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Transient spectroscopy from time-dependent electronic-structure theory
without multipole expansions
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Based on the work done by an electromagnetic field on an atomic or molecular electronic system, a general
gauge-invariant formulation of transient absorption spectroscopy is presented within the semiclassical approxi-
mation. Avoiding multipole expansions, a computationally viable expression for the spectral response function
is derived from the minimal-coupling Hamiltonian of an electronic system interacting with one or more laser

pulses described by a source-free, enveloped electromagnetic vector potential. With a fixed-basis expansion of
the electronic wave function, the computational cost of simulations of laser-driven electron dynamics beyond the
dipole approximation is the same as simulations adopting the dipole approximation. We illustrate the theory by
time-dependent configuration interaction and coupled-cluster simulations of core-level absorption and circular

dichroism spectra.
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I. INTRODUCTION

Using technology developed in the past two decades, ul-
trashort laser pulses with attosecond duration have enabled
the observation and manipulation of multielectron dynamics
in atoms, molecules, and materials, thus opening new research
avenues in physics and chemistry [1-3]. Quantum-mechanical
simulations are mandatory to properly understand, interpret,
and predict advanced attosecond experiments. While nuclear
motion becomes important on longer timescales (femtosec-
onds), one- and multielectron ionization dynamics constitute
major challenges for time-dependent electronic-structure sim-
ulations, along with electron-correlation effects [4].

Single-active-electron (SAE) models [5-7] that, at best,
only account for electron correlation through an effective po-
tential are widely used to study processes induced by lasers
with frequency well below any multielectron excitation en-
ergy. As the frequency increases and approaches resonance
with a multielectron excited state, the SAE approximation
breaks down and a correlated many-body method should be
applied instead [8,9].

Regardless of whether the SAE model or a many-body
description is used, most simulations of laser-induced pro-
cesses employ the electric dipole approximation where the
magnetic component of the laser field is neglected and the
electric component is assumed to be spatially uniform. This
is an excellent approximation when the spatial extent of the
electronic system is small compared with the wavelength of
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the laser field. Attosecond laser pulses, however, are com-
monly generated by high harmonic generation in the extreme
ultraviolet and x-ray spectral regions where beyond-dipole
effects may become non-negligible. It is therefore of inter-
est to include higher-order electric and magnetic multipole
interactions in simulations of laser-driven electron dynam-
ics, preferably without incurring a significant computational
penalty.

Within response theory [10], which is essentially time-
dependent perturbation theory Fourier transformed to the
frequency domain, beyond-dipole effects have been studied
using the full plane-wave vector potential for the semiclassical
description of the matter-field interaction [11-14]. Due to the
use of perturbation theory and the neglect of terms quadratic
in the vector potential, these studies are limited to weak laser
fields but do not suffer from issues such as origin dependence
and slow basis-set convergence that may arise from the use
of multipole expansions [15-18]. Conceptually, at least, it is
rather straightforward to generalize the response-theory ap-
proaches to the time domain, avoiding perturbation theory
altogether and hence enabling the study of both weak- and
strong-field processes without multipole expansions.

The theory of transient absorption spectroscopy (TAS)
(see, e.g., the work by Wu ef al. [19]) has been formulated
in the framework of the electric dipole approximation. In the
present work, we present a generalization that accounts for
the presence of spatially nonuniform fields, which reduces
to the original formulation in the long-wavelength (electric
dipole) limit. In line with the previous work based on re-
sponse theory [11-14], we present initial test simulations on
small molecules in the weak-field limit using time-dependent
configuration-interaction (TDCI) [20-24] and time-dependent
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coupled-cluster (TDCC) [25] theories. Ignoring ionization
processes, we use static, atom-centered Gaussian basis sets
such that the prerequisite integrals involving the full plane-
wave vector potential can be computed using the recent
implementation reported by Sgrensen et al. [13]. This allows
us to validate our implementation of the generalized theory
of TAS by comparing with previously reported theoretical
pump-probe and x-ray-absorption spectra. In addition, we
compute the anisotropic x-ray circular dichroism (CD) spec-
trum of hydrogen peroxide generated from simulations of
the electrons interacting with circularly polarized laser pulses
[26-31], comparing with the CD spectrum predicted by the
rotatory strength tensor [32].

II. THEORY

Atomic and molecular transient (as well as steady-state)
absorption spectra can be obtained by computing the spectral
response function S(w), which in turn is obtained from a
frequency-resolved analysis of the total energy transfer AE
between an electromagnetic field and the electronic system.
The spectral response function S(w) is defined such that it
satisfies the relation

o0
AE = / do oS (w). (D
0
The absorption cross section o (w) can be computed as
wS(w)
= , 2
o(w) @) 2

where /(w) is the total field energy per unit area at frequency
w. In this work, however, we focus on the spectral response
function. We first formulate a general gauge-invariant theory
for the energy transfer, proceeding to the derivation of the
spectral response function for the specific case of an en-
veloped, source-free electromagnetic field without multipole
expansion.

We will closely follow the theory previously formulated
within (and restricted to) the electric dipole approximation
[19,33-35]. The key difference between the theory within
and without the electric dipole approximation is the definition
of the proper gauge-invariant energy transfer AE. Once this
has been established, the derivation of the spectral response
function S(w) proceeds in essentially the same manner within
and without the electric dipole approximation.

A. Energy transfer

We consider an atomic or molecular electronic system ex-
posed to the classical electromagnetic fields

E(r,t) = —0,A(r,t)— Vo(r,t), 3)

B(r,t) =V x A(r, 1), 4)

where A(r,t) and ¢(r, t) are the vector and scalar potentials,
respectively. Specifically, we consider the interactions of the
electrons with laser pulses, i.e., the physical electric and mag-
netic fields E and B, respectively, to be nonzero only in a finite
time interval and to vanish as t — £oo. Within the nonrel-
ativistic clamped-nuclei Born-Oppenheimer approximation,

the time evolution of the electronic system is governed by the
electronic Schroédinger equation

W) = HOY@)), ¥t — —00)) = [¥), (5)

where |Wy) is the initial wave function of the electrons, typi-
cally the ground-state wave function in the absence of external
fields. The semiclassical minimal-coupling Hamiltonian is
given by

H(t) =72, t) + W — ¢(r. 1), (6)

where n(r,t) = p+ A(r,t) is the kinetic momentum oper-
ator and W represents all Coulomb interactions among the
electrons and (clamped) nuclei. Throughout this paper, sum-
mation over electrons will be implicitly assumed for brevity
of notation, and Hartree atomic units are used. We have also
skipped the spin Zeeman term as we will use only closed-shell
spin-restricted wave functions in the present work.

We wish to derive a general expression for the spectral
response function S(w) in Eq. (1). Physically, the total energy
transfer AE expresses the work performed on the electronic
system by the external electromagnetic fields, and the rate of
change of the energy is referred to as the power. In classical
electrodynamics [36], the power function of an electron in
an electromagnetic field is given by P = —E - v, where v is
the velocity of the electron. This is also the energy lost by
the electromagnetic field as calculated by Poynting’s theorem
[36], ensuring energy conservation (of the particle and field
systems together). Assuming that the electric field E(r, t) is
an analytic function of r, we show in Appendix A that the
quantum-mechanical power operator can be obtained from
McCoy’s formulation of Weyl quantization as [37,38]

P(r,t)=—3E@t) - ar,t)+n@r, 1) -Er,0]. (7)

Hence, we may express the total energy transferred from the
field to the electronic system as

A€ = /00 dt(P(r,t)). (®)

In previous work on transient absorption spectroscopy (see,
e.g., Refs. [19,33-35]) the energy transfer is expressed as the

integral
© dE®)
A€ = dt———, 9
[ <>

where £(¢) is the instantaneous energy of the electrons. At
this point, the instantaneous energy is typically equated with
the quantum-mechanical expectation value of the Hamiltonian
(H(t)) = (W(@)|H()|W(t)). In general, however, neither the
expectation value (H (¢)) nor the Hamilton function in classi-
cal mechanics [39] equals the energy of the electrons when a
time-dependent external electromagnetic field is present. This
is clear from the fact that both (H(¢)) and d(H(¢))/dt are
gauge-dependent quantities. Instead, the operator [40,41]

Kt)=H(@t)+¢r.t)=in*r,t) + W (10)

can be regarded as a (generally time-dependent) energy oper-
ator which yields gauge-invariant expansion coefficients and
transition probabilities when the wave function is expanded
in its (generally time-dependent) eigenstates (see Appendix B
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for details). Using the energy operator (10) and the Ehrenfest
theorem, we find

dé@t)  d(K())
A

which leads to Eq. (8) upon substitution in Eq. (9). We refer
the reader to Refs. [40—47] for further discussions of the
intricacies of gauge invariance in external time-varying fields.

Within the electric dipole approximation A(r,t) =~
A0,1) =A(@), ¢(r,t) =0, which was assumed in previous
work [19,33-35], the power operator becomes P(t) = —m(¢) -
E (t). Inserting this expression into Eq. (8) yields

= (P(r,1)), (1)

AE = — /OO dt (1)) - E(t). (12)

o0

Using the Ehrenfest theorem

dir)
- = (x0) (13)

and integration by parts, we arrive at
AE:/ dr(r) - E(1), (14)
—00

which agrees with the expressions obtained in Refs. [19,33—
35].

Identifying the instantaneous energy as the expectation
value (H (¢)) is valid when the scalar potential vanishes, which
in turn is a valid choice with the Coulomb gauge condition
V - A(r, t) = 0 whenever the electric field is divergence-free
(no charge contributions to the electric field), i.e., within the
radiation gauge [48]. Caused by the absence of magnetic
fields, it is a peculiarity of the electric dipole approximation
that the correct energy transfer is obtained from (H (7)) with
the choices A(r,t) = 0 and ¢(r,t) = —r - E(¢).

B. Representation of laser pulses without multipole expansion

From here on we will assume a divergence-free electric
field and work in the radiation gauge such that K(r) = H(¢).
Following common practice, we separate the Hamiltonian into
a time-independent and a time-dependent part

H(1) = Hy+ V), (15)
Hy=1ip*+W, (16)
V() =A(r,t)-p+ 1A% 1). (17)

In the context of time-dependent perturbation theory or
frequency-dependent response theory, the weak-field approx-
imation, i.e., neglecting the term quadratic in the vector
potential, is usually invoked, although it is not formally nec-
essary to do so [11-14]. For the real-time simulations pursued
in the present work, invoking the weak-field approximation
does not lead to any simplifications and hence we retain the
quadratic term in all simulations.

The vector potential that solves the Maxwell equa-
tions within the Coulomb gauge is a linear combination of
plane waves. However, this is impractical for modeling ultra-
fast laser pulses. We will instead model the vector potential as

a linear combination of enveloped plane waves

A1) = An(r, )Gy (1)

= 3" AuRe(w, T NG, @), (18)

m

where each term in the sum models a single pulse with am-
plitude A,,, carrier frequency w,,, and carrier-envelope phase
¥m. The Coulomb gauge condition implies that the (complex)
polarization vector u,, is orthogonal to the real wave vector
k,,, which has length w,,/c, where c is the speed of light.
The electric- and magnetic-field amplitudes of each pulse are
E, = w,A,, and B,, = E, /c, respectively, and we define the
peak intensity of each pulse as

Iy = €ocE,. (19)

Chirped laser pulses can be modeled by letting y,, be time
dependent.

In experimental work, Gaussian functions are often fa-
vored for the envelopes G,,(¢). In numerical studies, however,
Gaussians are inconvenient due to their long tails and infinite
support. For this reason, we use trigonometric envelopes of
the form [49]
|t - tm| X %

L
2

=),

0, [t — tn] >

cos” (

Gu(t) = (20)

where n > 0 is a chosen parameter, t,, is the central time of
pulse m, and T,,,, is the total duration of A,,. The total duration
depends on n and may be computed from

T Ty

= 21
2 arccos(21/2n) @h

Tmn
where 7, is the full width at half maximum of G,zn(t), ie.,
T,, is approximately the desired experimental pulse duration
defined from the intensity distribution [49].

The trigonometric envelopes (20) define a sequence of
functions that rapidly and uniformly converges to the Gaus-
sian function exp[—2 In(2)(t — t,,)*/72] for increasing values
of n [49]. Moreover, in contrast to finite numerical represen-
tations of Gaussian envelopes, the trigonometric envelopes
guarantee that the dc (zero-frequency) component of the elec-
tric field vanishes identically for any choice of n > 0, in
agreement with the far-field approximation of the Maxwell
equations [50].

A similar setup has been used before in grid treatments of
single-electron systems [51-53] where pulses of the form

m(wt —k-r)
oT

were used. Here u is a real polarization vector and the enve-
lope depends both on time and on spatial coordinates. This
has the benefit of modeling the overall shape of the pulse in
space, albeit with potential edge effects if the approximation
A(r,t)~0atr=0and ¢t =T is made along with a neglect
of the spatial nonperiodicity. The pulse with the purely time-
dependent envelope, Eq. (20) with n = 2, may be regained
from the spatiotemporal envelope by an expansion through
lowest order in k - r/ncy., where ncy. is the number of optical
cycles of the pulse.

A(r, 1) = Ag sin® < > sin(fwt —k-ru (22)
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C. Spectral response function

Since we have assumed a divergence-free electric field,
the power operator becomes P(r,t) = —E(r,t) - m(r, t), and
Eq. (8) simplifies to

AE = —/ de(E(r,t) - m(r,1)). (23)

o0

Using the Fourier transform convention

~ 1 © ~ .
0 =Flfoi=—= [ dof@e, e

f f =) f

~ 1 0 '
@ =Rl = o= [ arwe . )

f t f m . f

the integration over time in Eq. (23) can be turned into an

integration over frequency,

A€ = /oo doY (v), (26)
with

Y () = —FliolA@r, o) - (1)), 27

where we have used E (r, w)* = iwA(r, w)*.

Introducing

fim(r) = costk,, - 1), (28)
Fom(r) = sin(k,, - r), (29)
81,m(1) = cos(@mt + Ym)Gu(t), (30)
82,m(1) = sin(wpt + Y )Gn (1), (€2
ul = 8;Re(uy) + €;Im(u,), (32)

where §;; is the Kronecker delta and ¢;; is the Levi-Civita
symbol, the vector potential (18) can be recast as

2
An(r, DG () = Ap Yl fimPgjm@).  (33)
ij=1
Equation (27) can now be written as
2
Y@)=0) > Fjm@)gin(-o), (34)
m i, j=1
where F; j,m(w) is the Fourier transform of the function

2
Fijm(t) = — iAnu) - <<f,-,m<r)p> +> > A

n kl=1
X (fan () fim () grn(t )) . (35)

Hence,

o 2
AE — /0 doo Y ST = PIFjm(@)gm(—0)], (36)

m i j=1

where P is the parity operator defined by P f(w) = f(—w).
The spectral response function thus becomes

2
S@)=Y Y (1 =Pijm@gjm(—»),  (B7)

m ij=1

which can be computed by sampling F;; ,(¢) during a simula-
tion, followed by Fourier transformation in a postprocessing
step.

In the electric dipole approximation, f,(r)=1 and
Jfom(r) =0, and in this case the spectral response function
reduces to

S(w) = 2Im[(%) () - A(w)’] (38)

or, equivalently,
S(w) = ~2Im[{d)(®) - E(w)"]. (39)
in terms of the dipole operator d = —r. The expression (39)

was used in Refs. [19,33-35]. We remark that Eqs. (38) and
(39) are equivalent only if the Ehrenfest theorem (13) is
satisfied, i.e., for fully variational many-body wave-function
approximations, and in the limit of complete one-electron
basis set. For the visual presentation of spectra we use nor-
malized spectral response functions

S(w)
max|[Sper(@)] '

S(w) = (40)
where S is the spectral response function of some reference
system.

III. NUMERICAL EXPERIMENTS

In order to test the multipole-expansion-free theory out-
lined above, we will investigate the following aspects:
(i) reproducibility of results obtained within the electric
dipole approximation in the long-wavelength limit, i.e., the
core-level pump-probe spectrum of LiH (Sec. IIIB); (ii)
reproducibility of results obtained with low-order multi-
pole expansions for short wavelengths, i.e., K—pre-edge
quadrupole transitions in Ti (Sec. III C); and (iii) intrinsically
beyond-dipole phenomena, i.e., anisotropic circular dichroism
(Sec. III D).

A. Computational details

All simulations are performed with the open-source soft-
ware Hylleraas Quantum Dynamics (HYQD) [54]. We employ
a series of nonrelativistic, closed-shell, spin-restricted time-
dependent electronic-structure methods based on a single
reference Slater determinant built from spin orbitals expanded
in a fixed atom-centered Gaussian basis set. The orbital ex-
pansion coefficients are either kept constant (static orbitals) at
the ground-state Hartree-Fock (HF) level or allowed to vary
in response to the external field (dynamic orbitals). Static or-
bitals are used in the time-dependent configuration-interaction
singles (TDCIS) [55], time-dependent second-order approxi-
mate coupled-cluster singles and doubles (TDCC2) [56,57],
and time-dependent coupled-cluster singles and doubles (TD-
CCSD) [58] methods. Dynamic orbitals are used in the
time-dependent Hartree-Fock (TDHF) [55], time-dependent
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orbital-optimized second-order Mgller-Plesset (TDOMP2)
[57,59], and orbital-adaptive time-dependent coupled-cluster
doubles (OATDCCD) [60] methods. Only the methods using
dynamic orbitals are gauge invariant (in the limit of complete
basis set) [61-64]. No splitting of the orbital space is used
in the OATDCCD method, which therefore is identical to
the nonorthogonal orbital-optimized coupled-cluster doubles
model [64]. In the TDHF and TDOMP2 models the dynamic-
orbital evolution is constrained to maintain orthonormality
throughout, whereas in OATDCCD theory the dynamic or-
bitals are biorthonormal [60,64].

The methods can be roughly divided into three approxi-
mation levels. The TDCIS and TDHF methods are the least
computationally demanding ones [with formal scaling O(K*),
with K the number of basis functions] and do not account for
electron correlation. The TDCCSD and OATDCCD methods
are the most accurate and most expensive [O(K 6)] methods
with full treatment of double excitations. Finally, the TDCC2
and TDOMP2 methods are intermediate in both accuracy
and computational cost [O(K>)]. The TDCC2 method is a
second-order approximation to the TDCCSD model, while the
TDOMP2 model is the analogous second-order approxima-
tion to the orbital-optimized coupled-cluster doubles model
[63,65]. The doubles treatment of TDOMP2 theory is essen-
tially identical to that of TDCC2 theory but provides full
orbital relaxation through unitary orbital rotations instead of
the singles excitations of static-orbital coupled-cluster theory.

Since fixed, atom-centered Gaussian basis sets are used,
ionization cannot be described and therefore the simulations
are restricted to weak electromagnetic field strengths. On the
other hand, the fixed basis set allows us to compute matrix
elements of the plane-wave interaction operators using the
OPENMOLCAS software package [66,67] via a PYTHON inter-
face implemented in the DALTON PROJECT [68]. The remainder
of the Hamiltonian matrix elements and the ground-state HF
orbitals are computed using the PYSCF program [69] with the
exception of the LiH system, for which the DALTON quantum
chemistry package [70] is used. The convergence tolerance
for the HF ground states is set to 107! a.u. for both the HF
energy and the norm of the orbital gradients in the PYSCF
calculations, while the default value of 10~%a.u. on the HF
energy is used in the DALTON calculations. The basis sets are
obtained from the PYTHON library BASIS SET EXCHANGE [71].
The systems are initially in the ground state, which is calcu-
lated with ground-state solvers implemented in HYQD for all
the methods except the TDHF and TDCIS models, for which
the ground-state wave function is computed using PYSCF. A
convergence tolerance of 107'? is also used for the amplitude
residuals in the ground-state coupled-cluster calculations.

The integration of the equations of motion is done with the
symplectic Gauss-Legendre integrator [58,72] of order 6 and
with a convergence threshold on the residual norm of 1070
for the implicit equations. The simulations are performed with
the pulse defined in Eq. (18). The laser pulse parameters will
be given for each system below.

In actual simulations, time-dependent functions such as
Fijm(t) and g; ,,(¢) are computed as discrete time series, forc-
ing us to use the fast Fourier transform algorithm. To reduce
the appearance of broad oscillations around the peaks due to
spectral leakage, we roughly follow the procedure used by

Skeidsvoll et al. [34]. The simulation is started at time ¢t < 0
when the first pulse is switched on and continued until time
tmax > O after the last pulse is switched off. We then extend
the recorded time series such that #,;, = —fnax to obtain a
symmetric time range about t = 0. To do so, we use that
A(r,t) =0 and hence V(t) = 0 in the time interval before
the pulse is switched on. We then multiply the resulting time
series defined on the uniformly discretized time interval from
tmin 1O tmax With the Hann function

wy(t) = cos? (2;” > 1

before the fast Fourier transform is performed.

B. Core-level pump-probe spectrum of LiH

The most common experimental methods for spectral anal-
ysis of attosecond interactions employ pump-probe setups.
Therefore, we start by simulating a pump-probe spectrum
for LiH. The K—pre-edge features of Li are expected at less
than 60 eV, corresponding to a wavelength of approximately
200 A. In the weak-field limit, the beyond-dipole effects are
expected to be quite small, allowing us to compare with the
TDCCSD simulations carried out within the electric dipole
approximation by Skeidsvoll et al. [34].

For the most part we follow the setup of Skeidsvoll et al.
[34]. We start the TDCCSD simulation at t = —200 a.u. and
end it at f,x = 5000 a.u. The pump pulse centered at t; =
—40a.u. has a carrier frequency of 3.55247eV and maxi-
mum electric-field strength of 0.01 a.u. (corresponding to a
peak intensity of 3.51 x 10'> W/cm?), while the probe pulse
centered at ©, = O a.u. has a carrier frequency of 57.6527 eV
and maximum electric-field strength of 0.1 a.u. (peak intensity
3.51 x 10" W/cm?). Both pulses are linearly polarized in the
z direction (parallel to the molecular axis) with zero carrier-
envelope phases, and the propagation direction is along the x
axis. The beyond-dipole spectrum is generated using Eq. (37),
while Eq. (38) is used to generate the dipole spectrum. The
dipole simulation is done in velocity gauge to eliminate any
gauge differences between the two simulations. We note in
passing that the intensity of the probe pulse is too strong to
warrant the complete neglect of ionization processes, but to
facilitate comparison with the spectra reported in Ref. [34]
we choose to keep it.

Skeidsvoll et al. used a Gaussian envelope on the electric
field with root-mean-square width o; = 20 a.u. for the pump
pulse and o, = 10a.u. for the probe pulse. Here we instead
use the trigonometric approximation in Eq. (20) placed on the
vector potential with

Ty = —ANZOm (42)
arccos(2-1/2m)
and n = 19, which is the largest integer for which the pump
pulse is strictly zero att = —200 a.u.

There are mainly three aspects of our simulations that will
make our dipole spectrum different from that in Ref. [34]: (i)
placement of a trigonometric envelope on the vector poten-
tial rather than a Gaussian envelope on the electric field, (ii)
simulating in the velocity gauge instead of the length gauge,
and (iii) using Eq. (38) rather than Eq. (39) to generate the
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FIG. 1. Shown on top is an electric field with a Gaussian enve-
lope on the electric field and a trigonometric envelope on the vector
potential with exponent n = 19. On the bottom is the difference
between the two pulses and contributions to it from two distinct
sources.

spectra. The first point corresponds to effectively a different
electric-field component of the physical pulse, as discussed
in more detail in Appendix D. This difference will diminish
with increasing number of cycles in the pulses. Both points
(i1) and (iii) are due to lacking gauge invariance. Illustrating
the difference between the two pulse setups, Fig. 1 shows the z
component of the electric field at the origin, E,(0, t), with the
Gaussian envelope on the electric field and the trigonometric
envelope on the vector potential. The bottom panel shows the
difference between the two pulse setups, and the contribution
to the difference due to the trigonometric approximation and
due the placement of the envelope on the vector potential
rather than on the electric field. We see that the placement
of the envelope is the dominant contribution, especially in the
pump region. The difference in the pump region is also more
significant due to the smaller amplitude and consequently
larger relative difference. Figure 2 shows the TDCCSD dipole
spectra generated with the two alternative setups. The length-
gauge spectrum is identical to that reported by Skeidsvoll ez al.
[34], and although differences are visible on the scale of the
plot, we conclude that the velocity-gauge spectrum conveys
the same physics.

Acknowledging the differences between the two setups, we
will now focus on the difference between the simulations with
and without the dipole approximation. Figure 3 compares the
pump-probe spectrum simulated in the dipole approximation
and with a plane-wave operator generated with Eqs. (38) and
(37), respectively. Evidently, beyond-dipole effects are utterly
negligible in this case: The simulation with the plane-wave
operator produces a spectrum with the same transition fre-
quencies as the velocity-gauge electric dipole simulations,
deviating by at most 4.5 x 107>, corresponding to 0.0087%,
in relative intensity.

C. K-pre-edge quadrupole transitions in Ti

For heavier elements, the bound core-valence excitations
move up in energy and the shorter wavelengths become

1.0 7 Length gauge, envelope on electric field
-------------- Velocity gauge, trigonometric envelope
0.5
=
g
a 00
2 T T T T T T
= 0 10 20 30 40 50 60 70
Té, 0054 Difference
1~
S
Z. 0.00 =~ Il p |
-0.05
—-0.10
T T T T T T
0 10 20 30 40 50 60 70

Energy (eV)

FIG. 2. Shown on top are the TDCCSD pump-probe spectra
computed in the electric dipole approximation in length gauge using
the Gaussian envelope placed on the electric field and in the velocity
gauge with the trigonometric envelope (n = 19) on the vector poten-
tial. On the bottom is the difference between the solid and dashed
lines.

comparable to the “size” of the atoms in terms of, e.g., co-
valent atomic radii. This implies that higher-order multipole
effects become visible in high-resolution spectra. The K edge
of Ti is expected at just below 5000 eV. This corresponds to
a wavelength of roughly 2.5 A, which is comparable to the
covalent radius of Ti (1.60;\ [73]). Consequently, one can
expect visible beyond-dipole effects even in the low-intensity
limit.

We consider the Ti*T ion and the TiCl, molecule. In
the Ti** ion the 1s — 3d transition is dipole forbidden
but quadrupole allowed. In TiCly the tetrahedral symmetry
splits the 3d orbitals into groups of two e orbitals and three
t, orbitals. The ls — e transition is dipole forbidden but
quadrupole allowed, while the 1s — f, transition attains a

1.0 E L
| Dipole approximation
i - No dipole approximation
0.5 1 I
R
g‘ ’ T T T T T T
¥ 0 10 20 30 40 50 60 70
<
b 1x10°
5
E o -Jrer 1
S
Z
_2 -
-4 | — Difference
T T T T T T
0 10 20 30 40 50 60 70
Energy (eV)

FIG. 3. Shown on top is the pump-probe spectrum of LiH using
the TDCCSD method in the dipole approximation and with a plane-
wave operator using the aug-cc-pCVDZ basis set. On the bottom is
the difference between the spectra generated from simulations in the
dipole approximation and with the plane-wave operator.
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FIG. 4. Plot of the Ti** K-pre-edge spectrum obtained from
simulations with the ANO-RCC-VDZ basis set. Solid lines are ob-
tained with the velocity-gauge electric dipole approximation, while
dashed lines are obtained with the plane-wave operator. Shown on
top is the dipole-allowed 1s — 4p transition and on the bottom the
quadrupole-allowed 1s — 3d transition. Vertical black lines indicate
the EOMCCSD frequencies reported by Park er al. [75]. Note that,
although difficult to see, the dashed lines are present also in the top
panel

dominant electric dipole contribution due to 4p-3d mixing.
Experimentally [74], a broad peak around 4969eV in the
x-ray-absorption spectrum of TiCly has been assigned to the
ls — 1, and ls — e transitions with most of the intensity
stemming from the former. In the implementation presented
in this paper, electric quadrupole and other higher-order con-
tributions from the electromagnetic field should automatically
be accounted for.

For both the Ti** and TiCl, systems, we perform simu-
lations with a ten-cycle pulse with n =2 for the envelope
(20), carrier frequency 181a.u. (4925.26¢eV), and carrier-
envelope phase y = 0. The duration of the simulation is
100 a.u. for Ti**, while for TiCl, we use a total simulation
time of 600a.u. to ensure a reasonable resolution of the
splitting of the d orbitals. The electric-field strength is E; =
0.01 a.u. (peak intensity 3.51 x 10'2 W/cm?) and the time step
At = 2.5 x 10~*a.u. Linearly polarized along the x axis, the
pulse is propagated along the z axis (parallel to one of the
four Ti-Cl bonds in the case of TiCly). All Ti*t spectra are
normalized relative to the maximum peak in the TDCCSD
spectrum.

We first consider the 1s — 4p and 1s — 3d transitions
of Ti**, which were studied recently at the equation-of-
motion coupled-cluster singles and doubles (EOMCCSD)
level of theory by Park et al. [75] using multipole expan-
sion up to electric octupole or magnetic quadrupole terms,
for the full second-order contribution in the “mixed” length
and velocity gauge [17,76,77], in the framework of the
Fermi golden rule. In order to compare with their results,
we use the ANO-RCC-VDZ basis set [78]. Figure 4 dis-
plays the K—pre-edge spectrum obtained for Ti*" with the
TDCC2, TDOMP2, TDCCSD, and OATDCCD methods,
showing also the transition frequencies obtained by Park et al.
[75]. To within the spectral resolution of the simulation, the
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FIG. 5. Plot of the Ti** K-pre-edge spectrum obtained from
simulations with the plane-wave operator. Shown on top is
the dipole-allowed 1s — 4p transition and on the bottom the
quadrupole-allowed 1s — 3d transition.

TDCCSD method predicts the same transition frequencies as
the static EOMCCSD method, as expected. The intensity of
the dipole-allowed 1s — 4p transition is very nearly the same
both with and without the dipole approximation. The orbital-
adaptive methods yield roughly the same intensity profiles as
their static-orbital counterparts, but the transition frequencies
are blueshifted: approximately 0.5eV for TDOMP2 versus
TDCC2 and approximately 2 eV for OATDCCD versus TD-
CCSD. As has been observed previously [57], these blueshifts
are insignificant compared with other sources of error such as
basis-set incompleteness and higher-order correlation effects.
Electron-correlation effects are significantly more important
than the orbital relaxation provided by dynamic orbitals, as
seen in Fig. 5, where the TDCCSD spectrum is compared
to the spectra obtained with the TDHF and TDCIS methods.
While the TDHF and TDCIS simulations produce virtually
identical spectra, electron correlation causes a redshift of
the transition frequencies by roughly 8eV. The TDHF and
TDCIS intensities are comparable to but slightly higher than
the TDCCSD ones. The main source of error, besides rel-
ativistic effects, is the choice of basis set: Changing from
the ANO-RCC-VDZ basis set to the cc-pVTZ basis set in-
creases the EOMCCSD transition frequencies by more than
28eV [75]. Since we are not aiming at prediction or inter-
pretation of experimental results in this work, we study the
TiCly K-pre-edge spectrum using the most affordable TD-
CIS method with the ANO-RCC-VDZ basis set. The TDCIS
spectrum is shown in Fig. 6. The dipole-forbidden ls — e
transition is visible at 4941.50 eV, roughly 1.5eV below the
dipole-allowed 1s — ¢, transition at 4942.99 eV. The TDCIS
frequencies are blueshifted by approximately 12 eV relative to
the EOMCCSD results reported by Park et al. [75]. The 1s —
1, transition has a slightly higher intensity with the plane-wave
interaction operator than with the dipole interaction operator.
It should also be noted, however, that the intensities of the
dipole-allowed transitions typically are slightly higher with
the dipole approximation and therefore one should be care-
ful using the dipole result as a reference for evaluating the
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FIG. 6. Plot of the TiCl; K—pre-edge spectrum from a TDCIS
simulation with the plane-wave operator and with the velocity-gauge
electric dipole approximation. Shown on top is the dipole-forbidden
ls — e transition at 4941.50eV and the ls — f, transition at
4942.99 eV. On the bottom is a close-up at the 1s — 1, peak.

quadrupole contribution. The deviation may be caused by
a difference in the quality of the operator representation or
the wave function, which may occur when propagating with
different operators in a finite basis set.

D. Anisotropic circular dichroism

Circular dichroism (CD), the difference in absorption of
left and right circularly polarized radiation exhibited by chiral
molecules, is a particularly interesting case to test the imple-
mentation of the beyond-dipole interaction, since the observed
effect cannot be explained within the electric dipole approx-
imation. At least electric quadrupole and magnetic dipole
terms must be included [79-82] and consequently the differ-
ential absorption is weak compared with linear electric dipole
absorption. Chiroptical spectroscopies, including CD, are im-
portant for determining the absolute configuration of chiral
molecules and core-resonant CD is particularly well suited to
gauge local molecular chirality [83]. As Eq. (37) was derived
assuming complex polarization vectors, the implementation
presented here can easily be used to generate spectra involving
pulses with circular (or, more general, elliptical) polarization,
including at short wavelengths.

As alluded to above, the leading contributions to a
CD spectrum arise from the magnetic dipole and electric
quadrupole terms in the multipole expansion of the vector
potential. In an isotropic sample, the quadrupole contribu-
tion vanishes since the electric dipole—electric quadrupole
component of the rotatory strength tensor is traceless [32].
As a prototypical example which previously has been used
to test new implementations of CD spectra [84-86], we
will consider the H,0O, molecule in a chiral conforma-
tion with fixed orientation relative to the external laser
pulse.

The CD spectrum is calculated as the difference between
the spectral response functions of two distinct simulations:
one with left circular polarization and one with right
circular polarization of the pulse. We define the normalized

C,

FIG. 7. Definition of the Cartesian coordinate system for H,O,
(C; point group).

differential absorption as
Si—r(w) = Sj() = S,(w), 43)

where S;(w) and S,(w) are the normalized spectral response
functions for the left and right circularly polarized pulses. The
molecular geometry of H,O,, depicted in Fig. 7 along with
the Cartesian axis definitions, is taken from Ref. [87] (see
Appendix C for the Cartesian coordinates). We choose the
polarization vectors such that u' +u’" = 7. where J is a unit
vector aligned with the C, axis and superscripts » and / refer
to right and left circular polarization, respectively, as seen
from the source. We run two pairs of simulations with the
propagation direction along the x axis and along the z axis. For
the propagation direction along the x axis weuseu” = (0, 1, 1)
and u' = (0, 1, —i), and for the propagation direction along
the z axis we use u” = (—i, 1,0) and u’ = (i, 1, 0). We use a
carrier frequency in the K-edge region of oxygen, w = 20 a.u.
(544.23 V), and carrier-envelope phase y = 0. The duration
of the laser pulse is ten optical cycles and the trigonometric
envelope is defined with n =2, which corresponds to
T = 1.14au. The electric-field strength is E; = 0.01 a.u.
(peak intensity 3.51 x 10'2 W/cm?) and the carrier-envelope
phase is y = 0. The time step is Af = 0.005a.u. and the
total simulation time is 1000 a.u. We use the TDHF, TDCIS,
TDCC2, TDOMP2, and TDCCSD methods with the cc-pVDZ
basis set [88,89], and the spectra for propagation direction
along the x and z axes are normalized with respect to the
corresponding TDCIS simulation. The resulting CD spectra
are plotted in Figs. 8 and 9. As in the Ti** simulations
above, we see that the TDCIS and TDHF methods produce
nearly identical CD spectra with minor visual differences.
The TDCC2 and TDOMP2 methods also yield similar CD
spectra, producing the same sign pattern of the differential
absorption peaks, although the TDOMP2 peak positions
are slightly more redshifted than the TDCC2 ones relative
to the TDHF peaks. The intensities of the TDCC2 and
TDOMP2 spectra are significantly reduced compared with
the TDHF and TDCIS spectra. The TDCCSD method
shifts the transition frequencies somewhat but produces
an intensity of the dominant peak around 561—-562eV
which is closer to that of TDHF theory than the TDCC2 and
TDOMP?2 methods. Although this may indicate that high-level
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FIG. 8. Differential spectra obtained with the cc-pVDZ basis set
in the K-edge region of H,O, with the propagation direction along
the x axis.

electron-correlation treatment is important, the deviation may
also be caused by limited frequency resolution (discussed
below). Of course, the choice of carrier frequency will affect
the relative peak magnitudes, but further tests have shown
that this effect is rather marginal as long as w is reasonably
close to the transition energies. Figure 10 shows the CD
spectrum obtained from the TDCIS simulations along with a
stick spectrum calculated from the rotatory strength tensors
[32] computed by full diagonalization of the CIS Hamiltonian
matrix. For both propagation directions, the stick spectrum is
normalized such that the maximum peak is equal to the max-
imum peak from the corresponding TDCIS simulation. Since
the carrier frequency is 544.23 eV, it is expected that the peaks
of the stick spectrum are smaller than the simulated peaks to
the immediate left of the dominant peak and larger further to
the right of the dominant peak. This is indeed what we observe
in the bottom panel of Fig. 10. In the top panel, however,
this is not the case. This can be ascribed to insufficient
convergence. The excited states of H,O; in the C, geometry
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FIG. 9. Differential spectra obtained with the cc-pVDZ basis set
in the K-edge region of H,O, with the propagation direction along
the z axis.
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FIG. 10. Differential spectra obtained with the cc-pVDZ basis
set in the K -edge region of H,O, with propagation direction along the
x (top) and z (bottom) axes, along with circular dichroism calculated
from rotatory strengths.

come in pairs, typically separated by 0.01 eV or less, formed
by the lowering of symmetry relative to a planar, achiral (cis
or trans) structure. For propagation in the x direction, the CDs
for these pairs of states are of about the same magnitude but
with opposite signs, causing lowering of the peak intensities.
Figure 11 shows the effect of increasing the simulation time
from 1000 a.u. to 7500 a.u. The change in the bottom panel
is relatively minor, while the dominant peak in the top panel
has increased by an order of magnitude. This is closer to
the expected difference calculated from rotatory strength
tensors. However, the peak at 567 eV is still much suppressed,
which is caused by the states only being separated by
about 0.0088 eV.

An overview of the occupied orbitals and the 11
lowest-lying virtual orbitals is given in Table 1. The core
orbitals 1oy and 1o are separated by 7.3483 x 107> eV and

0.2 Sim. time 1000 a.u.
| —— Sim. time 7500 a.u.
g 0.0 t
E- ’
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FIG. 11. TDCIS differential spectra obtained with the cc-pVDZ
basis set in the K-edge region of H,O, with the propagation direction
along the x (top) and z (bottom) axes, with simulation times of 1000
and 7500 a.u.
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TABLE 1. Occupied orbitals and the 11 lowest-lying virtual or-
bitals of H,O, with the cc-pVDZ basis set. The orbital types are
based on similarity to the peroxide ion. Due to the reduced symmetry,
all orbitals are somewhat mixed.

Symmetry
No.  Energy (a.u.) label Type
1 —561.27036 1A o
2 —561.26301 1B o*
3 —39.992527 2A o
4 —33.108905 2B o
5 —19.465831 3B T,
6 —18.833153 3A Ty
7 —16.202217 4A O,
8 —14.251659 5A )
9 —13.038506 4B 7y
10 5.1526056 6A o
11 5.2866155 5B o*
12 7.7990137 6B o,
13 22.642558 7A mixed, dominant weight on H
14 22.835716 7B mixed, dominant weight on H
15 30.276955 8B 0
16 30.673602 8A Ty}
17 31.260347 9A w}
18 32.689754 9B o, Ty
19 34.770868 10B mixed o-1
20 36.906177 10A o

S-Px

hence excitations from either of the core orbitals to low-lying
virtual orbitals will fall in the K—pre-edge region. The TDCIS
spectrum contains five main peaks below 580eV along
with three smaller ones at 553.44, 560.24, and 576.82¢V.
The first peak at 546.48eV can be viewed as a transition
to virtual orbitals 5B and 6B. The main peak in Fig. 8 at
569.63eV contains significant excitations to orbitals 8A,
9A, and 9B, which are orbitals with significant 7 character,
and with electron density mostly located on the oxygen
atoms. The main peak in Fig. 9 at 573.97 eV is mainly due
to excitations to the 7B and 8B (and somewhat to 10A)
orbitals.

Finally, noting that the cc-pVDZ basis set is insufficient
for accurate predictions of CD spectra in general (see, e.g.,
Ref. [84]), we compare the TDCIS spectra with those obtained
with larger basis sets in Fig. 12. As expected, the basis-set
effect is significant. Going from a double-zeta to a triple-zeta
basis retains some of the main features but the energies are
red-shifted, whereas the inclusion of diffuse orbitals in the
aug-cc-pVDZ basis set leads to a much more radical change
of the underlying dynamics due to a higher density of excited
states in the energy region around the carrier frequency. More
accurate predictions of transient CD spectra, especially with
the higher-level TDCC methods, clearly require larger basis
sets including diffuse functions.

IV. CONCLUSION

We have derived a gauge-invariant expression for the
spectral response function which is applicable to transient
absorption and emission spectra. This expression is applicable
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3
2 -0.02
<
= T T T T T
§ 540 560 580 600 620
o
&
= 0002
|
g 0.000 J | i |.| rnv sn BUS L4
2 [l
-0.002
T T T T T
540 560 580 600 620

Energy (eV)

FIG. 12. TDCIS CD spectra in the K-edge region of H,O, with
the propagation direction along the x axis (top) and z axis (bottom).

both within and beyond the electric dipole approximation.
Using an enveloped plane-wave vector potential to formulate
the semiclassical matter-field interaction operator, simulations
of laser-driven many-electron dynamics with a fixed atom-
centered Gaussian basis set can be straightforwardly carried
out with no additional cost compared with the analogous
electric dipole simulations. Numerical experiments show that
beyond-dipole effects are fully captured without explicit mul-
tipole expansions and that electric dipole results are correctly
reproduced in the long-wavelength limit. Circular (or, more
general, elliptical) polarization is easily handled, as illustrated
by preliminary simulations of anisotropic transient x-ray cir-
cular dichroism spectra.

Aimed at electronic ground and bound excited states, fixed
atom-centered Gaussian basis sets do not support electronic
continuum states and consequently we have only considered
low-intensity laser fields in this work. An extension of the
approach presented here to more flexible bases would allow
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FIG. 13. Comparison of EZ (envelope on the electric field) and
E* (envelope on the vector potential). Common parameters were
w =1 and ¢ = 0. In addition, o =1 (top), 0 = 3 (middle), and
o = 10 (bottom).
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us to study highly nonlinear processes such as core ionization
where the magnetic component of the electromagnetic field
may play a decisive role.
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APPENDIX A: WEYL QUANTIZATION
OF THE CLASSICAL POWER

For notational convenience, we will consider Weyl quan-
tization [38] in one spatial dimension; the generalization
to three dimensions is straightforward. We will use (g, p)
to denote a point in the classical phase space and ¢, p
to denote the corresponding quantum-mechanical operators
satisfying the canonical commutator (using atomic units
throughout)

[q. p] =1i. (AD)
The classical power is given by

P(q,p) =[p+A(q,)IE(q. 1) = pE(q. 1) + A(q, 1)E(q, ).
(A2)
The second term is easily quantized since both A and E are

local functions. Assuming that E is an analytic function of ¢,
we may write

o]

E®(0,1)
PE@ D) =) — "—pd, (A3)
5s=0 :

where E®)(0, 1) is the sth derivative of E with respect to g
evaluated at ¢ = 0. Following McCoy, the quantization of pg’
is given by [37]

I Y X P
P = 5 <l>q‘ 'bg. (A4)

=0

By a simple reordering of the terms, this can be equivalently
written as

1< s
Pq = 5 (S ~ l)c?’ﬁcf‘l- (AS)
=0

We now add the two equivalent quantizations of pg®, divide

by 2, and utilize
s\ s
1) \s—1

(A6)

to obtain

U xS (S st anl o al ns
Pe = S (1)(4‘ 'pq' +4'pg"™)
=0

U o (S momt o aln s on s
57T 2 <l>{q° "G'p+1p.4'D
=0

+ (3¢ —[p.d'Dg™"}

_1 - § A H AAS AS— A A
=5 <Z)<ffp+pq +1¢ 5. 4'ID
1=0

1 < (s s n ans
=—25+IZ<Z>(qp+pq)-
=0

A Al

In the last step, we have used [p, §'] = —ilci”1 to conclude
that [¢*~', [, ¢']1 = 0. Using the sum rule

()

=0

(AT)

(A8)

which is a special case of the binomial theorem [see, e.g.,
Eq. (3.1.6) in [90]], we get

pqd’ = 5(pg° + §°p). (A9)
Consequently,

o0

E®(0,1)
PE(q, 1) =) — "
s=0

(%)

IS EDO,8) .
QE;T(M +4'p)

Lo ~a
= 5[PE(G. 1) + E(g.1)p]. (A10)
and the power operator thus becomes

P(q, p) = 5[RE(g, 1) + E(g, 7],

where 7 = p+ A(q, t).

(Al1)

APPENDIX B: GAUGE INVARIANCE
OF THE ENERGY OPERATOR

We consider the gauge transformation
A'(r,t) =A(r, 1) + Vx(r,1), (B1)
dx(r1)
or
where A and ¢ are the vector and scalar potentials in gauge
g and A’ and ¢’ are the corresponding potentials in gauge g

The gauge function yx is an arbitrary (differentiable) function.
Starting with the Schrodinger equation in gauge g,

i|W,) = H(A, ¢)|W,), (B3)

¢'(r, 1) =¢(r,1) — (B2)

where the overdot denotes the time derivative and H(A, ¢) =
1(p+A)* + W — ¢, the corresponding state in gauge g,

[Wy) = U[W,) = e | W), (B4)
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FIG. 14. Illustration of the electric field of the LiH pump-probe
simulations using E£.

satisfies the Schrodinger equation
i|Uy) = H@A', ¢)| V). (BS)
The two Hamiltonians are related by
HA',¢)=UHA,p)U" +iUU", (B6)

and therefore the expectation values of the Hamiltonian in the
two gauges are not equivalent:

(W |H(A', ¢")Wy)
= (W JUTIUHA, p)UT +iUUTIU|¥,)
= (W, [H(A, ¢)|W,) +i(W,|UTU|W,)
= (WlH(A, )| We) + (Wel X W)
= (W|H(A, §)|W,) + (Welp — ¢'[We).  (BT)

This explicitly shows that the Hamiltonian does not repre-
sent the energy of the electrons in the presence of external
time-dependent electromagnetic fields. However, a simple re-
arrangement of this expression yields

(Wg|HA', ¢") + ¢'|Wy) = (W |HA, ¢) + $|¥,), (BY)

which indicates that a gauge-invariant energy operator can be
defined as H(A, ¢) + ¢.

An operator F (A, ¢) has gauge-invariant expectation val-
ues if the change in vector and scalar potentials induces a
change in the operator such that

FA',¢)=UF@A,p)U". (B9)
In this case,
(WelF (A, )W) = (Wy|F(A', §)|Wy). (B10)
Under a gauge transformation, the energy operator [40,41]

KA)=HA,$)+¢ =37+ W (B11)
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FIG. 15. Comparison of the pump and probe pulses using EZ and
E* pulses.

transforms as
UKAU =iUp+A? U +W
=5 +AY +W

KA. (B12)

We can thus conclude that the expectation value of the energy
operator is indeed gauge invariant.
The energy operator can be reduced to the field-free op-

erator Hy = - + W by a gauge transformation if and only
if there is no magnetic field present, V x A = 0. Within the
electric dipole approximation, this gauge choice gives the
dipole-length Hamiltonian. Beyond the electric dipole approx-
imation, however, no such gauge choice exists.

Although one may always expand the wave function in
the eigenstates of Hy (with a suitable representation of the
continuous part of the spectrum), the expansion coefficients

125 A ) ,.7*{: N '\-\ — |Ef,¢=0
/7 \\ . .
100 1 /s N EE|, ¢ = /2
2 /S, \ 8 s IEA b=
S 751 s N\ |EAl, =0
3 s NN
£ 50+ /! NN
o "\,
= 7_/ /4/ N ~\ ~
"/' =~
0 = T T T T T B—
0.00 0.05 0.10 0.15 0.20 0.25 0.30
600 IEEL, =0
-=- 1BL¢=0
2 400 A
c
3
8
S 200 -
0 1 T T T T T T
1.9 2.0 2.1 2.2 2.3 2.4
Energy (a.u.)

FIG. 16. Magnitude of the Fourier components in the pump (top)
and probe (bottom) pulses using the E# pulse and E* pulses with
carrier-envelope phase 0 and 7 /2.

013109-12



TRANSIENT SPECTROSCOPY FROM TIME-DEPENDENT ...

PHYSICAL REVIEW A 109, 013109 (2024)

TABLE II. Cartesian coordinates in bohrs.

LiH
Li 0.0 0.0 0.0
H 0.0 0.0 —3.0139491027559635
TiCl,
Ti 0.0 0.0 0.0
cl 0.0 0.0 4.1007056904379215
Cl 3.86618240181189 0.0 —1.3669018968126405
cl —1.93309120090594 3.348212175633433 —1.3669018968126405
cl —1.93309120090594 —3.348212175633433 —1.3669018968126405
HzOz
0 1.3936730169115057 0.0 0.0
0 —1.3936730169115057 0.0 0.0
H 1.5439062438192541 0.8972419639723157 1.5476856960685057
H —1.5439062438192541 0.8972419639723157 —1.5476856960685057

are gauge dependent and hence cannot be interpreted as tran-
sition amplitudes. Gauge-independent expansion coefficients
are only obtained if the proper energy states, i.e., the instanta-
neous eigenstates of the energy operator, are used [40].

APPENDIX C: MOLECULAR GEOMETRIES

The nuclear Cartesian coordinates in Bohr for the
molecules studied in the main text are listed in Table II.

APPENDIX D: PULSE SHAPES
AND FREQUENCY COMPONENTS

1. Definitions of pulses

Electric-field pulse shapes of the form

N
Ef(t)=) EL®)

n=1

N
=Y Bty cos[w,(t —1,) — $,1G,(t)  (DI)

n=1

are common in the literature [usually in singular form
EE(t) = Ef(1)]. In Eq. (D1), n is the pulse number, N is
the number of pulses, E, is the maximum field strength, u,
is a real polarization vector, w, is the carrier frequency, ¢, is
the central time, G,(¢) is the envelope, and ¢, is the carrier-
envelope phase. Superscript E signifies that the envelope has
been placed on the electric field. Here we will use Gaussian
envelopes defined by

_ _ 2
Gult) = exp (%) (D2)

n

where o, is the standard deviation. Alternatively, we can de-
fine the electric field by the vector potential in velocity gauge,
E(t) = —0,A(t), where we define the vector potential as

N
A@t) == Aty sin[w,(t — 1,) — $,1G,(1).  (D3)

n=1

The corresponding electric field is then

N
EYt) =) Ep)

n=1

N
= ZE,,un<cos[w,,(t — 1) — @l

n=1
t—1,

00}

sinfw,(t —1,) — ¢n]>Gn(t)’ (D4)

where superscript A denotes that the envelope was placed
on the vector potential and E, = w,A,. For a given carrier
frequency w,, EA(t) will converge to EZ(t) for increasing
values of o, but in cases where o, is small in the sense that
we have effectively few cycles, E2(¢) may differ significantly
from Ef (t). An illustration of this is shown in Fig. 13.

2. Frequency components

The zero-frequency (dc) component of the electric field is
given by

[e.¢]
E©) = / E(t)dt. (D5)
The dc component should vanish in the far-field approxi-
mation of the Maxwell equations [50]. This condition is by
definition satisfied by the pulse given in Eq. (D4). It is in
general not satisfied for pulses defined by Eq. (D1), but the
dc component will vanish for phases ¢, = (m + %)n, me 7,
since the function is then odd. In what follows, we use the

TABLE III. Parameters used in pump-probe setup. All values are
in atomic units.
Parameter Pump Probe
E, 0.01 0.1
Wy 0.130551 2.118698
¢l‘l O O
On 20 10
t, —40 0
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to analyze the frequency components in the pulses.

3. Example: LiH pump-probe pulse

We will here look at the pump-probe pulse used for LiH
in Ref. [34], where the electric field was of the form given
in Eq. (D1) and polarized in the z direction. An illustration
of the pulses is given in Fig. 14. The parameters are given in
Table II1.

Here we will refer to these generally as Ef pulses, as
opposed to the corresponding pulses generated with Eq. (D4)
using the same parameters, which we will refer to as E4
pulses. A comparison between the Ef and E4 pump and
probe pulses is shown in Fig. 15. As expected, the difference
between the probe pulses is quite small since they have (rel-
atively) many cycles, while the difference between the pump
pulses is quite significant since they have few cycles.

Figure 16 shows the magnitude of Fourier components of
the EX and E* pulses. In the figure, an EX pump pulse with
¢ = m /2 has also been included. We note that |EE (w,)| and

|EA(w,)| are similar, but the central frequencies of the E4
pulses are higher and have larger maximum Fourier compo-
nents. Expectedly, these differences are quite large for the
pump pulses and much smaller for the probe pulses. Also, we
see (as mentioned above) that the E pulse with ¢ = 0 has a
nonvanishing zero-frequency component.

Figure 17 shows a comparison between a pump-probe
spectrum generated with the E¥ and corresponding E* pulses
using TDRCIS. We see that the spectra show very small devi-
ations in the probe region, while the difference in absorption
in the pump region is large, in accordance with the preceding
analysis.

We can also note that the E¥ spectrum has an unphysical
close-to-zero-frequency component. This is also visible in
Fig. 1 in Ref. [34]. Figure 18 shows this in in more detail
and also includes an E* spectrum with ¢; = ¢, = /2. The
zero-frequency component is practically gone in the spectra
generated from electric fields with zero dc component, and
it is therefore natural to connect this to the nonvanishing dc
component of the electric field.
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