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Relativistic and nondipole effects in multiphoton ionization of hydrogen
by a high-intensity x-ray laser pulse
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In the theory of multiphoton ionization, the effects of relativity and spatial dependence in the laser field are
typically neglected for the sake of computational feasibility, as well as being too small to measure. As advances in
high-intensity, short-wavelength lasers are developed, ultimately it becomes necessary to investigate the impact
of relativistic and/or beyond-dipole (nondipole) corrections, as they are no longer small enough to neglect.
Using an ab initio approach and the time-dependent Dirac equation to simulating the ionization process in an
exact nondipole treatment, we study the high-intensity multiphoton ionization of hydrogen by a short x-ray laser
pulse in the relativistic regime, yielding the kinetic-energy spectrum of the photoelectron, and observe a shift in
the energy of the emitted electron as induced by relativistic and nondipole effects. Overall, relativistic effects
are seen to give rise to a positive energy shift (blueshift), while nondipole effects cause a corresponding negative
shift (redshift), and in aggregate the relativistic and nondipole ionization result in a tiny redshift. Considering
only photoelectrons that are emitted along the laser polarization direction, the blueshift is recovered, and the
shift may be explained in terms of the relativistic mass shift of the electron in the oscillating field.
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I. INTRODUCTION

When studying the interaction of electromagnetic radiation
with matter, relativistic effects may be ignored provided the
intensity of the incident radiation is so small that the dy-
namics is adequately described by nonrelativistic equations of
motion. Rapid development in the field of high-intensity
lasers may soon necessitate that these effects are addressed,
however. As the intensity increases, at some point the non-
relativisitic approximation will break down, which demands
modeling the phenomena in a relativistic treatment [1–12].
Entering the relativistic regime comes with the additional
burden that the widely used dipole approximation is no longer
valid, i.e., the spatial dependency of the incident laser beam
cannot be neglected in the theoretical analysis, and the laser’s
magnetic-field component must be accounted for. There has
been a growing interest in studying strong-field ionization of
atoms and molecules beyond the dipole approximation, both
theoretically [13–22] and experimentally [23–32].

The dipole approximation is generally not valid for in-
tense x-ray laser fields [17,33]. It is then necessary to address
the spatial dependency to accurately model the now-relevant
beyond dipole effects such as the radiation pressure [34]. Fur-
thermore, the nonrelativistic approximation ultimately breaks
down as the radiation field grows high enough [9]. From
the point of view of theoretical modeling, including both
relativistic as well as beyond-dipole (nondipole) effects car-
ries a numerical cost. When working in a nonrelativistic
framework the dynamics of an electron can sufficiently be de-
scribed by the Schrödinger equation, but in a fully relativistic
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treatment it is necessary to use the Dirac equation, which
has several computational hurdles to overcome in comparison.
The same applies to a nondipole treatment of the laser field,
as the nondipole effects demand a quadratic increase in the
size of the basis in which the electron’s wave function is
expressed. Several attempts for solving the time-dependent
Dirac equation in full dimensionality with space-time varying
electromagnetic radiation have been pursued [6,7,29,35–39].

Recently, the multiphoton ionization of the hydrogen 1s
electron by an intense 1.36 keV x-ray laser pulse of intensity
∼1022 W/cm2 was studied theoretically [9,40], taking into
account both beyond-dipole and relativistic effects. In these
studies the role of the nondipole field was modeled in an
approximate fashion, writing out the laser vector potential in
terms of a Maclaurin series expansion and keeping only the
leading-order term beyond the dipole approximation. Further-
more, most calculations were executed within the context of a
semirelativistic time-dependent Schrödinger equation formu-
lation [41,42], i.e., the fully relativistic time-dependent Dirac
equation was only solved imposing additional constraints on
the field in terms of the so-called long-wavelength approxima-
tion [43]. Notwithstanding, the studies revealed that including
both relativistic as well as nondipole effects is crucial for
a proper description of the laser-matter interaction. It was
also shown that nondipole effects generally lead to a redshift
of the kinetic-energy spectrum of the emitted photoelectron,
while relativistic effects result in a corresponding blueshift, of
which both shifts appear to be of similar size. The relativis-
tic blueshift was very recently reproduced in an independent
study solving the time-dependent Klein-Gordon equation for
a spinless particle [44], assuming the dipole approximation.
Further, in the same study the corresponding nondipole red-
shift was obtained solving the time-dependent Schrödinger
equation (TDSE) beyond the dipole approximation.
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In this work, we go one step further and solve for the
fully relativistic and nondipole multiphoton ionization dy-
namics of the hydrogenic atom exposed to the ultrashort 1.36
keV x-ray pulse, maintaining the exact spatial dependence of
the laser field. To this end, the time-dependent Dirac equa-
tion (TDDE) is discretized and solved essentially without any
approximations in a very large set of basis functions, aiming at
minimizing any numerical and truncation errors. We then per-
form a systematic study of the impact of both relativistic and
nondipole effects in the underlying multiphoton ionization,
with emphasis on relativistic blue- and nondipole redshift-
ing of the resulting electron energy distributions. Further, we
investigate the relative magnitudes of these two effects and
how they relate to the intensity of the laser pulse, both sepa-
rately and when the two effects are accounted for at the same
time. It is found that relativistic and beyond-dipole effects
both become important as the laser peak intensity exceeds
1020 W/cm2. Of concern here is the fact that the resulting
relativistic and nondipole shifts are opposites, but even more
importantly that they are of similar size. This means that they
must both be treated on an equal footing when it comes to
energy observables, which indeed is a surprising result given
that relativistic effects are not expected to be important at
these (low) laser intensities in the x-ray regime [45,46]. A
distinct possibility to look out for here is that nondipole and
relativistic effects interact in some way, and so cannot sim-
ply be handled separately. State-of-the-art calculations with
both the TDDE and the TDSE, respectively, and subsequent
detailed analysis of the kinetic energy of the outgoing pho-
toelectron, merely demonstrate that relativistic and nondipole
effects, when considered altogether, ultimately lead to a (tiny)
redshift of the (total) differential photoelectron energy spec-
trum. Presuming that electrons that are emitted along the
laser polarization axis are most influenced by relativity and
least by nondipole effects, these were analyzed separately,
and the relativistic blueshift was retrieved. Finally, inter-
preting the results in terms of the relativistic mass increase
of the electron in the laser field, we derived a simple scaling
law for the size of this blueshift.

Atomic units (a.u.) are used where stated explicitly.

II. THEORY AND METHODS

We here simply model the hydrogen atom quantum me-
chanically in terms of an electron of mass m and charge
−e moving in a Coulomb potential, effectively treating the
nucleus as a static classical particle. The potential energy
associated with the electron’s motion in the potential well is
given by V (r) = − e2

4πε0r , with e being the elementary charge,
ε0 the permittivity of free space, and r the distance of the
electron from the nucleus. We further introduce the interaction
with an external electromagnetic field, i.e., a laser pulse, as
defined by the vector potential A(r, t ), and which is also taken
to be a classical one, as its intensity is assumed to be too high
to treat photons as quantized particles. The time evolution of
the electron wave function ψ (r, t ) is generally governed by
the equation of motion,

ih̄
∂

∂t
ψ = Hψ, (1)

where h̄ is the reduced Planck constant and H is the system
Hamiltonian.

We use three different model Hamiltonians for the different
cases to be studied here. First, in the purely nonrelativistic
limit the standard minimal-coupling Schrödinger Hamiltonian
is applied,

H = 1

2m
[p + eA(r, t )]2 + V (r). (2)

Here, p is the momentum operator, and we have used the
minimal coupling prescription p → p + eA(r, t ) to impose
interaction with the external field. Then, in the context of
a fully relativistic model, we instead make use of the Dirac
formulation of the light-matter interaction,

H = βmc2 + I4V (r) + c
3∑

i=1

αi[pi + eAi(r, t )], (3)

where i = 1, 2, 3 refers to the x, y, and z components, respec-
tively, c is the speed of light, I4 is the 4 × 4 identity matrix,
and β and αi (i = 1, 2, 3) are the Dirac matrices, given in
block matrix form by

β =
(

I2 0
0 −I2

)
, αi =

(
0 σi

−σi 0

)
. (4)

Here, σi are the Pauli matrices and I2 is the 2 × 2 identity
matrix.

Finally, in the third approach a semirelativistic Schrödinger
light-matter interaction formulation is considered. This
scheme is computationally very advantageous compared to
the Dirac approach, and may be a useful tool in exploring
the underlying relativistic ionization mechanisms at play. For
this minimal relativistic approach to the Schrödinger equation,
which includes relativistic corrections to the kinetic energy
but neglects any spin degrees of freedom, the corresponding
semirelativistic Hamiltonian for the electron is given by

H =
√

m2c4 + (p + eA)2c2 − mc2 + V

= (p + eA)2

2m
− (p + eA)4

8m3c2
+ · · · + V

= p2

2m
+ V + e

m
A · p + e2

2m
A2 − p4

8m3c2
− e4

8m3c2
A4

− e

4m3c2
{A · p, p2} − e2

8m3c2
{A2, p2}

− e3

2m3c2
A2A · p − e2

2m3c2
(A · p)2 + · · · , (5)

where curly brackets {} indicate an anticommutator and where
the Coulomb gauge condition ∇ · A = 0 is assumed.

Solving the TDSE with Eq. (5) is expected to deliver results
in accordance with the exact solution to the Klein-Gordon
equation, provided the series expansion of the Hamiltonian
converges. Note, however, that the equation of motion does
not have a covariant form in the semirelativistic representa-
tion, so care has to be taken when drawing conclusions from
the results. Nevertheless, the validity of the Maclaurin series
expansion is determined by its radius of convergence. Here
the expansion parameter is (p + eA)2/m2c2 and, as such, the
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condition of convergence of the series becomes

|p + eA|2
m2c2

< 1. (6)

To guarantee validity, this constraint must be met at all times
throughout the laser-matter interaction. Notice that the con-
vergence properties of the series will generally not be altered
by introducing a gauge transformation to the fields, i.e., let-
ting A → A + ∇ f in Eq. (5), with f (r, t ) being an arbitrary
differentiable function of r and t , as the role of the (canonical)
momentum p will change accordingly. In this work, all cal-
culations are executed within the minimal coupling scheme,
which in the dipole and nonrelativistic limit is commonly
referred to as the velocity gauge. In this representation, the
momentum becomes approximately a constant of motion in
the (intense) laser field, and therefore the semirelativistic ap-
proach is justified if the condition

e2A2

m2c2
< 1 (7)

is fulfilled. If one instead were to solve the equation of motion
in the so-called length gauge representation, simply choosing
f (r, t ) = −A · r and again assuming the dipole approxima-
tion, then p plays the role of the real physical momentum, and
the convergence criteria would have become p2/(m2c2) < 1
instead.

Now, considering only transient (time-dependent) rela-
tivistic effects and ignoring any relativistic structure effects,
such as the (time-independent) relativistic correction to the
kinetic energy, i.e., the p4 term, as well as keeping only
the leading-order dynamical relativistic corrections induced
by the (dipole) laser field, the semirelativistic Hamiltonian
further simplifies to

H � p2

2m
+ V + e

m
A(r, t ) · p + e2

2m
A2(r, t ) − e4

8m3c2
A4

0(t )

− e

2m3c2
p2A0(t ) · p − e2

4m3c2
p2A2

0(t )

− e3

2m3c2
A2A0(t ) · p − e2

2m3c2
[A0(t ) · p]2, (8)

where the vector potentials A and A0 are further specified in
Eqs. (9) and (10) below, and representing the full beyond-
dipole (nondipole) and dipole fields, respectively. Note here
that the full spatial dependence of the vector potential is still
accounted for in the nondipole interaction terms in Eq. (8),
while only the dipole component of the field is considered in
the relativistic corrections.

In order to solve for the time evolution of the system
in the semirelativistic and nonrelativistic limits, respectively,
the time-dependent Schrödinger equation (TDSE) in Eq. (1)
with the Hamiltonians (2) and (8) is discretized using spher-
ical coordinates and with the wave function ψ expanded in
a finite set of bound and unbound eigenstates of the field-
free atomic Hamiltonian, following the procedures described
in Refs. [9,33]. Details of the fully relativistic calculations
with the time-dependent Dirac equation (TDDE) are given in
Sec. II B.
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FIG. 1. Differential photoelectron kinetic-energy spectrum of the
emitted photoelectron, as obtained from Eq. (36), and plotted as a
function of the kinetic energy (in atomic units) of the emitted photo-
electron. Note that the abbreviation Ha on the y axis refers to Hartree,
the atomic unit of energy. The distribution is obtained for the dipole
field defined in Eq. (10), with the electric-field amplitude E0 = 600
a.u., angular frequency ω = 50 a.u., and for a 15-cycle laser pulse.
The red (dashed line) and black spectra are obtained from solving the
nonrelativistic time-dependent Schrödinger equation (TDSE) and the
relativistic time-dependent Dirac equation (TDDE), respectively, in
the dipole approximation. In total twelve multiphoton peaks are
depicted in the spectra, corresponding to the net absorption of 1–12
photons from the field. The relativistic spectrum is shifted to higher
energies with respect to the corresponding nonrelativistic spectrum,
manifesting the relativistic blueshift, which arise when relativistic
corrections are accounted for in the system.

The laser pulse is modeled in terms of the vector potential
A as

A(r, t ) = E0

ω
sin2

(
πt

T
− π

cT
k̂ · r

)
sin (ωt − k · r)ûp, (9)

where k = ω
c k̂ is the wave vector defining the laser prop-

agation direction, ûp is the polarization vector, E0 is the
electric-field strength at peak intensity, and ω is the central
angular frequency of the laser field. The pulse duration T is
set to achieve a certain number of cycles—in the scope of this
work 15 cycles. Note that the vector potential includes the full
spatial dependence of the field and, as such, it needs special
handling due to our choice of spherical coordinates for ex-
pressing the interaction Hamiltonians. This issue is elaborated
on in Sec. II A.

With all model ingredients assembled, the numerical sim-
ulations performed serve to retrieve the wave function 
t ,
which is the state of the system after a single pulse of the
laser has interacted with the hydrogen atom. This is done by
approximating the time evolution of the system, Eq. (1), in
a finite number of time steps; see Sec. II C. Then, we may
obtain the differential probability spectrum dP

dE by taking the
inner products of 
t with the eigenstates of the Hamiltonian,
as discussed in Sec. III.

Figure 1 shows an example of two differential photo-
electron energy spectra obtained using the nonrelativistic
Schrödinger and relativistic Dirac formulations, respectively,
merely demonstrating the phenomenon we are looking for:
the multiphoton ionization resonances are located at slightly
different positions in energy depending on which framework
the spectrum has been computed from. In this example the
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hydrogen 1s electron has been exposed to a 15-cycle laser
pulse of angular frequency ω = 50 a.u. and peak electric field
strength E0 = 600 a.u. The figure reveals a general feature
of the multiphoton ionization dynamics in that the relativistic
spectrum becomes shifted to higher energies with respect to its
nonrelativistic counterpart, resulting in a relativistic blueshift.
Measuring this shift in the spectra is our primary goal. Al-
though, for the sake of simplicity, the dipole approximation
was assumed here, we shall see shortly that the relativistic
blueshift is a general characteristic of the multiphoton ion-
ization process at high laser intensities.

A. Laser pulse potential

As we model our system in spherical coordinates, it is
advantageous for our external vector potential to be modeled
in spherical coordinates as well. Unfortunately, as Eq. (9)
shows, the laser pulse is evidently not spherically symmetric.
Both the k̂ and polarization vector ûp are assumed to lie
in a Cartesian coordinate system, leading to difficulties in
expressing the potential spherically which will be addressed
shortly. A simple and often very effective way around part of
this problem is the dipole approximation, in which we neglect
spatial dependence entirely, resulting in

A0(t ) = E0

ω
sin2

(
πt

T

)
sin (ωt )ûp. (10)

While this is very often sufficient, the goal of this work
depends on including the full spatial dependency of the
problem. Following the lines of [33], we reformulate the
nondipole vector potential in spherical coordinates, first by
using trigonometric identities to separate time- and space-
dependent components of the potential, then by using the
Bessel function expansion of plane waves. In this way, we
arrive at the following form for the vector potential:

A(r, t ) = ûp

6∑
α=1

fα (t )
∑
lm

gα,l (r)Y ∗
lm(k̂)Ylm(r̂). (11)

Here, Ylm are spherical harmonics and the summation co-
efficient α arises from the aforementioned separation by
trigonometric identities. We have introduced time-dependent
functions fα (t ) and radial functions gα,l (r), with the functions
fα defined as

fα (t ) =
{

Dα sin(Cαt ), α odd,

Dα cos(Cαt ), α even,
(12)

and with the coefficients Cα and Dα given by

Cα =

⎧⎪⎪⎨
⎪⎪⎩

2π
T + ω, α = 1, 2,

2π
T − ω, α = 3, 4,

ω, α = 5, 6,

(13)

Dα =

⎧⎪⎪⎨
⎪⎪⎩

− E0
4ω

, α = 1, 2,

+ E0
4ω

, α = 3, 4,

+ E0
2ω

, α = 5, 6.

(14)

Furthermore, the radial functions gα,l are expressed in terms
of spherical Bessel functions jl as

gα,l (r) =
{

jl
(Cα

c r
)
, α + l even,

0, α + l odd.
(15)

With this we have arrived at a spherical representation of the
vector potential that may be accompanied by any Hamiltonian
expressed in spherical coordinates.

B. Dirac equation

In the fully relativistic formulation of the laser-matter in-
teraction, we make use of the Dirac Hamiltonian in Eq. (3).
To approach an expression of this Hamiltonian in spheri-
cal coordinates and discretize it for numerical simulations,
it is convenient to express the time-dependent and time-
independent parts of the Hamiltonian separately, i.e., writing

H = H0 + HI , (16)

with

H0 = βmc2 + I4V (r) + c
3∑

i=1

αi pi (17)

and

HI = c
3∑

i=1

αieAi(r, t ). (18)

As is well known to be the case, the Dirac equation in
spherical coordinates is separable into radial and angular
components, with eigenstates in the angular part represented
as spherical bispinors, Xκ,μ. What remains then is the radial
Dirac Hamiltonian,

Hr =
(

V + mc2 h̄c
(

κ
r − d

dr

)
h̄c

(
κ
r + d

dr

)
V − mc2

)
, (19)

where the relativistic quantum number of angular momentum
κ enters as an eigenvalue of the operator K [47]:

K = −(σ · l + I2h̄). (20)

The nature of the problem demands numerical solution, re-
quiring a discretization scheme to be implemented, which we
choose to perform along the radial axis. We represent our
solutions of the time-dependent Dirac equation in a product
basis of radial basis functions Pk,κ (r), Qk,κ (r) and spherical
bispinors Xκ,μ as


(r, t ) =
∑
k,κ,μ

ck,κ,μ(t )ψk,κ,μ(r), (21)

with

ψk,κ,μ(r) = 1

r

(
Pk,κ (r)Xκ,μ(r̂)

iQk,κ (r)X−κ,μ(r̂)

)
, (22)

where the spherical bispinors are eigenstates of K , given by

Xκ,μ(r̂) =

⎛
⎜⎝ C

lκ , 1
2 , j

μ− 1
2 , 1

2 ,μ
Ylκ ,μ− 1

2
(r̂)

C
lκ , 1

2 , j

μ+ 1
2 ,− 1

2 ,μ
Ylκ ,μ+ 1

2
(r̂)

⎞
⎟⎠. (23)
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Here Ca,b,c
d,e, f are the Clebsch-Gordan coefficients, Yl,m are

spherical harmonics, and κ, μ are the relativistic angular
quantum number and total magnetic angular momentum
quantum number of the system, respectively. Furthermore, j
is the total angular momentum quantum number and relates to
κ by j = |κ| − 1

2 and lκ relates κ to the l quantum number by
lκ = |κ + 1

2 | − 1
2 .

For the radial functions Pk,κ , Qk,κ we use a B-spline dis-
cretization approach over evenly spaced knots [48]. However,
the appearance of spurious states in discretizations of the
Dirac equation necessitates the use of a dual kinetic balance
[49], leading to a basis expressed as

(
Pk,κ

iQk,κ

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
uk

ih̄
2mc

(
d
dr + κ

r

)
uk

)
, k � N,

(
h̄

2mc

(
d
dr − κ

r

)
uk−N

iuk−N

)
, N < k � 2N.

(24)

Here, we have N B-splines, with uk (r) as the kth B-spline
defined over our knot interval. As the ( Pk,κ (r)

iQk,κ (r)) doublet has
two components, we need in total 2N basis functions, with
basis functions of k � N having large P components and basis
functions of N < k � 2N having large Q components.

B-splines come with the disadvantage of not being orthog-
onal, but in return have the advantageous property of compact
support and the ability to be easily integrated numerically. As
the basis is not orthogonal, we need an overlap matrix S. Its
matrix elements are given by

Sk,κ,μ,k′,κ ′,μ′ = 〈ψk,κ,μ |ψk′,κ ′,μ′ 〉
= δκ ′,κδμ′,μ〈ψk,κ,μ |ψk′,κ,μ〉, (25)

where the orthonormality of the spherical spinors has been
exploited. As will be the case with all matrices expressed in
this basis, they become very sparse, taking on a block structure
in which each block consists of a 2N × 2N sparse matrix with
N × N sub-blocks that are all band matrices, with bandwidths
determined by the order of the B-splines.

The time-independent part of the Hamiltonian is projected
into our basis, with matrix elements given by

H0
k,κ,μ,k′,κ ′,μ′ = 〈ψk,κ,μ|H0|ψk′,κ ′,μ′ 〉. (26)

This expression may be reformulated in terms of the radial
Hamiltonian as

H0
k,κ,μ,k′,κ ′,μ′ = δκ ′,κδμ′,μ

∫ ∞

0

(
Pk,κ (r)

iQk,κ (r)

)†

×
(

V + mc2 h̄c
(

κ
r − d

dr

)
h̄c

(
κ
r + d

dr

)
V − mc2

)

×
(

Pk,κ (r)

iQk,κ (r)

)
dr, (27)

where again the orthogonality of the spherical spinors is ex-
pressed using the Kronecker delta function δi j .

Hence, as is the case for both the H0 and S matrices, the
2N × 2N blocks all lie along the main diagonal due to the

orthogonality of the basis bispinors. At this point it bears
mentioning a useful feature of the block structure of the matrix
H0, which is also present in S. Due to the form of H0, blocks
are identical when κ is the same, independently of μ. We
label these repeating blocks as H0

κ . As μ takes half-integer
values bounded by −|κ| < μ < |κ|, this by itself presents a
large saving of memory when the maximum allowed value of
κ , κmax grows large, requiring only a κmax-linear increase in
memory, as opposed to a quadratic increase. However, there
are further regularities to exploit. Note that, in both Eqs. (19)
and (24), κ appears only in linear terms. Henceforth, we
define (

Pk,κ (r)

iQk,κ (r)

)
= R0

k (r) + κRκ
k (r),

R0
k (r) =

(
Pk,0(r)

iQk,0(r)

)
,

Rκ
k (r) =

(
Pk,1(r)

iQk,1(r)

)
−

(
Pk,0(r)

iQk,0(r)

)
,

Hr = H0
r + κHκ

r ,

H0
r =

(
V + mc2 −h̄c d

dr

h̄c d
dr V − mc2

)
,

Hκ
r =

(
0 h̄c

r

h̄c
r 0

)
. (28)

Now, we see that the matrix elements may be expressed as

H0
k,κ,μ,k′ =

〈
1

r

(
R0

k + κRκ
k

)∣∣∣∣H0
r + κHκ

r

∣∣∣∣1

r

(
R0

k′ + κRκ
k′
)〉

.

Expanding and collecting terms of equal order in κ , we then
define

h0
k,k′ = 〈

R0
k

∣∣H0
r

∣∣R0
k′
〉
,

h1
k,k′ = 〈

Rκ
k

∣∣H0
r

∣∣R0
k′
〉 + 〈

R0
k

∣∣Hκ
r

∣∣R0
k′
〉 + 〈

R0
k

∣∣H0
r

∣∣Rκ
k′
〉
,

h2
k,k′ = 〈

Rκ
k

∣∣H0
r

∣∣Rκ
k′
〉 + 〈

R0
k

∣∣Hκ
r

∣∣Rκ
k′
〉 + 〈

Rκ
k

∣∣Hκ
r

∣∣R0
k′
〉
,

h3
k,k′ = 〈

Rκ
k

∣∣Hκ
r

∣∣Rκ
k′
〉
.

We give the matrix elements of the four submatrices
h0, . . . , h3, from which we may retrieve any of the matrix
blocks H0

κ by

H0
κ = h0 + κh1 + κ2h2 + κ3h3. (29)

In this way, we move from needing to store κmax blocks of H0,
where κmax refers to the maximum value of κ (truncation) used
in the expansion of the wave function in Eq. (21), to storing
only the four submatrices in Eq. (29). Given that κ takes both
positive and negative values, this is efficient for any κmax >

2. As the blocks of the S matrix also exhibit κ dependency
due to the basis functions, we do a similar partition scheme
there.

The interaction matrix is by far the most demanding part
of the Hamiltonian, containing all off-diagonal blocks. Ex-
pressed in the product basis as above, our starting point
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becomes

HI
k,κ,μ,k′,κ ′,μ′ (t )

= i

〈
X−κ,μ

iQk,κ (r)

r

∣∣∣∣∣
3∑

i=1

σiAi(r, t )

∣∣∣∣∣Pk′,κ ′ (r)

r
Xκ ′,μ′

〉

− i

〈
Xκ,μ

Pk,κ (r)

r

∣∣∣∣∣
3∑

i=1

σiAi(r, t )

∣∣∣∣∣ iQk′,κ ′ (r)

r
X−κ ′,μ′

〉
,

(30)

where again the σi’s refer to the Pauli matrices. Immediately,
this introduces dependency on the particular form we have
chosen for A(r, t ), as the polarization vector ûp determines
which Pauli matrices enter into the calculation. This in turn
affects our selection rules, as the action of the Pauli matrices
on the spherical spinors determines which κ, κ ′, μ, μ′ com-
binations yield nonzero contributions. In addition, we have
for the nondipole potential Eq. (11) a triple product between
a spherical harmonic and the spherical bispinors for each
term in the Bessel function expansion of the potential. This
in turn is influenced by our choice of the wave vector k̂, as
the factor of Ylm(k̂) can be made to vanish for particular l, m
through this choice. In particular, Ylm(ẑ) = 0 ∀ m �= 0 makes a
strong case for k̂ = ẑ, which is used here. Then, for simplicity,
we choose our polarization direction as ûp = x̂. With these
choices, and inserting the expansion form of the potential, we
obtain

HI
k,κ,μ,k′,κ ′,μ′ (t )

= i
6∑

α=1

fα (t )
∞∑

l=0

Yl0(ẑ)

×
[〈

X−κ,μ

Qk,κ (r)

r

∣∣∣∣σxgα,l (r)Yl0(r̂)

∣∣∣∣Pk′,κ ′ (r)

r
Xκ ′,μ′

〉

−
〈
Xκ,μ

Pk,κ (r)

r

∣∣∣∣σxgα,l (r)Yl0(r̂)

∣∣∣∣Qk′,κ ′ (r)

r
X−κ ′,μ′

〉]
.

(31)

An immediate computational benefit is now apparent: if the α

terms of H I are stored separately, we do not need to update
all matrix elements at every time step. As with the preceding
matrices we will not only separate H I in terms of α, how-
ever. Recalling Eq. (28), we perform a similar substitution
by

Pk,κ → Pk,0 + κ (Pk,1 − Pk,0),

Qk,κ → Qk,0 + κ (Qk,1 − Qk,0). (32)

Usefully, there is no explicit dependency on κ in HI in
Eq. (18), i.e., κ only occurs in the definition of the dual kinetic
basis functions and so matrix elements do not go to third
order in κ . Instead, as we no longer have the δκ,κ ′δμ,μ′ factor,
the off-diagonal matrix blocks representing the laser-matter

interaction are given by

H I
κ,μ,κ ′,μ′ (t )

= i
6∑

α=1

fα (t )
lmax∑
l=0

H θ
l,κ,μ,κ ′,μ′

[
g0
α,l+κ ′g1

α,l+κg2
α,l+κ ′κg3

α,l

]

− [
H θ

l,κ,μ,κ ′,μ′
]†[

g0
α,l + κg1

α,l + κ ′g2
α,l + κ ′κg3

α,l

]†
,

(33)

where the matrix elements of g0
α,l . . . g3

α,l and the angular
coupling coefficient matrices Hθ

l are given by

g0
α,l,k,k′ =

∫ rmax

0
Qk,0(r)gα,l (r)dr Pk′,0(r)dr,

g1
α,l,k,k′ =

∫ rmax

0
Qk,1(r)gα,l (r)dr Pk′,0(r)dr,

g2
α,l,k,k′ =

∫ rmax

0
Qk,0(r)gα,l (r)dr Pk′,1(r)dr,

g3
α,l,k,k′ =

∫ rmax

0
Qk,1(r)gα,l (r)dr Pk′,1(r)dr,

H θ
l,κ,μ,κ ′,μ′ = 〈X−κ,μ|σxYl0(r̂)|Xκ ′,μ′ 〉. (34)

In this way, we have reduced the memory demands of the
interaction Hamiltonian to the storage of four 2N × 2N sub-
matrices per l, α combination. Note as well that, as stated in
Eq. (15), gα,l is zero for odd α + l . Consequently, half of
all g0

α,l . . . g3
α,l vanish and we only need to store 3 × 4 = 12

submatrices for each value of l that we wish to include
in our simulations. However, as storage order may impact
performance of matrix-multiplication libraries, as it does in
the Eigen3 library [50] used in the simulation code for this
work, the adjoints of the submatrices also need to be stored.
Nevertheless, as each Hθ

l has a large number of nonzero
components, the memory savings easily justify this storage
scheme.

Another advantage of the above-described separation
scheme that is exploited in the simulation code is the ability
to skip redundant calculations during evaluation of the matrix-
vector product. For every 2N-coefficient segment of the input
wave vector, we perform multiplication by g0

α,l . . . g3
α,l only

once for each submatrix relevant to it, as determined by the
sparsity structure of Hθ

l . Then, the necessary linear combina-
tions for the evaluation of our output wave vector are carried
out on the segments, which is a significantly cheaper operation
than linear combination of sparse matrices.

When the dipole approximation is used, the matrix ele-
ments are much simpler to calculate: in Eq. (31), we substitute
gα,l (r) = 1 for α = 1, l = 0, zero otherwise, and substitute
fα (t ) with Eq. (10). In this way, all submatrices corresponding
to l � 1 or α � 1 vanish and only Hθ

0 is needed out of the
angular coupling coefficient matrices.
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C. Time propagation

The standard Crank-Nicholson propagator is used to solve
for the time evolution of the system,


(t + �t ) =
(

S + i
h̄�t

2
H (t )

)−1(
S − i

h̄�t

2
H (t )

)

(t ),

(35)

where S is the overlap matrix of the basis, made necessary
by the nonorthogonality of the B-splines used for the radial
component of the basis, and H = H0 + H I is the matrix rep-
resentation of the total time-dependent Hamiltonian (16) in
the chosen basis. We make use of the Eigen library’s imple-
mentation of the iterative linear solver BiCGSTAB [51] to
solve the inverse part of the propagator. By only requiring
matrix-vector products to function, BiCGSTAB is well suited
to this situation where keeping the full matrix in memory
is infeasible. As the condition number of the matrix H is
very large, a preconditioner based on ILU factorization of
S + i h̄�t

2 H0 is applied to accelerate convergence. A useful
feature of ILU factorization applied to this matrix is that the
block structure is retained, allowing the factorization to be
performed on the individual κ blocks (S + i h̄�t

2 H0)κ rather
than the entire matrix. Unfortunately, ILU factorization does
not allow for further separation schemes as discussed in
Sec. II B and so we must store each ILU-factorized block of
the preconditioner, one for each κ .

The length of time steps is the primary tunable parameter
of the time evolution equation and its impact on simulation
time is important to understand. As with any time integral
approximation, the time steps first need to be sufficiently
small for the approximation to hold. A second upper bound
is imposed by the linear solver step, in which the number of
iterations depends on the step size. When the step size is large,
the number of iterations needed for the solver to converge
increases, exacerbated by the intensity parameter E0. As E0

increases, smaller time steps are needed to avoid slowing the
simulation to a halt with increasing convergence steps. In the
scenarios considered here, time step counts in the range of
8000–16000 were typically necessary to achieve satisfactory
convergence. In this range, the time cost of additional time
steps dominates over the savings of reduced solver iterations.

III. RESULTS AND DISCUSSION

Prior to the interaction with the laser field, we prepare our
quantum system in the hydrogenic ground state, as obtained
by diagonalizing the radial Hamiltonian (19). The hydrogen
1s electron is then exposed to a 1.36 keV (ω = 50 a.u.) laser
pulse of 15-cycle duration and with varying intensities. The
fully nondipole relativistic simulations with the TDDE were
then ran using the Hamiltonian (3), with the potential (11).
The simulation made use of a basis of N = 250 dual kinetic
balance-enhanced B-splines for the radial component across
an evenly distributed knot interval 0 � r � 30 a.u. Varying
the radial domain, as well as increasing the maximum achiev-
able energy of the photoelectron, i.e., the number of B-spline
functions, it was found that this choice for the parameters was
sufficient. With our choice of polarization and propagation
directions for the laser field, it is only the dipole component

of the field that couples states of different μ quantum num-
bers, and it was found that |μ| � 10 was enough to obtain
accurate results for electric-field strengths E0 � 600 a.u. Like-
wise, for the nonrelativistic and semirelativistic nondipole
calculations with the TDSE, convergence was achieved with
the magnetic quantum number |m| � 10. Furthermore, the
choice |κ| � 30 was found to be sufficient for the relativistic
angular momentum quantum number, in order to achieve ad-
equate convergence in the beyond-dipole TDDE calculations.
A comprehensive convergence rate analysis for E0 = 400 a.u.,
simply increasing the value of κ to 30 and |μ| to 16, only
displayed minor fluctuations in the numerical results. Larger
values of κ , |μ|, and/or E0 were not considered due to the
computational demands of the nondipole Dirac simulations.
When it comes to the corresponding calculations with the
TDSE, however, we were allowed to push the value of the
(nonrelativistic) angular momentum quantum number l up to
34 and |m| � 30, without finding any noticeable changes to
the results for all the laser intensities considered here.

Finally, it should be noted that all the calculations in the
dipole approximation, and both for the TDDE and the TDSE
cases, respectively, were executed in a much larger radial
domain, i.e., 0 � r � 100 a.u., and with a high number of
B-spline basis functions (N = 1400) allowing for large en-
ergies of the photoelectron. Yet, the obtained values for the
relevant observables were all found to be in accordance with
the results achieved in the smaller basis environment.

Once we had retrieved a given simulation result for the final
wave function 
t at the end of the laser pulse, the differential
photoelectron energy spectrum was retrieved by means of
projection onto the energy eigenstates 
i,κ,μ (normalized on
the energy scale), as obtained by solving the corresponding
eigenvalue equation for the time-independent Hamiltonian H0

in the discrete basis set, and with the index i referring to
the ith (positive) eigenvalue. We then used the approximate
three-point formula

dP

dEi
≈

∑
κ,μ

|〈
t |
i,κ,μ〉|2
(Ei+1,κ,μ − Ei−1,κ,μ)/2

(36)

to estimate the value of the observable. As we operate with
a finite set of eigenstates, and the energy eigenvalues for
different κ, μ do not necessarily match, cubic spline interpola-
tion was performed before the summation such that a smooth
distribution could be generated. For the TDSE case, the sum-
mation over κ, μ in Eq. (36) is substituted by a summation
over the ordinary angular momentum quantum numbers l, m
instead.

In order to get a quantitative measure for the size of the
relativistic (and/or nondipole) shifts in the location of the
multiphoton resonances (cf. Fig. 1), we aimed at evaluating
the energy separation between the positions of the first and
second resonances in the calculated spectra. This is achieved
in the following way: first, the wave functions corresponding
to the net absorption of one and two photons from the field
are extracted from the total wave packet, i.e., the parts of
the final wave function representing the electron continuum
energies in the intervals 25 < E < 75 a.u. and 75 < E < 125
a.u., respectively. Next, the two collected wave functions are
renormalized over their respective energy domains and the
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FIG. 2. Relativistic versus nonrelativistic shift in the effective
frequency �ω(A, B) (given in atomic units a.u.), as obtained by
Eq. (37), and plotted as a function of the peak electric-field strength
of the input laser field, for a 15-cycle laser pulse with ω = 50 a.u.
(Red triangles) Nondipole relativistic calculations with the TDDE
(distribution A) versus nondipole nonrelativistic calculations with
the TDSE (distribution B). (Black squares) Nondipole semirelativis-
tic calculations with the Hamiltonian (8) (distribution A) versus
nondipole nonrelativistic calculations with the Hamiltonian (2) (dis-
tribution B). (Blue diamonds) Dipole relativistic calculations with the
TDDE (distribution A) versus dipole nonrelativistic calculations with
the TDSE (distribution B). Main finding: the relativistic spectra are
blueshifted with respect to the corresponding nonrelativistic ones.

expectation value of the energy is computed on each subin-
terval. The two expectation values, which are denoted by
〈E1〉 and 〈E2〉, are then used to define the position of the
one- and two-photon resonances. Given an energy spectrum
distribution resulting from a simulation, the measured energy
separation �E = 〈E2〉 − 〈E1〉, which in turn could be trans-
lated into an effective laser frequency ωeff = �E/h̄, is chosen
as our primary observable. Finally, the relative frequency shift
between two obtained distributions A and B, where A and B
could for example refer to a relativistic and nonrelativistic
calculation, respectively, is defined by

�ω(A, B) = ωeff (A) − ωeff (B). (37)

Note that this frequency shift may become both positive and
negative valued depending on the two energy distributions
involved. For positive values, we simple say that the spectrum
A is blueshifted with respect to B, whereas for negative values,
spectrum A is said to be redshifted with respect to B.

Figure 2 shows the shift in the effective frequency as calcu-
lated from the one- and two-photon resonance peaks, obtained
by comparing the relativistic spectrum (chosen as distribu-
tion A) with the corresponding nonrelativistic one (chosen
as distribution B). The relativistic shifts �ω are plotted as a
function of the peak electric-field strength E0. The data points
are retrieved as per Eq. (37) by comparisons of simulations ran
in relativistic versus nonrelativistic environments, beginning
with a comparison of full nondipole runs performed in the
Dirac equation versus the Schrödinger equation (triangles,
red). The second considered case is that of the semirelativistic

FIG. 3. Same as Fig. 2, but nondipole versus dipole approxi-
mation shift in the effective frequency �ω(A, B) (given in atomic
units a.u.), as obtained by Eq. (37) when comparing simulations
ran with the nondipole laser field defined in Eq. (9) to those ran
with the corresponding dipole field in Eq. (10). (Red triangles)
Nondipole relativistic calculations with the TDDE (distribution A)
versus dipole relativistic calculations with the TDDE (distribution
B). (Black squares) Nondipole semirelativistic calculations with the
Hamiltonian (8) (distribution A) versus dipole semirelativistic calcu-
lations (distribution B). (Blue diamonds) Nondipole nonrelativistic
calculations with the Hamiltonian (2) (distribution A) versus dipole
nonrelativistic calculations with the TDSE (distribution B). Main
finding: the nondipole spectra are redshifted with respect to the
corresponding dipole ones.

versus the nonrelativistic one (squares, black), i.e., compar-
ing results obtained with Eqs. (8) and (2), respectively, still
retaining the full spatial dependence of the nondipole field.
Finally, the third data set (diamonds, blue) shows the Dirac-
Schrödinger shift calculated in the dipole approximation. As
can be seen from the figure, the three different scenarios pro-
duce near identical results, effectively yielding a relativistic
blueshift of the spectrum, with �ω increasing as a function
of E0 in the same manner for all three situations. This close
agreement suggests that the beyond-dipole component of the
laser field is redundant from the point of view of the blueshift,
and that magnetic-field effects as well as relativistic structure
and spin-related effects are of minor importance for the rela-
tivistic shifting of the spectrum.

Yet, the magnetic field throws a spanner into the works, in
that the combined effect of the electric and magnetic fields,
i.e., the radiation pressure of the intense laser light, requires
further attention. This nondipole effect enters as a conse-
quence of including the full spatial dependence of our external
vector potential [cf. Eq. (11)] in the Hamiltonian (2), and the
so resulting (red) shift is primarily of nonrelativistic origin.
Figure 3 shows the calculated shift �ω as a function of E0,
as obtained by comparing nondipole (chosen as distribution
A) and dipole (chosen as distribution B) simulation data.
Nondipole (A) versus dipole (B) results for the Dirac (trian-
gles, red), the semirelativistic Schrödinger (squares, black),
and the nonrelativistic Schrödinger equation (diamonds, blue)
are all shown for comparison. Again we see that the three
cases chosen agree to a high degree, simply expressing the
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FIG. 4. Nondipole relativistic versus dipole nonrelativistic shift
in the effective frequency �ω(A, B) (given in atomic units a.u.), as
obtained by Eq. (37), and plotted as a function of the peak electric-
field strength of the input laser field, for a 15-cycle laser pulse with
ω = 50 a.u. (Red triangles) Nondipole relativistic calculations with
the TDDE (distribution A) versus dipole nonrelativistic calculations
with the TDSE (distribution B). (Black squares) Nondipole semirel-
ativistic calculations with the Hamiltonian (8) (distribution A) versus
dipole nonrelativistic calculations with the TDSE (distribution B).
Main finding: the total relativistic nondipole spectra are slightly
redshifted with respect to the corresponding nonrelativistic dipole
ones.

same increase in the shift magnitude as a function of E0.
However, in clear contrast to the previously reported relativis-
tic blueshift, the shift now becomes negative, i.e., nondipole
effects are responsible for a corresponding redshift of the
energy spectrum. Moreover, the nondipole redshift turns out to
be of the same magnitude as the relativistic blueshift, differing
primarily by being aligned in the opposite direction, which
is concerning though, as it now appears to be possible that
in a real life scenario there will be no remaining shift to be
observed in the experiment or that the measured shift will be
only very small. The relative role of the relativistic blueshift
with respect to the nondipole redshift was also recently ad-
dressed within the context of a simpler model accounting for
beyond-dipole and relativistic effects to lowest order [9,40],
yet similar results were obtained for the shifts further support-
ing the finding of their mutual near cancellation.

This leads into our next point of comparison, i.e., that
between relativistic nondipole and nonrelativistic dipole cal-
culations, respectively. Figure 4 shows the so computed shifts
obtained from comparing nonrelativistic (Schrödinger equa-
tion), dipole data with the relativistic nondipole ones, using
both the semirelativistic (squares, black) and the fully rel-
ativistic (triangles, red) approaches, respectively. Here the
relativistic nondipole results are taken as distribution A in
Eq. (37), whereas the nonrelativistic dipole results are chosen
as distribution B. As can be read from the figure, the effective
shift, when accounting for both the relativistic blueshift and
the nondipole redshift, turns out to be negative (redshift), but it
is noticeably smaller in magnitude than either of the preceding
shifts (note the smaller range of the y axis shown in the figure).
This was expected though given what we already learned from

Figs. 2 and 3, with the blue- and redshifts having come close
to canceling.

Comparing the results obtained with the semirelativistic
Schrödinger and Dirac equations, respectively, in Fig. 4, we
find that there are some remaining discrepancies in the calcu-
lated values for the redshift, i.e., the magnitude of the shift
computed with the nondipole Dirac equation is somewhat
smaller in numeric value than the corresponding semirela-
tivistic one. There are several possible reasons for this, with
the first among them being the clear possibility of insufficient
convergence in the nondipole Dirac simulations due to the
time steps being too large. Reducing the time step size even
further resulted in better agreement with the semirelativistic
calculations, but still the convergence rate was slow, merely
demonstrating the fact that the time-dependent Dirac equa-
tion is notoriously hard to solve numerically. This is due to
the existence of the negative energy continuum and the large
contribution from the electron’s rest-mass energy term in the
Dirac Hamiltonian. Other possible candidates for explaining
the disagreement between the two models are the interaction
of the electron’s spin with the magnetic field and/or spin-
orbit effects, as spin-related effects were not considered in
the semirelativistic approach. Lastly, and most importantly,
we would like to emphasize that even though some disagree-
ments in the exact numeric values are expressed, both models
agree largely upon the sign of the resulting net shift, i.e., the
total energy spectrum becomes slightly redshifted when both
relativistic and beyond-dipole effects are accounted for.

Keeping in mind that the primary goal of our investigation
was to probe relativistic and nondipole effects in the multi-
photon ionization of hydrogen as induced by intense x-ray
laser pulses, then the observations made in Figs. 2–4, with
the near cancellation of relativistic and nondipole shifts, are
somewhat disappointing. From this, it is tempting to conclude
that relativity is not really necessary in order to explain the
underlying ionization dynamics. As a matter of fact, we will
now demonstrate that this is indeed not the case, and that
the relativistic blueshift may be recovered. To this end, we
will make extensive use of the semirelativistic light-matter
interaction formulations (5) and (8).

In a recent work [40], and by means of a unitary trans-
formation applied to the system wave function, it was shown
that the effect of the last (relativistic) term in Eqs. (5) and
(8) effectively loses its importance and cancels exactly against
a similar (nondipole) contribution contained in the A(r, t ) · p
interaction term. This suggests that there is an intimate inter-
play between nondipole and relativistic effects in the system
and that they cannot simply be treated separately. Based on
this finding, a more suitable choice for the nonrelativistic
Hamiltonian would be

Hnonrel = p2

2m
+ V + e

m
A · p + e2

2m
A2 − e2

2m3c2
(A · p)2,

(38)

where the cancellation is implictly taken into account in the
formulation. For further details on the cancellation effect the
reader is referred to Ref. [40]. Please notice that the con-
struction (38) is highly nonstandard, and we will here simply
use it as a means to interpret the results. In fact, if we were
to use Hnonrel as our ansatz for the nondipole nonrelativistic

013107-9



VEMBE, JOHNSEN, AND FØRRE PHYSICAL REVIEW A 109, 013107 (2024)

Hamiltonian, then the consequence would have been that both
the relativistic blueshifts in Fig. 2 and the nondipole redshifts
in Fig. 3 would diminish, merely manifesting the cancellation
effect.

Another interesting and appealing feature of the formula-
tion (38) is that photoelectrons that are emitted along the laser
polarization axis are left unaltered by the nondipole field, i.e.,
no (nondipole) shifts in the resonance positions with respect
to the dipole counterparts are expected in this direction. As
such, the main role of the propagating laser field is to exert a
radiation pressure on the electron in the propagation direction,
and only electrons that are emitted with a nonzero momentum
component along the axis of propagation are influenced by
the nondipole field. Now, turning back to the semirelativistic
formulation in Eq. (5), and taking advantage of the fact that
the term proportional to {A · p, p2} can be shown to have only
vanishingly small impact on the relativistic ionization dynam-
ics, a more useful choice for the semirelativistic Hamiltonian
would be

Hrel = p2

2m
+ V + e

m
A · p + e2

2m
A2 − e2

2m3c2
(A · p)2

− e3

2m3c2
A2A · p − e2

8m3c2
{A2, p2}. (39)

Notice here that we have also omitted the A4 term as it does
not contribute in lowest order. On this somewhat reduced
form, the semirelativistic Hamiltonian (39) only differs from
the nonrelativistic one (38) by the last two terms, both of
which will shortly be shown to play the role of a (time-
dependent) relativistic mass shift.

Equation (39) can be even further simplified if we only
consider photoelectrons whose movement is restricted to a
line that is aligned with the polarization of the driving laser
field. In this limit, the dipole approximation may be reintro-
duced, the remaining time-dependent A2

0 term may be omitted,
and the semirelativistic light-matter interaction formulation
takes the simpler form,

Hdipole
rel = p2

2m
+ V + e

m
A0(t ) · p − e3

2m3c2
A2

0(t )A0(t ) · p

− e2

4m3c2
p2A0

2(t ), (40)

valid for photoelectrons that are emitted along the laser po-
larization axis only. Because of the aforementioned beyond-
dipole cancellation effect, and for consistency, also the (A ·
p)2 term was abandoned in Eq. (40). Finally, noticing that the
Hamiltonian (40) only represents the lowest-order expansion
of the more general formulation [42],

Hdipole
rel = p2

2μ
+ V + e

μ
A0(t ) · p, (41)

where

μ = m

[
1 + e2

2m2c2
A0

2(t )

]
(42)

is recognized as the (time-dependent) relativistic mass of the
(free) electron in the (dipole) laser field, we will now make
extensive use of the model (41) in the interpretation of our

FIG. 5. Same as Fig. 4, but nondipole relativistic versus dipole
nonrelativistic shift, Eq. (37), as obtained for photoelectrons that
are emitted along the laser polarization axis. (Red triangles)
Nondipole relativistic calculations with the TDDE (distribution A)
versus dipole nonrelativistic calculations with the TDSE (distribution
B). (Black squares) Nondipole semirelativistic calculations with the
Hamiltonian (8) (distribution A) versus dipole nonrelativistic calcu-
lations with the TDSE (distribution B). (Blue diamonds) Calculations
with the simple (relativistic) model (41) (distribution A) versus dipole
nonrelativistic calculations with the TDSE (distribution B). (Green
dashed line) Scaling law given by Eq. (43). Main finding: for pho-
toelectrons that are emitted along the laser polarization direction,
the relativistic spectra become blueshifted with respect to the cor-
responding nonrelativistic dipole ones.

results. But first we will have to establish the validity of this
simple model picture.

Figure 5 shows the calculated frequency shift [cf. Eq. (37)],
along the laser polarization direction, as a function of the
peak electric-field strength of the input laser field, obtained
from comparing relativistic data (chosen as distribution A) and
nonrelativistic data (chosen as distribution B), respectively.
Keeping in mind the approximations and assumptions made
when deriving Eq. (41), there is a remarkably good agreement
between the (fully) semirelativistic model (black squares) and
the simple model (blue diamonds) in the figure. Further-
more, they both yield results compatible with the Dirac equa-
tion (red triangles). Although of smaller magnitude than in
Fig. 2, the results in Fig. 5 clearly demonstrate that the rela-
tivistic blueshift is retrieved when considering photoelectrons
that are emitted parallel to the polarization axis of the in-
cident light. But even more importantly, the resulting shift
may be explained physically in terms of the (time-dependent)
relativistic mass increase, cf. Eq. (42), of the electron in the
oscillating laser field.

Having settled the validity of the simple model and the
time-dependent effective mass, we may now use these to
derive an analytical formula for the relativistic energy shift. To
this end, taking the laser field to be monochromatic, for sim-
plicity, and substituting the time-dependent relativistic mass
with its mean value μ̄ in Eqs. (41) and (42), i.e., the average
value of μ over a laser period, then the (average) relativistic
kinetic energy of the (free) electron oscillating in the laser
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field becomes shifted by a factor ( μ̄

m − 1) with respect to its
nonrelativistic counterpart. This suggests that the frequency
shift �ω in Eq. (37) follows the scaling law

�ω �
(

μ̄

m
− 1

)
�E

h̄
�

(
μ̄

m
− 1

)
ω = e2E2

0

4m2ωc2
. (43)

The result of Eq. (43) is plotted in Fig. 5 against the numer-
ical data. As it turns out, the predicted shift is in excellent
agreement with the calculated values, merely demonstrating
the importance of the relativistic mass shift in the underlying
ionization dynamics.

At this point, the attentive reader may have made the
important observation that the blueshift reported in Fig. 2 is
about a factor two larger than the shift found in Fig. 5. In
fact, this difference can be attributed to the cancellation effect
discussed previously and the resulting absence of the (A · p)2

term in the final model Hamiltonian Eq. (41). As a matter of
fact, if it were not for this cancellation, we could no longer
have associated the remaining shift observed in Fig. 5 with
the relativistic mass shift. This indicates that the part of the
shift that has canceled out ultimately has no distinct physical
implication, but is rather related to the choice of gauge for the
representation of the light-matter interaction.

IV. CONCLUSION

Laser-induced multiphoton ionization of atomic hydrogen
by some intense and short x-ray laser pulse is modeled in
terms of the time-dependent Dirac and Schrödinger equa-
tions, respectively, retaining the full spatial dependence of
the external electromagnetic field. The equations of motion
are solved for the relevant relativistic and nonrelativistic ion-
ization dynamics both within and beyond the electric dipole
approximation. The resulting kinetic-energy spectrum of the
emitted photoelectron is analyzed in some detail, and it is
found that relativistic effects are generally responsible for a
shifting of the spectrum to higher energies with respect to
the corresponding spectrum obtained in the nonrelativistic
limit. The strength of this relativistic blueshift is computed
as a function of the intensity of the input laser field. Then,
a semirelativistic model, including only field-induced rela-
tivistic corrections to lowest order and ignoring relativistic
structure effects as well as any spin degrees of freedom, is

proposed and tested against the fully relativistic calculations,
and it is shown to yield results for the blueshift in good
agreement with the Dirac equation.

Next, the validity of the dipole approximation is inves-
tigated in some detail, and it is found that beyond-dipole
(nondipole) effects generally impose a corresponding redshift
of the energy spectrum. As it turns out, the relativistic blue-
and nondipole redshifts are of equal order of magnitude and
the net shifts are only very small. Nonetheless, ultimately rem-
nants of tiny redshifts are exposed in the total spectra when
comparing fully relativistic, nondipole data with correspond-
ing nonrelativistic, dipole ones. Calculations executed in the
semirelativistic model provide further evidence for the exis-
tence of the resulting redshifts. Inspecting the photoelectrons
that are emitted in the laser polarization direction, though,
the relativistic blueshift returns, albeit somewhat smaller in
magnitude than before, and it can be shown to be caused by
the relativistic mass increase of the electron in the intense
field.

In conclusion, we have demonstrated that in the high-
energy regime of multiphoton ionization there is a net redshift
in the power spectrum caused by a combination of relativistic
and nondipole effects, and quantified its relation to the inten-
sity of the incident laser pulse. The cancellation of nondipole
and relativistic effects has been demonstrated and what re-
mains has been calculated. The results raise further questions
to be investigated in future works: the relative magnitudes
of the nondipole and relativistic effects are both direction-
ally dependent in nature, and so a treatment in which they
are analyzed in a directionally dependent framing could pro-
vide further insight into the dynamics. Furthermore, here the
analysis was outlined in the x-ray regime only and longer-
wavelength light should be considered. It is worth mentioning,
however, that in a previous study on strong-field ionization by
xuv light [34], a corresponding redshift as caused by higher-
order nondipole effects was reported.

ACKNOWLEDGMENT

The computations were performed on resources provided
by Sigma2—the National Infrastructure for High Perfor-
mance Computing and Data Storage in Norway (Project No.
nn2700k).

[1] Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel,
Relativistic high-power laser–matter interactions, Phys. Rep.
427, 41 (2006).

[2] A. Di Piazza, C. Müller, K. Z. Hatsagortsyan, and C. H. Keitel,
Extremely high-intensity laser interactions with fundamental
quantum systems, Rev. Mod. Phys. 84, 1177 (2012).

[3] S. Selstø, E. Lindroth, and J. Bengtsson, Solution of the Dirac
equation for hydrogenlike systems exposed to intense electro-
magnetic pulses, Phys. Rev. A 79, 043418 (2009).

[4] H. Bauke, H. G. Hetzheim, G. R. Mocken, M. Ruf, and C. H.
Keitel, Relativistic ionization characteristics of laser-driven hy-
drogenlike ions, Phys. Rev. A 83, 063414 (2011).

[5] Y. V. Vanne and A. Saenz, Solution of the time-dependent
Dirac equation for multiphoton ionization of highly charged
hydrogenlike ions, Phys. Rev. A 85, 033411 (2012).

[6] T. Kjellsson, S. Selstø, and E. Lindroth, Relativistic ionization
dynamics for a hydrogen atom exposed to superintense XUV
laser pulses, Phys. Rev. A 95, 043403 (2017).

[7] I. A. Ivanov, Spin-flip processes and nondipole effects in above-
threshold ionization of hydrogen in ultrastrong laser fields,
Phys. Rev. A 96, 013419 (2017).

[8] I. V. Ivanova, V. M. Shabaev, D. A. Telnov, and A. Saenz, Scal-
ing relations of the time-dependent Dirac equation describing
multiphoton ionization of hydrogenlike ions, Phys. Rev. A 98,
063402 (2018).

[9] M. Førre, Breakdown of the nonrelativistic approximation in
superintense laser-matter interactions, Phys. Rev. A 99, 053410
(2019).

[10] T. K. Lindblom, M. Førre, E. Lindroth, and S. Selstø,
Relativistic effects in photoionizing a circular Rydberg

013107-11

https://doi.org/10.1016/j.physrep.2006.01.002
https://doi.org/10.1103/RevModPhys.84.1177
https://doi.org/10.1103/PhysRevA.79.043418
https://doi.org/10.1103/PhysRevA.83.063414
https://doi.org/10.1103/PhysRevA.85.033411
https://doi.org/10.1103/PhysRevA.95.043403
https://doi.org/10.1103/PhysRevA.96.013419
https://doi.org/10.1103/PhysRevA.98.063402
https://doi.org/10.1103/PhysRevA.99.053410


VEMBE, JOHNSEN, AND FØRRE PHYSICAL REVIEW A 109, 013107 (2024)

state in the optical regime, Phys. Rev. A 102, 063108
(2020).

[11] D. A. Telnov and S.-I. Chu, Relativistic ionization probabil-
ities and photoelectron distributions of hydrogenlike ions in
superstrong electromagnetic fields, Phys. Rev. A 104, 023111
(2021).

[12] T. K. Lindblom and S. Selstø, Relativistic photoionization with
elliptically polarized laser fields in the ultraviolet region, Phys.
Rev. A 104, 043102 (2021).

[13] N. J. Kylstra, R. A. Worthington, A. Patel, P. L. Knight, J. R.
Vázquez de Aldana, and L. Roso, Breakdown of stabilization
of atoms interacting with intense, high-frequency laser pulses,
Phys. Rev. Lett. 85, 1835 (2000).

[14] M. Førre, S. Selstø, J. P. Hansen, and L. B. Madsen, Exact
nondipole Kramers-Henneberger form of the light-atom Hamil-
tonian: An application to atomic stabilization and photoelectron
energy spectra, Phys. Rev. Lett. 95, 043601 (2005).

[15] M. Førre, J. P. Hansen, L. Kocbach, S. Selstø, and L. B.
Madsen, Nondipole ionization dynamics of atoms in superin-
tense high-frequency attosecond pulses, Phys. Rev. Lett. 97,
043601 (2006).

[16] M. Førre, S. Selstø, J. P. Hansen, T. K. Kjeldsen, and L. B.
Madsen, Molecules in intense xuv pulses: Beyond the dipole
approximation in linearly and circularly polarized fields, Phys.
Rev. A 76, 033415 (2007).

[17] H. Bachau, M. Dondera, and V. Florescu, Stimulated compton
scattering in two-color ionization of hydrogen with keV elec-
tromagnetic fields, Phys. Rev. Lett. 112, 073001 (2014).

[18] N. Haram, R. T. Sang, and I. V. Litvinyuk, Transverse electron
momentum distributions in strong-field ionization: Nondipole
and Coulomb focusing effects, J. Phys. B: At. Mol. Opt. Phys.
53, 154005 (2020).

[19] M. M. Lund and L. B. Madsen, Nondipole photoelectron mo-
mentum shifts in strong-field ionization with mid-infrared laser
pulses of long duration, J. Phys. B: At. Mol. Opt. Phys. 54,
165602 (2021).

[20] L. Geng, H. Liang, K. Krajewska, L.-Y. Peng, and Q. Gong,
Laser-induced electron fresnel diffraction by XUV pulses at
extreme intensity, Phys. Rev. A 104, L021102 (2021).

[21] L. B. Madsen, Nondipole effects in tunneling ionization by
intense laser pulses, Phys. Rev. A 105, 043107 (2022).

[22] M. Førre, Nondipole effects and photoelectron momentum
shifts in strong-field ionization by infrared light, Phys. Rev. A
106, 013104 (2022).

[23] O. Hemmers, R. Guillemin, E. P. Kanter, B. Krässig, D. W.
Lindle, S. H. Southworth, R. Wehlitz, J. Baker, A. Hudson,
M. Lotrakul, D. Rolles, W. C. Stolte, I. C. Tran, A. Wolska,
S. W. Yu, M. Y. Amusia, K. T. Cheng, L. V. Chernysheva,
W. R. Johnson, and S. T. Manson, Dramatic nondipole effects in
low-energy photoionization: Experimental and theoretical study
of Xe 5s, Phys. Rev. Lett. 91, 053002 (2003).

[24] C. T. L. Smeenk, L. Arissian, B. Zhou, A. Mysyrowicz, D. M.
Villeneuve, A. Staudte, and P. B. Corkum, Partitioning of the
linear photon momentum in multiphoton ionization, Phys. Rev.
Lett. 106, 193002 (2011).

[25] S. Eilzer, H. Zimmermann, and U. Eichmann, Strong-field
Kapitza-Dirac scattering of neutral atoms, Phys. Rev. Lett. 112,
113001 (2014).

[26] A. Ludwig, J. Maurer, B. W. Mayer, C. R. Phillips,
L. Gallmann, and U. Keller, Breakdown of the dipole

approximation in strong-field ionization, Phys. Rev. Lett. 113,
243001 (2014).

[27] M. Ilchen, G. Hartmann, E. V. Gryzlova, A. Achner, E. Allaria,
A. Beckmann, M. Braune, J. Buck, C. Callegari, R. N. Coffee,
R. Cucini, M. Danailov, A. De Fanis, A. Demidovich, E.
Ferrari, P. Finetti, L. Glaser, A. Knie, A. O. Lindahl, O. Plekan
et al., Symmetry breakdown of electron emission in extreme
ultraviolet photoionization of argon, Nat. Commun. 9, 4659
(2018).

[28] H. Zimmermann, S. Meise, A. Khujakulov, A. Magaña, A.
Saenz, and U. Eichmann, Limit on excitation and stabilization
of atoms in intense optical laser fields, Phys. Rev. Lett. 120,
123202 (2018).

[29] N. Haram, I. Ivanov, H. Xu, K. T. Kim, A. Atia-tul Noor,
U. S. Sainadh, R. D. Glover, D. Chetty, I. V. Litvinyuk, and
R. T. Sang, Relativistic nondipole effects in strong-field atomic
ionization at moderate intensities, Phys. Rev. Lett. 123, 093201
(2019).

[30] A. Hartung, S. Eckart, S. Brennecke, J. Rist, D. Trabert, K.
Fehre, M. Richter, H. Sann, S. Zeller, K. Henrichs, G. Kastirke,
J. Hoehl, A. Kalinin, M. S. Schöffler, T. Jahnke, L. P. H.
Schmidt, M. Lein, M. Kunitski, and R. Dörner, Magnetic fields
alter strong-field ionization, Nat. Phys. 15, 1222 (2019).

[31] B. Willenberg, J. Maurer, B. W. Mayer, and U. Keller, Sub-
cycle time resolution of multi-photon momentum transfer in
strong-field ionization, Nat. Commun. 10, 5548 (2019).

[32] A. Hartung, S. Brennecke, K. Lin, D. Trabert, K. Fehre, J. Rist,
M. S. Schöffler, T. Jahnke, L. P. H. Schmidt, M. Kunitski, M.
Lein, R. Dörner, and S. Eckart, Electric nondipole effect in
strong-field ionization, Phys. Rev. Lett. 126, 053202 (2021).

[33] T. E. Moe and M. Førre, Ionization of atomic hydrogen by
an intense x-ray laser pulse: An ab initio study of the break-
down of the dipole approximation, Phys. Rev. A 97, 013415
(2018).

[34] M. Førre and A. S. Simonsen, Nondipole ionization dynamics
in atoms induced by intense xuv laser fields, Phys. Rev. A 90,
053411 (2014).

[35] J. W. Braun, Q. Su, and R. Grobe, Numerical approach to
solve the time-dependent Dirac equation, Phys. Rev. A 59, 604
(1999).

[36] M. S. Pindzola, S. A. Abdel-Naby, F. Robicheaux, and J.
Colgan, Single photoionization of highly charged atomic ions
including the full electromagnetic-field potential, Phys. Rev. A
85, 032701 (2012).

[37] I. A. Ivanov, Relativistic calculation of the electron-momentum
shift in tunneling ionization, Phys. Rev. A 91, 043410 (2015).

[38] R. Beerwerth and H. Bauke, Krylov subspace methods for the
dirac equation, Comput. Phys. Commun. 188, 189 (2015).

[39] D. A. Telnov and S.-I. Chu, Relativistic ionization dynamics of
hydrogenlike ions in strong electromagnetic fields: Generalized
pseudospectral method for the time-dependent Dirac equation,
Phys. Rev. A 102, 063109 (2020).

[40] M. Førre and S. Selstø, Schrödinger formulation of the
nondipole light-matter interaction consistent with relativity,
Phys. Rev. A 101, 063416 (2020).

[41] T. K. Lindblom, M. Førre, E. Lindroth, and S. Selstø,
Semirelativistic Schrödinger equation for relativistic laser-
matter interactions, Phys. Rev. Lett. 121, 253202 (2018).

[42] T. K. Lindblom, M. Førre, E. Lindroth, and S. Selstø,
Erratum: Semirelativistic Schrödinger equation for relativistic

013107-12

https://doi.org/10.1103/PhysRevA.102.063108
https://doi.org/10.1103/PhysRevA.104.023111
https://doi.org/10.1103/PhysRevA.104.043102
https://doi.org/10.1103/PhysRevLett.85.1835
https://doi.org/10.1103/PhysRevLett.95.043601
https://doi.org/10.1103/PhysRevLett.97.043601
https://doi.org/10.1103/PhysRevA.76.033415
https://doi.org/10.1103/PhysRevLett.112.073001
https://doi.org/10.1088/1361-6455/ab9272
https://doi.org/10.1088/1361-6455/ac20e2
https://doi.org/10.1103/PhysRevA.104.L021102
https://doi.org/10.1103/PhysRevA.105.043107
https://doi.org/10.1103/PhysRevA.106.013104
https://doi.org/10.1103/PhysRevLett.91.053002
https://doi.org/10.1103/PhysRevLett.106.193002
https://doi.org/10.1103/PhysRevLett.112.113001
https://doi.org/10.1103/PhysRevLett.113.243001
https://doi.org/10.1038/s41467-018-07152-7
https://doi.org/10.1103/PhysRevLett.120.123202
https://doi.org/10.1103/PhysRevLett.123.093201
https://doi.org/10.1038/s41567-019-0653-y
https://doi.org/10.1038/s41467-019-13409-6
https://doi.org/10.1103/PhysRevLett.126.053202
https://doi.org/10.1103/PhysRevA.97.013415
https://doi.org/10.1103/PhysRevA.90.053411
https://doi.org/10.1103/PhysRevA.59.604
https://doi.org/10.1103/PhysRevA.85.032701
https://doi.org/10.1103/PhysRevA.91.043410
https://doi.org/10.1016/j.cpc.2014.11.008
https://doi.org/10.1103/PhysRevA.102.063109
https://doi.org/10.1103/PhysRevA.101.063416
https://doi.org/10.1103/PhysRevLett.121.253202


RELATIVISTIC AND NONDIPOLE EFFECTS IN … PHYSICAL REVIEW A 109, 013107 (2024)

laser-matter interactions [Phys. Rev. Lett. 121, 253202 (2018)],
Phys. Rev. Lett. 127, 149902(E) (2021).

[43] T. Kjellsson, M. Førre, A. S. Simonsen, S. Selstø, and E.
Lindroth, Alternative gauge for the description of the light-
matter interaction in a relativistic framework, Phys. Rev. A 96,
023426 (2017).

[44] L. Geng, H. Liang, Z.-Y. Lin, and L.-Y. Peng, Solving the
time-dependent Klein-Gordon and square-root Klein-Gordon
equations with Krylov-subspace methods, Phys. Rev. A 107,
053115 (2023).

[45] H. R. Reiss, Dipole-approximation magnetic fields in strong
laser beams, Phys. Rev. A 63, 013409 (2000).

[46] H. R. Reiss, Limits on tunneling theories of strong-field ioniza-
tion, Phys. Rev. Lett. 101, 043002 (2008).

[47] I. P. Grant, Relativistic Quantum Theory of Atoms and
Molecules: Theory and Computation (Springer, New York, NY,
2007).

[48] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, and F. Martín,
Applications of B-splines in atomic and molecular physics, Rep.
Prog. Phys. 64, 1815 (2001).

[49] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plunien,
and G. Soff, Dual kinetic balance approach to basis-set ex-
pansions for the Dirac equation, Phys. Rev. Lett. 93, 130405
(2004).

[50] G. Guennebaud et al., Eigen v3, http://eigen.tuxfamily.org.
[51] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converg-

ing variant of Bi-CG for the solution of nonsymmetric linear
systems, SIAM J. Sci. Comput. 13, 631 (1992).

013107-13

https://doi.org/10.1103/PhysRevLett.127.149902
https://doi.org/10.1103/PhysRevA.96.023426
https://doi.org/10.1103/PhysRevA.107.053115
https://doi.org/10.1103/PhysRevA.63.013409
https://doi.org/10.1103/PhysRevLett.101.043002
https://doi.org/10.1088/0034-4885/64/12/205
https://doi.org/10.1103/PhysRevLett.93.130405
http://eigen.tuxfamily.org
https://doi.org/10.1137/0913035

