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Dipole-laser coupling delay in two-color RABBITT photoionization of polar molecules
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We study theoretically the reconstruction of attosecond beating by interference of two-photon transitions
(RABBITT) in strongly polar molecules. The time-dependent energy of a polar molecule in the infrared (IR) field
gives rise to an additional dipole-laser coupling contribution to the sideband delay. In a time-independent picture
this translates to the initial state becoming a linear combination of IR-dressed states. We extend the recently
developed time-independent molecular R-matrix method to include the additional interfering ionization pathways
arising from the IR dressed initial state and obtain very good agreement with a reference nonperturbative
time-dependent RABBITT simulation. We discuss the asymptotic behavior of such ionization amplitudes and
recover a known approximate asymptotic formula for the dipole-laser coupling delay derived earlier in the
context of attosecond streaking. At low photon energies the dipole-laser coupling contributes significantly even
in an unoriented molecular sample. Finally, we show that in photodetachment of polar singly charged negative
ions the sideband delay is asymptotically proportional only to Wigner delay.
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I. INTRODUCTION

The experimental technique of reconstruction of
attosecond beating by interference of two-photon transitions
(RABBITT) has progressed from the initial applications to
characterization of attosecond pulses [1] to a sensitive probe
of ultrafast dynamics in atoms [2–9] and molecules [10–20].
In RABBITT the system of interest is photoionized by a
combination of temporally overlapping extreme ultraviolet
(XUV) and infrared (IR) pulses comprising two neighboring
odd XUV harmonics of a high harmonic source and the
driving phase-locked IR field. This sets up conditions for the
interference of two two-photon ionization pathways leading
to the appearance of a sideband in the photoelectron spectrum
that is sensitive to the relative phase of the two contributing
photoionization amplitudes. Measured as a function of
XUV-IR delay, the photoelectron sideband displays a beating
whose offset determines the requisite phase difference.
Expressed in units of time, this relative phase gives access to
the photoionization time delay

τsb = 1

2ω
arg(d (2)∗

+ d (2)
− ), (1)

where d (2)
− and d (2)

+ are the two-photon matrix elements [20]
connecting the ground state with the sideband through XUV
absorption and IR emission and through XUV absorption and
IR absorption, respectively.

Despite its long history, RABBITT has been extended to
molecules only recently to study electronic [10,13–15,18,19]
and nuclear [11,12,16,17,21,22] dynamics, including the
dynamics in the vicinity of resonances in molecules [16]
and solid targets [23,24]. This reflects the complexity of
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the process both from the experimental as well as from the
theoretical perspective. The photoionization time delay is
usually interpreted with the help of the so-called asymptotic
approximation [3], which splits the sideband delay into two
components

τsb ≈ τW + τcc, (2)

where τW is the intrinsic one-photon Eisenbud-Wigner-Smith
time delay and τcc is the continuum-continuum coupling delay
[25] coming from the IR absorption or emission in the con-
tinuum. This approximation is applicable only at sufficiently
high photoelectron energies and depends on the system [20].

We have shown recently [20] that this asymptotic picture is
not complete since the IR photon can be absorbed or emitted
not only by the continuum electron but also in the residual
ion. This effect requires near-resonant conditions between the
ion transition and the IR laser frequency and is amplified near
resonances. As a consequence, Eq. (2) contains an additional
term τcoupl caused by the laser-ion coupling.

In this paper we show that in polar molecules there is an
additional delay component τdLC , which reflects the dynamics
of molecules dressed in the laser field. Therefore, RABBITT
delay in a polar molecule generally comprises four terms:

τsb ≈ τW + τcoupl + τdLC + τcc. (3)

Of course, this picture breaks down at low energies where
the separability of the absorption events between the ion and
the photoelectron is not possible and the system absorbs as
a whole: A complex dynamics intertwining all the effects
described above takes place [20,26].

Recently, we developed a full multiphoton stationary ap-
proach to above-threshold photoionization of multielectron
molecules based on the R-matrix method [27] which is ca-
pable of calculating directly the two-photon matrix elements
from Eq. (1) without the asymptotic approximation. Since
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laser-dressed states have a time-dependent energy, the origi-
nal stationary approach must be extended to incorporate the
dressing field. We show that such laser-dressed two-photon
amplitudes give time delays in perfect agreement with our
explicit time-dependent calculations using the R matrix with
time (RMT) [28]. Furthermore, we show that the effects of
laser dressing manifest separately in the initial and the final
states of the molecule. In orientation-averaged measurements,
the dipole-laser coupling delay vanishes at high energies, but
it persists at low energies and constitutes a strong effect in
molecular-frame data. We demonstrate this effect in the LiH
molecule, which has a large dipole moment of 5.88 D [29].

In Secs. II and III we review the derivation of one- and two-
photon ionization amplitudes of a nonpolar molecule from
time-dependent perturbation theory. In Sec. IV we extend the
description to consider also the dynamics of the initial state
of a polar molecule driven by a low-frequency electric field.
The general equations are simplified in Sec. V for typical
field strengths that are used in RABBITT experiments. In
Sec. VI we discuss the effect of the averaging over molecular
orientations and in Sec. VII we derive the asymptotic formula
for the dipole-laser coupling delay from the RABBITT for-
malism introduced before. In Sec. VIII we show the results
from numerical simulations demonstrating the accuracy of the
time-independent theory and we discuss regions of validity
of the dipole-laser coupling delay formula, including in polar
negative ions. We summarize in Sec. IX.

II. ONE-PHOTON IONIZATION

In this section we review standard time-dependent per-
turbation theory of photoionization [30]. We work in the
fixed-nuclei approximation and use Hartree atomic units un-
less stated otherwise. The electronic initial state of a nonpolar
molecule is

�i(t ) = �ie
−iEit , (4)

satisfying the time-dependent Schrödinger equation (TDSE)

i
d

dt
�i(t ) = H0�i(t ). (5)

Here H0 is the time-independent Hamiltonian operator
describing the molecular structure,

H0�i = Ei�i. (6)

We search for the time-dependent state of the system �(t )
once the ionizing field F(t ) is applied. Then, in the length
gauge and dipole approximation, we solve the equation

i
d

dt
�(t ) = [H0 − D · F(t )]�(t ), (7)

where D is the electronic dipole operator. The contribution of
the nuclei to the total dipole of the system is not considered,
because the energy of the fixed-in-space nuclei in the ionizing
field is irrelevant to the properties of the electronic wave
function �(t ). In the deep past, the state �(t ) will coincide
with the initial state,

�(t ) → �i(t ) (t → −∞), (8)

which we take as the initial condition for the solution of
Eq. (7). Furthermore, in the spirit of perturbation theory, we
declare the time-dependent term of the total Hamiltonian in
Eq. (7) a small perturbation and say that in the zeroth order,
even the field-affected solution behaves as the field-free one,

�(t ) ≈ �i(t ) (zeroth order of perturbation theory). (9)

To get an improvement to the next order we begin by expand-
ing the solution in the time-independent eigenstate basis

�(t ) =
∑∫

k
ck (t )�ke−iEkt , (10)

where the continuous part corresponds to proper scattering
states. After substitution into Eq. (7), elimination of terms
that occur on both sides, and projection of both sides of the
equation on �k , we obtain

ċk (t ) = i
∑∫

l
〈�k|D|�l〉 · F(t )cl (t )ei(Ek−El )t . (11)

Now, on the right-hand side we assume the unperturbed initial
state, which is equivalent to

cl (t ) = c(0)
l (t ) = δli. (12)

This leads to the final equation for the remaining coefficients
k �= i,

ċ(1)
k (t ) = iDki · F(t )ei(Ek−Ei )t . (13)

The electric field is taken as a cosine standing wave, equiva-
lent to the superposition of two traveling waves,

F(t ) = F1 cos(�t ) = 1

2
F1e+i�t + 1

2
F1e−i�t . (14)

In this paper we always consider only one of the two trav-
eling waves, corresponding to absorption or emission of a
photon. While physical fields always have a finite duration
and hence also a nontrivial spectral distribution, restric-
tion to monochromatic fields of infinite duration makes the
subsequent transition to a time-independent picture more
straightforward. This approximation is very common in the
analysis of RABBITT [3].

We solve the equation for c(1)
k (t ) by integration,

c(1)
k (t ) = iDki · 1

2
F1

∫ t

−∞
ei(Ek−Ei−�)τ dτ. (15)

In the limit of long times we have

c(1)
k (t → +∞) → iDki · 1

2
F1

∫ +∞

−∞
ei(Ek−Ei−�)τ dτ

= 2π iδ(Ek − Ei − �)Dki · 1

2
F1, (16)

that is, the amplitude of transition to a specific final state
is proportional to the Dirac delta function that enforces en-
ergy conservation and to the field-parallel component of the
transition dipole. Here we additionally assume that in weak
stationary electromagnetic fields the solution of the time-
dependent Schrödinger equation also eventually reaches a
stationary character, where the coefficients pertaining to in-
dividual final states no longer change. Only then can we
meaningfully evaluate them in the limit of long times and tran-
sit to the time-independent picture. While this is a standard
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setting of the perturbation theory, there certainly exist cases
featuring nonperturbative phenomena like Rabi oscillations
that defy transiting to a single stationary state. Such processes
are not considered in this work.

Positive-energy eigenstates �k used in Eq. (10) can be
chosen as the stationary photoionization states that for large
distances converge to a product of a residual ion state �k

and a photoelectron wave function ψk . Then the Wigner delay
associated with ionization from the real initial state �i into
a specific real residual state �k can be calculated from the
one-photon transition dipole elements Dki,

τW,ki(kk ) = d

dEk
arg ψ∗

k (kk ) = d

dEk
arg(Dki · F1), (17)

where Ek = k2
k /2 is the asymptotic photoelectron kinetic en-

ergy.

III. TWO-PHOTON IONIZATION

As we have seen in the preceding section from the com-
bination of Eqs. (10) and (15), after absorption of the first
photon the system is in the state

�(t ) = i
∑∫

l

(
Dli · 1

2
F1

)
�l e

−iEl t
∫ t

−∞
ei(El −Ei−�1 )τ dτ.

(18)

Once again, we will use this state as the initial condition for
the next iteration of the TDSE (11). We substitute ck (t ) from
Eq. (15) for cl (t ) on the right-hand side of Eq. (11), arriving
at

ċ(2)
k (t ) = −

∑∫
l

(
Dkl · 1

2
F2

)(
Dli · 1

2
F1

)
ei(Ek−El −�2 )t

×
∫ t

−∞
ei(El −Ei−�1 )τ dτ, (19)

which leads to

ck (T ) = −
∑∫

l

(
Dkl · 1

2
F2

)(
Dli · 1

2
F1

)∫ T

−∞
ei(Ek−El −�2 )t

×
∫ t

−∞
ei(El −Ei−�1 )τ dτ dt . (20)

If a proper regularization factor ε → 0+ is introduced to
damp the integrand for t → −∞, the inner integral can be
written as∫ t

−∞
ei(El −Ei−�1−iε)τ dτ = 1

i

ei(El −Ei−�1 )t

El − Ei − �1 − iε
. (21)

The resulting exponential factor combines with the other ex-
ponential factor in Eq. (20) and in the limit of long times leads
to the Dirac δ function

ck (T → +∞) → 2πδ(Ek − Ei − �1 − �2)

× 1

i

∑∫
l

(
Dkl · 1

2 F2
)(

Dli · 1
2 F1

)
Ei + �1 − El + iε

, (22)

that is, the amplitude of transition to a specific state after
absorption of two photons is proportional to the two-photon

matrix element (identical to that in, e.g., [3]) and to the Dirac
δ function that maintains energy conservation.

IV. IONIZATION OF POLAR STATES EMBEDDED
IN THE IR FIELD

In the first section it was assumed that the initial state is not
perturbed by the field. In contrast, when there is some dressing
field, even if it is of low intensity and photon energy so that it
cannot ionize the molecule on its own, one needs to take this
field into account when the molecule is strongly polar.

We consider a dressing IR field with time-dependent inten-
sity

F IR(t ) = F IR cos ωt = − d

dt
AIR(t ). (23)

A state with a nonzero permanent dipole Dii has the time-
dependent energy E (t ) in this field,

E (t ) = E0 − Dii · F IR(t ). (24)

The time-dependent wave function of such a state has to
satisfy the Schrödinger equation

i
d

dt
�i(t ) = [H0 − Dii · F IR(t )]�i(t ). (25)

Assuming that the wavefunction �i remains the same, this is
straightforward to solve by separation of variables, resulting
in

�i(t ) = �ie
−iEit−iDii·AIR (t ). (26)

In other words, a polar molecule receives an extra time-
dependent phase factor if it is located in a field [31,32]. This
phase now has to be included in all prior derivations. To be
able to treat the state analytically, we use the Jacobi-Anger
expansion [Eq. (10.12.2) in [33], or [34]]

eix sin φ =
∞∑

m=−∞
Jm(x)eimφ, (27)

where Jm(x) is the regular Bessel function. Identifying φ =
−ωt , we can write

�i(t ) = �i

∞∑
m=−∞

Jm(Dii · AIR )e−i(Ei+mω)t . (28)

This transforms the task to an already solved problem. As in
the previous two sections, we can now explicitly solve the full
time-dependent problem of ionization of the polar molecule
within perturbation theory by integrating out the time depen-
dence. The only difference is that the initial state is a linear
combination of terms with different time dependence of the
phase factors. Consequently, all resulting time-independent
transition amplitudes will also become linear combinations
with modified energies of the initial state. For the one- and
two-photon amplitudes we get

c(1)
l = 2π

∞∑
m=−∞

Jm(Dii · AIR )δ(El − Ei

− �1 − mω) iDli · 1

2
F1︸ ︷︷ ︸

T (1)
li (Ei+mω;�1 )

, (29)
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FIG. 1. All one-photon (odd-parity) and two-photon (even-parity) ionization pathways in three-color ionization of a polar molecule into
a state with a given photoelectron energy: a–f, ionization pathways into a given stationary state of the residual ion, and g and h, one-photon
ionization pathways into singly dressed states of the residual ion. In a typical RABBITT setup with many XUV harmonics there would be
further combinations, though not significantly contributing.

c(2)
k = 2π

∞∑
m=−∞

Jm(Dii · AIR )δ(Ek − Ei − �1 − �2 − mω)

× 1

i

∑∫
l

(
Dkl · 1

2 F2
)(

Dli · 1
2 F1

)
Ei + �1 + mω − El + iε︸ ︷︷ ︸

T (2)
ki (Ei+mω;�1,�2 )

. (30)

We have obtained a linear combination of possible ionization
pathways, which differ in the number of IR photons m ab-
sorbed before the XUV absorption takes place. The initial
state of the molecule no longer has a single well-defined
stationary energy. Instead, in the time-independent picture, it
is in a superposition of states with different energies, spaced
by the IR quantum ω. This linear combination is fixed, but
the relative phases of the coefficients bear all temporal infor-
mation about the dynamics of the initial state in the periodic
field.

Pathways a–f in Fig. 1 illustrate the possible one- and
two-photon pathways that conserve energy in three-color ion-
ization, in a similar way as in the higher-order RABBITT
analysis [35,36]. In the three-color ionization, the amplitude
of ionization into a given final state k consists of six pathways:

Tki = J0(Dii · AIR )
[
T (2)

ki (Ei; �<,+ω) + T (2)
ki (Ei; �>,−ω)

]
+ J1(Dii · AIR )

[
T (1)

ki (Ei + ω; �<) − T (1)
ki (Ei − ω; �>)

]
+ J2(Dii · AIR )

[
T (2)

ki (Ei + 2ω; �<,−ω)

+ T (2)
ki (Ei − 2ω; �>,+ω)

]
. (31)

We take advantage of the relation J−m(x) = (−1)mJm(x) valid
for the integer m. When the phase of the IR field is delayed by
ωτ , the mth spectral component of the initial state (28) will
receive an extra phase exp(imωτ ) and the total amplitude will
change to

Tki(ωτ ) = J0(Dii · AIR )
[
eiωτ T (2)

ki (Ei; �<,+ω)

+ e−iωτ T (2)
ki (Ei; �>,−ω)

]

+ J1(Dii · AIR )
[
eiωτ T (1)

ki (Ei + ω; �<)

− e−iωτ T (1)
ki (Ei − ω; �>)

]
+ J2(Dii · AIR )

[
eiωτ T (2)

ki (Ei + 2ω; �<,−ω)

+ e−iωτ T (2)
ki (Ei − 2ω; �>,+ω)

]
. (32)

Alternatively, we can write the ionization amplitude as

Tki = Tki,+eiωτ + Tki,−e−iωτ , (33)

where we collect the terms with equal ωτ -dependent phase
factors,

Tki,+ = J0T (2)
ki (Ei; �<,+ω) + J1T (1)

ki (Ei + ω; �<)

+ J2T (2)
ki (Ei + 2ω; �<,−ω), (34)

Tki,− = J0T (2)
ki (Ei; �>,−ω) − J1T (1)

ki (Ei − ω; �>)

+ J2T (2)
ki (Ei − 2ω; �>,+ω). (35)

The differential ionization rate is proportional to the squared
modulus of the ionization amplitude:

dσki

d�
(ωτ ) ∼ |Tki(ωτ )|2 = |Tki,+eiωτ + Tki,−e−iωτ |2

= |Tki,+|2 + |Tki,−|2

+ 2 Re(T ∗
ki,+Tki,−e−2iωτ )

= |Tki,+|2 + |Tki,−|2 + 2|Tki,+||Tki,−|
× cos(2ωτ − arg T ∗

ki,+Tki,−).

(36)

Hence the experimentally observed phase shift

2ωτ2 = arg T ∗
ki,+Tki,− (37)

is a rather complicated function of one- and two-photon am-
plitudes. In a real experiment with many harmonics, there are
also additional combinations contributing other than the six
shown in Fig. 1.
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V. APPROXIMATIONS

Strongly polar molecules have the magnitude of the per-
manent dipole |Dii| on the order of 1 a.u. The vector potential
of the IR field in RABBITT experiments is typically of
the order of 0.01 a.u. (corresponding to a peak intensity of
1010 W/cm2). Therefore, the scalar product that appears in the
argument of the Bessel functions is very small and the Bessel
factors can be replaced by their asymptotics,

Jm(Dii · AIR ) ≈
(

Dii · AIR

2

)m 1

m!
(m � 0), (38)

that is, the factor J0 can be approximated by 1 and J1 by a lin-
ear term. Higher orders seem to be quite strongly suppressed.
This simplifies our amplitudes to

Tf i,+ ≈ T (2)
f i (Ei; �<,+ω) + 1

2 (Dii · AIR )T (1)
f i (Ei + ω; �<),

(39)

Tf i,− ≈ T (2)
f i (Ei; �>,−ω) − 1

2 (Dii · AIR )T (1)
f i (Ei − ω; �>).

(40)

The one-photon amplitudes T (1)
f i (Ei + ω; �<) and T (1)

f i (Ei −
ω; �>) are equal because they are one-photon matrix ele-
ments of the dipole operator between the same final state
and the same initial state. This is supported by the following
reasoning. First, the final stationary photoionization state is
given by the total energy of the system, which is equal for
both amplitudes Ei + ω + �< = Ei − ω + �> = k2

f /2 + Vf i,
where Vf i is the ionization potential and k f is the momentum
of the photoelectron. Second, the initial states in these two
amplitudes differ by energy only due to a different energy
contribution of the permanent dipole to the total energy in
the time-independent picture (different Floquet level); how-
ever, electronically, the states are considered unchanged [see
Eq. (26)]. In other words, for the present analysis we assume
that the weak periodic field acting on the molecule in the ini-
tial state does not itself cause polarization of the target or other
distortions of the electronic eigenstates. This is a reasonable
approximation for nondegenerate initial states in nonresonant
field conditions. Effects such as ac Stark shifts and splitting
are neglected and represent additional physical phenomena
acting in the case of some molecules and field configurations
on top of the physics discussed here. This reasoning allows us
to write both one-photon matrix elements in terms of the same
transition dipole as

T (1)
f i (Ei + ω; �<) = T (1)

f i (Ei − ω; �>) = id (1)
f i (k f ) · 1

2
F1.

(41)

Note that, for brevity, the here-defined time-independent tran-
sition amplitudes T include also the amplitudes of the electric
fields, which is important to remember when comparing the
relative magnitudes of T (1) and T (2). Alternatively, one can
work with scaled quantities

M f i,+ = i
1
2 F1

1
2 F2

Tf i,+ ≈ i
1
2 F1

1
2 F2

T (2)
f i (Ei; �<,+ω)

− Dii

ω
d (1)

f i (k f ), (42)

M f i,− = i
1
2 F1

1
2 F2

Tf i,− ≈ i
1
2 F1

1
2 F2

T (2)
f i (Ei; �>,−ω)

+ Dii

ω
d (1)

f i (k f ), (43)

where Dii is the projection of Dii along AIR and d (1)
f i is the

projection of d (1)
f i along F1.

VI. ORIENTATION AVERAGING

From the previous derivation we obtain, for the overall
sideband delay, the formula

τ ≈ 1

2ω
arg

[(
M (2)∗

f i,+ − Diid
(1)∗
f i (k)

ω

)(
M (2)

f i,− + Diid
(1)
f i (k)

ω

)]
︸ ︷︷ ︸

Q

,

(44)
where we abbreviated

M (2)
f i,± = i

1
2 F1

1
2 F2

T (2)
f i (Ei; �≶,±ω). (45)

To get orientation-averaged results in the case of linear polar-
ization, this has to be integrated over photoelectron emission
directions k̂ and averaged over polarization orientations ε̂ =
ε̂IR = ε̂XUV:

τavg = 1

2ω
arg

(
1

4π

∫
Q d k̂ d ε̂

)

= 1

2ω
arg

[ ∑
lmabcd

(
M (2)∗

f i,+,lm,ab − Dii,ad (1)∗
f i,lm,b(k)

ω

)

×
(

M (2)
f i,−,lm,cd + Dii,cd (1)

f i,lm,d (k)

ω

)
Aabcd

]
, (46)

where [37]

Aabcd = 1

15
(δabδcd + δacδbd + δadδbc). (47)

The expression for the averaged time delay cannot be simpli-
fied further and the one-photon terms do not vanish for general
fields. This implies that, in general, orientation averaging does
not fully remove the influence of dipole-laser coupling.

VII. ASYMPTOTIC BEHAVIOR

In the high-energy limit, it is customary to isolate the
states of the residual ion and of the photoelectron and write
the wave function of the whole system as a product of these
two parts. This separation neglects the correlation between
the two subsystems that is naturally included in the complete
two-photon matrix elements presented above. Instead, in
the asymptotic approximation, the effects originating in the
electron-ion correlation need to be accounted for explicitly,
where important [20].

In this particular case we need to worry about additional
absorption pathways during the RABBITT process. These
originate in the laser dressing of the final ionic states. Because
the residual ion is going to be dressed in very much the same
way as the initial state, the first single-photon ionization will
generally populate a superposition of laser-dressed ionic states
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with energies ε f + nω, where n ∈ Z and ε f is the field-free
ionic energy. While the dressing field is on, ionization into the
final states that couple a given residual cation with field-free
energy ε f and photoelectron with a given asymptotic kinetic
energy thus may require additional absorption or emission of
photons to conserve energy. Once the dressing field vanishes,
these dressed states lose their field-driven energy shift and
become indistinguishable from ordinary field-free states and
the associated photoelectrons will interfere with the standard
pathways a–f of Fig. 1. The two simplest ionization pathways
into dressed levels, which actually consist of only one ab-
sorption each, are shown as pathways g and h in Fig. 1. The
amplitudes for these two paths will again be proportional to
the Bessel factors J±1(D f f · AIR ), only this time featuring the
permanent electronic dipole moment of the residual cation.
The signs in front of the Bessel functions will be opposite
though, because now the dressing occurs in the bra vector
and the corresponding exponential is complex conjugated. As
before, we consider only the simplest pathways, because those
requiring multiple transitions are suppressed. The effective
single-channel amplitudes are then

Tf i,+ ≈ T̃ (2)
f i (Ei; �<,+ω) + 1

2 (Dii · AIR )T (1)
f i (Ei + ω; �<)

− 1
2 (D f f · AIR )T (1)

f −ω,i(Ei; �<), (48)

Tf i,− ≈ T̃ (2)
f i (Ei; �>,−ω) − 1

2 (Dii · AIR )T (1)
f i (Ei − ω; �>)

+ 1
2 (D f f · AIR )T (1)

f +ω,i(Ei; �>). (49)

The difference of Eqs. (48) and (49) from Eqs. (39) and (40)
is the absence of correlation between the residual ion and
the photoelectron in T̃ (2)

f i . In these new formulas the energy
sharing between the residual ion and the photoelectron is not
included. Only after this step can we proceed with the asymp-
totic approximation of T̃ (2)

f i . Because the first-order amplitude
T (1) depends only on the kinetic energy of the photoelectron
and not on the energy of the residual cation, the transition
elements for the corresponding pathways are the same:

T (1)
f i (Ei + ω; �<) = T (1)

f −ω,i(Ei; �<), (50)

T (1)
f i (Ei − ω; �>) = T (1)

f +ω,i(Ei; �>). (51)

Equation (50) corresponds to processes c and g in Fig. 1
and the final photoelectron kinetic energy k2/2 = Ei + ω +
�< − ε f , while Eq. (51) corresponds to processes d and h and
the energy k2/2 = Ei − ω + �> − ε f . As a consequence, the
interaction of the residual cation with the IR field effectively
modifies the permanent electronic dipole of the initial state
by the permanent electronic dipole of the final state, Dii →
Dii − D f f . In the following we disregard D f f , as it can be
reintroduced by simple substitution into the final result.

We use the asymptotic expression for the two-photon ma-
trix element for emission in the molecular frame [Eq. (C8) in
[20]],

M̃ (2)
f i,± = i

1
2 F1

1
2 F2

T̃ (2)
f i,± ≈ −i(k̂ · ε̂IR )Aκ±kd (1)

f i (κ±), (52)

where

Aκk = e−π/2κ+π/2k

√
κk(κ − k)2

(2κ )i/κ

(2k)i/k

�(2 + i/κ − i/k)

(κ − k)i/κ−i/k
. (53)

The intermediate momentum κ± is tied to the final momentum
k by means of the energy conservation k2/2 = κ2

±/2 ± ω. In
the limit k → +∞, we can then take advantage of k − κ± �
±ω/k and 1/κ± − 1/k � ±ω/k3. In the end, the only con-
tributing factors in Aκk are the real-valued ones:

Aκk → k

ω2
(k → +∞). (54)

If we further neglect the energy dependence of d f i(k) in the
range k ∈ (κ+, κ−), assuming d (1)

f i (k) = d (1)
f i (κ+) = d (1)

f i (κ−),
this allows us to rewrite the formula for Q [cf. Eq. (44)] as

Q ≈ M̃ (2)∗
f i,+M̃ (2)

f i,−

(
1 − Diid

(1)∗
f i (κ+)

ωM̃ (2)∗
f i,+

)(
1 + Diid

(1)
f i (κ−)

ωM̃ (2)
f i,−

)

= M̃ (2)∗
f i,+M̃ (2)

f i,−

(
1 + i

Diiω

kk̂ · ε̂IR

)2

. (55)

The time delay is then

τ ≈ 1

2ω
arg M̃ (2)∗

f i,+M̃ (2)
f i,− + 1

2ω
arg

(
1 + i

Diiω

k · ε̂IR

)2

. (56)

The second term, corresponding to the dipole-laser coupling,
can be also written as

τ
(i)
dLC = 1

2ω
tan−1

2Diiω
k·ε̂IR

1 − D2
iiω

2

(k·ε̂IR )2

. (57)

In the last step we use the trigonometric identity

2 tan−1 x = tan−1 2x

1 − x2
(58)

to obtain the final result

τ
(i)
dLC = 1

ω
tan−1 Diiω

k · ε̂IR
= 1

ω
tan−1 Dii · ε̂IR

k · ε̂IR
ω. (59)

If we now, following the earlier discussion, replace Dii by
�μ = Dii − D f f , we get exactly Eq. (6) from [32]. Taking
advantage of the smallness of the argument of the arctangent
to linearize the formula and split the trigonometric function in
two, we can identify the additional dipole-laser coupling delay
in the final state. Quoting from [31], “this additional time shift
τ

( f )
dLC is a true electron-electron interaction contribution absent

on the [single active electron] or mean-field level.”

VIII. DISCUSSION

A. Dipole-laser coupling in numerical experiments

We illustrate the success of the time-independent descrip-
tion in Fig. 2. It presents a model R-matrix (UKRMol+
[27,38]) calculation of RABBITT sideband delays in the
LiH molecule for IR photon energy ω = 0.0584 a.u. (λ =
780 nm). We pick this particular molecule due to its large
permanent dipole moment to make the effect of the dipole-
laser coupling sizable so that its contribution really stands
out among the individual asymptotic terms of the RABBITT
delay. At the same time we choose the electronically sim-
ple static-exchange model to reduce the complexity arising
from many electronic channels and autoionizing resonances,
even though correlated calculations are definitely feasible
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FIG. 2. (a) and (b) Differential cross sections and (c)–(e) RABBITT sideband delays for photoionization of LiH from the HOMO 2σ in the
molecular frame along the molecular axis calculated in the static exchange (Hartree-Fock) model. The direction of XUV and IR is parallel to
the molecular axis. (a) and (c) Photoemission from the lithium end. (b) and (d) Photoemission from the hydrogen end. (e) Emission-integrated
and orientation-averaged delays: dressed vs undressed.

[39]. This allows us to discuss dipole-laser coupling effects
unobscured by other physical effects superimposed on the
fundamental results.

The one-electron basis set used in the calculation com-
prised of the cc-pVTZ Gaussian basis centered at the nuclei
and a radial center-of-mass-centered basis with partial-wave
expansion up to the angular momentum � = 10 built from
30 B-splines of order 6 between the center of mass and the
R-matrix radius Ra = 30a0. The reader is referred to Ref. [38]
for details of the molecular R-matrix computational method.
The calculated electronic permanent dipole moment (i.e., ex-
cluding the contribution of the nuclei) is Dii = −3.87 a.u.
The electronic permanent dipole moment of the final state is
D f f = −1.54 a.u.

For a reference we simulated the same process using
the general time-dependent R-matrix-with-time method [28],
which, not limited to perturbative processes, inherently con-
siders all photon absorption orders as well as the dynamics of
the initial and final molecular states in the IR field. In these
calculations we used IR peak flux density I = 1011 W/cm2.
The corresponding peak IR field amplitudes are F2 = 0.0017
a.u. and AIR = 0.029 a.u. The inner-region model used on
input to the RMT was the static-exchange model from the
time-independent calculation. This guarantees the same level
of description of electron correlation in both types of calcula-
tions. Therefore, any discrepancy between the stationary and
RMT results can be attributed only to field-dependent effects,
i.e., higher-order or nonperturbative processes. Note that this
is the only time-dependent calculation performed in this work;
all others are time independent.

The results in Fig. 2 labeled “2p dressed” are calcu-
lated from the combined amplitudes given in Eqs. (42) and
(43) using the relation (37) and they reproduce the time-
dependent RMT calculation almost perfectly. When the un-
dressed time-independent calculation is corrected by the
asymptotic expression for τdLC [Eq. (59)], labeled “2p +
dLC(i),” the agreement is also good at photoelectron ener-
gies beyond 20 eV, but below this energy the asymptotic
approximation (59) separating the dipole-laser coupling delay
is apparently invalid. At higher energies, above 30 eV, the
orientation averaging eliminates any effect of the dressing, as
can be seen from the overlap of the 2p AVG and 2p dressed
AVG curves in panel (e). At low energies though, some effect
prevails.

Figure 2 also presents one-photon results, that is, Eisenbud-
Wigner-Smith delay corrected by the continuum-continuum
delay. In this case, to achieve agreement with the time-
dependent theory and the “2p dressed” stationary results we
need to add also the final-state dipole-laser coupling. While
the second-order theory automatically takes into account the
dynamics of the final state in the IR field, the one-photon
method (asymptotic approximation separating the Coulomb-
laser coupling delay) lacks this information and requires man-
ual correction. Because the initial- and final-state corrections
go in opposite directions, due to �μ = Dii − D f f , the devi-
ation of the one-photon calculation from the reference time-
dependent one is actually smaller than in the case of the two-
photon result, which lacks only one of the two contributions.

The hill-like structure in the delays associated with
emission from the Li end between roughly 35 and 65 eV [gray
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area in Fig. 2(c)] corresponds to a change of trend in the dif-
ferential cross section in this direction [gray area in Fig. 2(a)].
Similarly, the strong dip in delays associated with emission
from the H end of the molecule between 20 and 35 eV [gray
area in Fig. 2(d)] corresponds to a dip in the differential
cross section [gray area in Fig. 2(b)]. Similar structures have
been investigated earlier in H2 where they are caused by
destructive interference between simultaneous emission from
the two centers [40], which results in trapping of electrons
with specific angular momentum [41], and can be described
in terms of interference of distinct partial waves [20].

B. Photodetachment from polar negative-ion molecules

Attosecond delays in photoionization of neutral molecules
are typically strongly affected by the continuum-continuum
delays, arising in absorption of IR by the photoelectron cou-
pled to the residual ion by means of the Coulomb field. In
contrast, delays in photodetachment of singly charged an-
ions are unaffected by continuum-continuum delays due to
the absence of the strong monopole interaction between the
residual ion and the photoelectron. This allows for the pos-
sibility to unearth more subtle delay contributions stemming
from further terms of the multipole expansion of the potential
experienced by the photoelectron. In particular, we investigate
the possibility of observing a delay caused by absorption of
photon by the photoelectron while it is moving in the dipolar
(rather than Coulomb) potential of the residual ion. We show
that in the high-energy limit this delay contribution is imper-
ceptible.

While here we are primarily interested in neutral residual
molecules, the discussion below is for the general case of
a charged residual molecular ion, i.e., for the photoelectron
moving in the combination of dipolar and Coulomb fields.

In all stages of the asymptotic approach to attosecond
delays as presented in [20], the molecular states are eventually
projected on the stationary photoionization states with the
asymptotic form [42]

�
(−)
f k =

∑
lm

i−l eiσlY ∗
lm(k)

∑
npk

F (−)
npk, f lm(r)Ypk (r)�n. (60)

Here the radial part is proportional to

F (−)
npk, f lm(r) ∼ H+

lm(r)δ f
n δl

pδ
m
k − O(H−

lm), (61)

the second term being proportional to an incoming radial
solution H−

lm and the S matrix. When there are no long-
range potentials except for the possible central Coulomb
monopole, the radial functions H±

lm(r) are identical to the
standard Coulomb-Hankel functions H±

l (r) = Gl (r) ± iFl (r)
[33], which are eigensolutions of the one-particle Hamiltonian
with Coulomb potential. For simplicity of notation we do not
explicitly write out the charge and momentum dependences
of these functions. In the high-energy limit the second term
of Eq. (61) becomes negligible and does not contribute to
the phase of the wave function. The only relevant outgoing
solutions have the asymptotics

H+
lm ∼ exp[i(kr + (Z/k) ln 2kr − π l/2 + σl )]. (62)

This asymptotic form must be preserved, including the overall
phase, to ensure that the stationary photoionization state (60)

asymptotically converges to a Coulomb wave or a plane wave
in the absence of any residual charge, i.e., that it satisfies the
physical boundary conditions.

In the case of a nonzero dipolar interaction between the
residual molecule and the photoelectron, use of Coulomb-
Hankel functions for radial parts is an approximation,
particularly in the absence of residual charge, because in-
dividual partial waves are coupled to a large distance due
to the residual dipole. Even then, however, the outer-region
problem can be solved exactly [42,43]. This is done by finding
a set of radial functions H+

lm that is an eigensolution of the
one-electron Hamiltonian including the dipole-photoelectron
interaction,∑

l ′m′

[(
−1

2

d2

dr2
+ l (l + 1)

2r2
− Z

r

)
δll ′δmm′

− D f f · (n)lml ′m′

r2

]
H+

l ′m′ (r) = k2

2
H+

lm(r), (63)

where (n)lml ′m′ = 〈lm|r|l ′m′〉/r. The dipolar interaction can
now be effectively absorbed into the centrifugal term,∑

l ′m′

[(
−1

2

d2

dr2
− Z

r

)
δll ′δmm′ − Alml ′m′

r2

]
H+

l ′m′ (r)

= k2

2
H+

lm(r), (64)

where Alml ′m′ = l (l + 1)δll ′δmm′ − 2D · (n)lml ′m′ is a Hermi-
tian matrix, which can be diagonalized. We denote the (real)
eigenvalues of A by λ j (λ j + 1), where the generalized angular
momentum λ j is generally a complex number. We also denote
by clm j the coefficients of the eigenvectors of A. Then the
solution of the coupled set of equations (64) can be written
as the linear combination

H+
lm(r) =

∑
j

clm jH
+
λ j

(r). (65)

When this ansatz is substituted into Eq. (64) and the re-
sulting equation multiplied by the inverse of the matrix of
eigenvectors clm j , we recover equations for the standard
Coulomb-Hankel functions(

−1

2

d2

dr2
+ λ j (λ j + 1)

2r2
− Z

r

)
H+

λ j
(r) = k2

2
H+

λ j
(r). (66)

The asymptotic form of the functions H+
λ j

is thus identical
to (62) with l replaced by λ j , which upon substitution into
Eq. (65) leads to the overall asymptotic formula for the outer
solutions

H+
lm(r) ∼ exp[i(kr + (Z/k) ln 2kr)]

×
∑

j

clm j exp[i(−πλ j/2 + σλ j )]. (67)

The solutions H+
lm(r) form a perfectly valid basis for

partial-wave expansion of the photoelectron wave function
that inherently includes the long-range dipole interaction
with the residual molecule. However, if we directly substi-
tuted them into Eq. (61), the resulting photoionization wave
function (60) would not satisfy the correct Coulomb wave
asymptotic boundary conditions since the special function

013106-8



DIPOLE-LASER COUPLING DELAY IN TWO-COLOR … PHYSICAL REVIEW A 109, 013106 (2024)

FIG. 3. (a) Total- and partial-wave emission-integrated cross sec-
tion of one-photon ionization (detachment) of BeH−. (b) Eigenphase
sum of electron scattering on BeH in A1 symmetry. (c) Wigner and
RABBITT delays for photodetachment of BeH− in the molecular
frame, with photoemission along the molecular axis from the hydro-
gen end. Field polarization is parallel to the molecular axis.

(67) has a more complicated asymptotic phase than (62). For
this reason, the incompatible phase factor needs to be removed
by changing the normalization of F (−),

F (−)
npk, f lm(r) → exp[i(−π l/2 + σl )]∑

λ clmλ exp[i(−πλ/2 + σλ)]
F (−)

npk, f lm(r).

(68)

Clearly, this eliminates from H+
lm all effects of the dipole cou-

pling to give a plain Coulomb-Hankel function. The effects of
the permanent dipole are preserved only in the H−-dependent
term, which is discarded in the asymptotic approximation
but it enters, via the S matrix, the calculation of the Wigner
delay. As a consequence, all effects of the dipolar potential
are already included in the Wigner delay and there are no ad-
ditional asymptotic delays coming from the interplay between
the permanent dipole and the IR absorption in RABBITT:.

We illustrate this conclusion for photodetachment of BeH−

in Fig. 3. This static-exchange calculation uses an R-matrix
radius Ra = 200a0, a 6-31G atom-centered basis, partial-wave
expansion up to � = 10, and 400 radial B splines of order 6.
The large R-matrix radius is necessary to confine the diffuse
initial bound state of the negative ion and to include the
dominant part of the long-range dipole potential in the inner
region, allowing us to treat the outer-region channel wave
functions as effectively uncoupled by the dipolar interaction.

Convergence with respect to this parameter has been tested
by repeating the calculation with a radius of 300a0. As with
LiH, we choose a very simple molecular model, in this case
also to avoid excessive computational requirements imposed
by the large inner-region radius. However, a highly correlated
calculation of the related electron scattering on neutral BeH is
possible and has been performed with the molecular R-matrix
method before [44]. The calculated initial and final electronic
dipole moments of the molecule were Dii = −1.69 a.u. and
D f f = 1.64 a.u., respectively. In this case the addition of the
dipole-laser coupling by means of Eq. (59) to Wigner delay al-
ready results in complete agreement with the full two-photon
calculation at high energies.

The calculated one- and two-photon delays are feature-
less at high photoelectron kinetic energies, but exhibit an
enhancement region approximately between 5 and 30 eV.
In this low-energy area, the magnitude of partial-wave cross
sections [Fig. 3(a)] varies strongly and the d wave dominant
at low energies is replaced at high energies by dominance of
the p wave, which recovers from its two-center interference
dip visible just below 15 eV. This large-scale structure in the
Eisenbud-Wigner-Smith (EWS) delay features two additional
superimposed smaller dips in the delay highlighted by the
shaded areas in Fig. 3 around photoelectron energies of 3 and
18 eV. These areas coincide with the crossing of magnitudes
of some partial-wave cross sections in Fig. 3(a). Interestingly,
they also match energies of zeros in the calculated eigenphase
sum for electron scattering on neutral BeH [Fig. 3(b)] in
the only relevant symmetry A1 (irreducible representation of
C2v) accessible by the chosen parallel polarization. In electron
scattering, vanishing of the scattering phase shift is linked to
Ramsauer-Townsend effect [45], which can be interpreted as
partial “transparency” of the target to the electron. Here we
indeed observe reduction of the Wigner time delay in the gray
areas, suggesting that the molecule affects the photoelectron
a little less than at the surrounding energies. The analogy is
imperfect though, because in the molecular case the partial
waves are coupled by the nonsphericity of the potential and
one cannot assign unambiguous phase shifts to individual
partial waves. When the additional IR probe photon is applied,
positions of these dips move a little, but the overall large-scale
structure remains unaffected.

IX. CONCLUSION

In this article we presented a time-independent model that
allows inclusion of the IR-field-driven dynamics in the initial
state in two-color ionization and applied it to the analysis of
RABBITT. The field-dependent energy of a polar molecule
translates to a superposition of time-independent dressed
states. We combined this theory with the stationary molecular
R-matrix approach for multiphoton transitions [20,27].

Taking LiH as an example of a highly polar molecule, we
demonstrated that the model agrees well with a nonperturba-
tive fully time-dependent simulation and that the initial-state
dynamics is indeed the missing piece in the second-order
perturbation approach to RABBITT.

In the context of RABBITT, we rederived the approximate
asymptotic formula for the dipole-laser coupling time delay
known from the field of attosecond streaking [31,46]. It was
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JAKUB BENDA AND ZDENĚK MAŠÍN PHYSICAL REVIEW A 109, 013106 (2024)

also shown that this formula is tightly related to the widely
used molecular asymptotic theory of molecular RABBITT de-
lays [10,20]. For this reason the formula gives accurate results
at higher energies, but close to the ionization threshold it does
not reproduce the full theory completely. Furthermore, we
have proved and illustrated for the case of photodetachment
of BeH− that in the high-energy limit, there is no additional
RABBITT delay component caused by coupling of the IR
laser with the dipolar electron-molecule interaction: Instead,
all dipolar effects are already included in the field-free one-
photon (Wigner) delay.

As a consequence of the separability of the dipole-laser
coupling at higher energies, the isotropic delays for a ran-
domly oriented sample of molecules vanish at high energies.

However, at low energies, even the orientation-averaged time
delays still bear an imprint of the dynamics of the initial state.
Nevertheless, we expect the effect to be very strong in the
molecular frame over a wide range of energies.
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