensates. In har-
monically trapped condensates, as the external rotation rate
approaches the trapping frequency (� ≈ ωr), and the cen-
trifugal potential exactly cancels out the trap potential, the
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FIG. 2. (a) Top view of isosurfaces plotted at 10% of the maxi-
mum condensate density for shell-shaped Bose-Einstein condensates
under a rotation of 0.4ωr (left column) and 0.54ωr (right column).
(b) The corresponding side view of the constant density isosurface
for an external rotation of 0.4ωr , showing vortex lines through the
bulk condensate density and an elliptical shaped density distribu-
tion. (c) The phase profile of a condensate experiencing an external
rotation frequency of 0.54ωr at θ (x, y, 0) illustrates the giant mul-
ticharged vortex of winding 22 that has formed at the poles. This
multicharged vortex is surrounded by 19 singly charged vortices in
the bulk condensate density.

regime of the lowest-Landau-level approximation, or quan-
tum Hall regime, is reached [47] and the lowest-energy state
is the Bosonic Laughlin state [48]. Early experiments ex-
plored condensate physics approaching the lowest Landau
level regime, with BECs rotating close to the trap frequency
[49,50]. Recently geometric squeezing was applied to prepare
condensates directly in the lowest Landau level [51] and the
evolution of a interacting BEC occupying a single Landau
gauge wave function has been subsequently demonstrated
[52]. While exploring the effect of geometry and topology on
Landau-level physics in a bubble geometry would potentially
uncover interesting physics, the locally quartic nature of shell
condensates suggests this regime may be out of reach. Previ-
ous work indicates that the locally quartic nature of the trap

prohibits attaining the Bosonic Laughlin states at least experi-
mentally, as an additional weak quartic potential renders them
highly fragile [53]. In the rapidly rotating regime for a weakly
anharmonic trapping potential, the Laughlin state is fragile
and energetically unfavorable, and the energetically favorable
state is a giant-vortex state [53].

IV. CONCLUSION

In conclusion, we demonstrated that the response to rota-
tion of three-dimensional bubble condensates can be classified
into three distinct regimes. The first regime for slow external
rotation rates is characterized by the formation of two aligned
triangular Abrikosov-like vortex lattices in each hemisphere,
with all constituent vortices beginning on the outer bubble
surface and ending on the inner surface. As the external
rotation rate is increased, the centrifugal barrier results in a
distortion of the spherical shell shape and we enter a regime
where U-shaped vortex lines that traverse the bulk condensate
density are formed closer to the equator. Finally, we find that,
at faster rotation rates, a giant vortex-antivortex pair forms at
the poles, surrounded by singly charged vortices in the bulk
condensate density. This regime corresponds to a transition
of topology from a spherical-shell shape to a toroid. Creating
spherical-shaped shells experimentally is currently challeng-
ing and to date shells of cold atoms created in the microgravity
environment of the international space station are elliptical in
shape, with nonuniform width [9]. We leave investigating the
effect of these changes in geometry on the resulting vortex
lattice structures created under rotation as an avenue for
future work.
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