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Re-exploring control strategies in a non-Markovian open quantum system by reinforcement learning
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In this study, we reexamine a recent optimal control simulation targeting the preparation of a superposition
of two excited electronic states in the ultraviolet (UV) range in a complex molecular system. We revisit this
control from the perspective of reinforcement learning, offering an efficient alternative to conventional quantum
control methods. The two excited states are addressable by orthogonal polarizations and their superposition
corresponds to a right or left localization of the electronic density. The pulse duration spans tens of femtoseconds
to prevent excitation of higher excited bright states which leads to a strong perturbation by the nuclear motions.
We modify an open source software by Giannelli et al. [L. Giannelli et al., Phys. Lett. A 434, 128054 (2022)] that
implements reinforcement learning with Lindblad dynamics, to introduce non-Markovianity of the surrounding
reservoir either by time-dependent rates, or more exactly, by using the hierarchical equations of motion with the
QuTip-BoFiN package. This extension opens the way to wider applications for non-Markovian environments, in
particular when the active system interacts with a highly structured noise.
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I. INTRODUCTION

For several decades, quantum-state manipulation with elec-
tromagnetic fields has been a central problem in many areas
of physics and chemistry to prepare particular initial states or
realizing unitary transformations (quantum gates). The hard-
ware systems and the spectral range are very different, from
spins in nuclear magnetic resonance (NMR) [1] to molec-
ular systems [2] or complex photosynthetic systems [3,4]
and systems involved in emerging quantum technology [5,6],
for instance, a superconducting quantum interference device
(SQUID) [7], trapped ions [8] or atoms [9], nitrogen-vacancy
diamond centers [10], or quantum dots [11]. Quantum con-
trol has developed through various theoretical strategies as
pump-dump schemes [12,13], coherent control [14], adiabatic
methods [15,16], local [17,18] or Lyapunov control [19],
Pontryagin optimal control [20], adaptative tracking [21],
and optimal control theory (OCT) [22] that involves a rich
variety of optimization algorithms, for instance, the Rabitz
monotonous convergent algorithm [23,24] or Krotov method
[25,26], gradient ascent pulse engineering (GRAPE) [27,28],
or the chopped random basis optimization (CRAB) [29,30].

Recently, there has been significant interest in applying
reinforcement learning (RL), a distinctive machine learning
technology, to quantum control. This begs the following ques-
tions: Does RL suggest new control strategies? How does it
compare with standard algorithms [31]? What is the efficiency
for control in a dissipative environment [32]? RL has already
been applied in control for state preparation [33] and gate
realization [34,35] and quantum compiling [36] in quantum
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technology. Recently RL has recovered the well-known coun-
terintuitive stimulated raman adiabatic passage (STIRAP)
pulse sequence in a three-state system [15,16]. In Ref. [37]
the laser may be on or of,f leading to a so-called digital-
STIRAP ensuring an efficient transfer without the constraint
of adiabaticity conditions [38]. Conversely, in Refs. [39,40],
the pulses are continuous, while the RL algorithm optimizes
either the laser detuning or the Rabi frequencies.

In this work, our objective is to revisit with RL an optimal
control simulation recently performed in a molecular system
(phenylene ethynylene dimer) with C2v symmetry [41]. This
benchmark case is interesting for different reasons. The sys-
tem consists of two quasi-degenerate excited electronic states
of different symmetries. They are addressable by orthogo-
nal polarizations. The preparation of a superposition of the
two states corresponds to a right or left localization of the
electronic density in a way similar to the localization in a
double-well by superposing the two lowest eigenstates. Cre-
ating such a coherence in complex systems with orthogonal
polarizations has been recently discussed as a prospective
avenue for achieving coherent control over excitonic energy
transfer [42]. In the absence of dissipation, this is a V-type
three-state system where two excited states are coupled to
the ground state by two orthogonal transition dipoles. An
analytical solution may be derived to prepare the superposi-
tion with equal weights [43]. This is an important landmark
to test the control. On the other hand, the ideal electronic
V-type system strongly interacts with the surrounding leading
to a non-Markovian nonperturbative open system. The nuclear
vibrations form two baths called the tuning and the coupling
baths making the energy gaps fluctuate (also called longitu-
dinal noise) and the electronic coupling (transversal noise),
respectively.
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FIG. 1. Schematic representation of the V-type model in 1,3-
bis(phenylethynyl)benzene. The two excited states of symmetries
A1 and B2 at the geometry of the ground state are delocalized over
the two sites. Their superposition with equal weights corresponds
to a localization on the left or right sites. The excited states are ad-
dressable by orthogonal dipole moments. The electronic subsystem is
coupled to the vibrational baths. The tuning bath (longitudinal noise)
making the energy gap fluctuate gathers the symmetric A1 modes and
the coupling bath (transversal noise) varying the electronic coupling
contains the B2 modes.

In our previous OCT simulation, we employed hierarchi-
cal equations of motion (HEOM), which represent an exact
method for addressing nonperturbative and non-Markovian
open systems with Gaussian statistics [44–49]. To investigate
the RL control, we start from the open source software [50]
presented in Ref. [40]. This software uses the libraries QuTip
[51] and TENSORFLOW [52]. The software already implements
Lindblad dynamics with the QuTip collapse operators. In this
work, we introduce non-Markovianity in different ways. In
a simplified strategy, we first consider time-dependent rates
[53,54] by using time-dependent QuTip collapse operators.
The rates are calibrated from the decoherence matrix [54]
extracted from the exact HEOM dynamics [55,56]. We then
address the exact non-Markovian dynamics with the QuTip
HEOMSOLVER [57].

The paper is organized as follows. In Sec. II we describe
the model treated as an isolated or an open system interacting
with two Bosonic baths. We summarize the Lindblad and
HEOM operational equations in Sec. III. The control by RL
or OCT is presented in Sec. IV. The RL results are given in
Sec. V and a comparison with OCT is made in Sec. VI before
concluding in Sec. VII.

II. MODEL

The V-type three-state model of the dimer [1,3-
bis(phenylethynyl)benzene] is schematized in Fig. 1. It is
calibrated from ab initio data computed by Lasorne et al .
[41,58–60] with the density-functional theory (DFT) for the
ground state S0 and the time-dependent density-functional
theory (TDFT) for the two excited states [S1(B2) and S2(A1)].
The energies of the two excited states (ES1 = 4.43 eV and
ES2 = 4.47 eV) are taken at the equilibrium geometry of
the ground state (planar with C2v symmetry). The two states
are bright and coupled to the ground state by orthogonal

FIG. 2. Actions optimized by the RL algorithm to prepare the
target superposed state in the V-type system. (a) The actions are the
Rabi frequencies �y and �z; (b) the actions are the variations of the
Rabi frequencies with respect to guess fields. The laser detuning �y

and �z are assumed to vanish in this application.

transition dipoles. The axes are chosen so that z(A1) is the
C2 rotation axis, y(B2) lies within the molecular plane, and
x(B1) is orthogonal to it. The respective transition dipoles are
�μ01 = (0, μy, 0) with μy = 3.96ea0 and �μ02 = (0, 0, μz ) with
μz = −1.83ea0.

A. Isolated system

The system is defined by selecting the ground and the first
two excited electronic states at the equilibrium geometry of
the ground state (vertical Franck-Condon transition). It is an
ideal system assumed to be frozen at this geometry. The two
excited states are coupled by nonadiabatic interactions via a
conical intersection [59,60]. We choose a diabatic representa-
tion with states of A1 or B2 symmetry so that the electronic
coupling vanishes at that reference position and the system
Hamiltonian is simply

H0
S =

2∑
j=0

| j〉〈 j|. (1)

The electronic coupling (between the two diabatic excited
states) becomes different from zero when any vibration of
B2 symmetry is active. The two bright states are coupled
to the ground state only radiatively and the time-dependent
Hamiltonian at the dipolar approximation is

HS (t ) = H0
S −

2∑
j=1

(
�μ0 j �E j (t )|0〉〈 j| + H.c.

)
, (2)

where H.c. designates the Hermitian conjugate. The two fields
are linearly polarized with �E1 = (0, Ey, 0) and �E2 = (0, 0, Ez ).
In interaction representation (I) and with the rotating wave
approximation (RWA) [61] the Hamiltonian becomes

HRWA
S,I (t ) = − h̄

2

⎛
⎝ 0 �y(t ) �z(t )

�y(t ) −2�y 0
�z(t ) 0 −2�z

⎞
⎠, (3)

where the Rabi frequencies are �y(t ) = μyEy(t )/h̄, �z(t ) =
μzEz(t )/h̄, and Ej (t ) ( j = y, z) are the pulse envelopes. �y

and �z are the field detunings.
The two Rabi frequencies or their variations with respect to

a guess field are the actions that will be optimized by the RL
algorithm. They are represented in Fig. 2. In our application,
the target is the superposition of the two excited states with
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equal weights

|0〉 → 1√
2

(|1〉 + |2〉). (4)

This target is different from the superposition of the initial
state and one excited state that may be prepared by fractional-
STIRAP [15] or by a π/2 pulse.

By imposing equal Rabi frequencies at all times, i.e., pulses
of the same duration T with amplitudes in the inverse ratio of
the dipole moments, the target transition is realized if each
area is equal to π/

√
2 [43]∫ T

0
� j (t )dt = π/

√
2, (5)

with j = y, z. It is a generalization of the well-known π rule
for complete population transfer [62] or π/2 for creating a
superposition involving the initial state.

B. Open quantum system

According to the chosen partition, all the nuclear vibrations
belong to the baths. The A1 modes make the energies fluctuate
and the B2 vibrations modify the electronic coupling that be-
comes different from zero when the C2v symmetry is broken.
The generic Hamiltonian of the system-bath partition is then
written as

H (t ) = HS (t ) + HSB + HB, (6)

where HB is the ensemble of the vibrational modes assumed
to be harmonic. The normal modes are assumed to be the
same in each electronic states but their equilibrium positions
differ. HSB is the linear system-bath coupling. The two groups
of A1 or B2 modes then constitute different baths that may
be called the tuning baths coupled to the diagonal elements
|1〉〈1| and |2〉〈2| of the system Hamiltonian and the coupling
bath coupled to the off-diagonal elements |1〉〈2| and |2〉〈1|
between the two excited states. This kind of partition in the
case of a conical intersection has been discussed in different
works applying HEOM dynamics [41,43,63,64]. The partition
leads to a strong system-bath coupling and a non-Markovian
master equation. The analysis of the dimer model is given
in our previous work [41] where it was explained how we
obtained the continuous spectral densities J (ω) for the tuning
and coupling baths from ab initio data, i.e., from the energy
gradients and gradient of the electronic coupling at the refer-
ence position. The spectral densities give the strength of the
coupling to the system for each energy range of the baths. We
select the main part of the spectral densities consisting in very
sharp peaks around 1700 and 2300 cm−1. The two spectral
densities Jtuning(ω) and Jcoupling(ω) are presented in Fig. 3(a).
Figure 3(b) gives the corresponding correlation functions of
the collective mode of each bath

C(t ) = 1

π

∫ +∞

−∞
dω

J (ω)eiω(t )

eβω − 1
, (7)

where β is the Boltzmann constant. Due to the peaked shape
of the spectral densities, the effective collective modes are
underdamped and decay in about 200 fs. We zoom in on
the early time range of 20 fs, which is the pulse duration
chosen in our simulations. However, the pulse duration must

FIG. 3. (a) Spectral densities giving the strength of the system-
bath coupling to the diagonal (Jtuning) or off-diagonal (Jcoupling =
JS1S2 ) element of the system Hamiltonian block related to the two
excited states. Jtuning is JS1 and JS2 is assumed to be similar with
JS2 = 0.797JS1 [41]. The tuning modes are of A1 symmetry and
the coupling ones of B2 symmetry. (b) Real and imaginary parts
of the normalized bath correlation function C(t ) [Eq. (7)] at room
temperature (zoomed in on the early 20-fs timescale). C(t ) decays in
200 fs.

be longer than about 10 fs to correspond to a sufficiently
narrow spectral range to avoid the excitation of higher bright
states. It is noticeable that the collective bath modes undergo
a full oscillation within the 20-fs timescale. This serves as an
indicator of non-Markovian behavior, as we will delve further
into in the subsequent discussion.

III. DYNAMICAL METHODS

The dynamics of open quantum systems [65] has been
reviewed, as seen in Refs. [66,67] specifically focusing on
control aspects. The applications of RL control [32,40] usu-
ally assume a weak coupling and a Markovian bath treated by
a Lindblad master equation [68,69]. We first summarize the
main relations to introduce time-dependent rates and then we
recall the operational equations for HEOM.

A. Lindblad master equation

For a N-dimensional system coupled to M dissipative
channels, the generic Lindblad operator reads

D(t ) =
M∑
k,l

�kl

(
Lkρt L

†
l − 1

2

{
L†

l Lk, ρt
})

, (8)

where {A, B} = AB + BA denotes the anticommutator and the
rates �kl are constant. Often, only the main dissipative pro-
cesses are retained, as the radiative decay towards a sink
[40] or dephasing processes affecting the diagonal elements
of the density matrix or relaxation inducing population trans-
fer due to interstate coupling [32]. In this work, we will
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consider these two processes induced by the tuning and
coupling baths, respectively, leading to four operators L1 =
|1〉〈1|, L2 = |2〉〈2|, L3 = |1〉〈2|, and L4 = |2〉〈1| (they are
the collapse operators in QuTip [51]). Moreover, we want
to account for non-Markovian baths, at least on an approxi-
mate way by introducing time-dependent rates [53,54]. This
has given rise to many fundamental analysis [54,56,70,71]
concerning the non-Markovianity signature or the positivity
of the dynamical map [72]. Indeed, the master equation of
non-Markovian dynamics can be recast in a Lindblad form
with time-dependent rates that may be transitorily negative.
If the Lindblad dissipator is expressed with the orthogonal
basis set of N2 operators formed by the normalized identity
G0 = I/

√
N and the N2 − 1 generators of SU(N ), Gi(i =

1, . . . , N2 − 1) [73,74], which are the Pauli matrices for N =
2 and the Gell-Mann matrices for N = 3, the corresponding
rate matrix is also called the time-dependent decoherence
matrix Djk [54]

D(t ) =
N2−1∑
j,k=1

Djk (t )

(
Gjρt Gk − 1

2
{GkGj, ρt }

)
. (9)

The eigenvalues are the canonical decay rate �c
k associated to

the time-dependent decay channels. The decoherence matrix
is given by [54]

Di j (t ) =
N2−1∑
m=1

Tr[GmGi	t [Gm(t )]Gj], (10)

where 	t [.] denotes the map of the time local non-Markovian
master equation Ġm(t ) = 	t [Gm(t )] [54,75]. This requires
(N2 − 1) propagations of the basis operators performed here
with HEOM as shown in Refs. [55,56]. Some elements of
the decoherence matrix will be used to calibrate the time-
dependent rates of the selected collapse operators.

This is a low-cost way to introduce easily some non-
Markovianity with time-dependent collapse operators. How-
ever, its efficiency might be somewhat limited, as the rates
are calibrated based on field-free dynamics and are subject to
potential modification by the applied fields [56].

B. HEOM

We now summarize the main operational equations of the
HEOM method. The system density matrix is the partial trace
of the full density matrix ρtot(t ) over the bath degrees of
freedom ρ(t ) = TrB[ρtot(t )]. The initial condition is assumed
to be factorized ρtot(0) = ρ(0)ρeq where ρeq is the density
matrix of the baths at Boltzmann equilibrium at a given tem-
perature. The HEOM may be considered as a numerically
exact method for non-Markovian dynamics with harmonic
baths when convergence is achieved by a relevant truncation
of the hierarchy. The method is abundantly described in the
literature, see, for instance, Ref. [44] for a recent review or
Ref. [49] for a pedagogical survey, Refs. [45–48] for applica-
tions with the tensor-train format, and Ref. [57] for a review of
different softwares, in particular that implemented in QuTip.
We briefly recall that the master equation is solved by a time
local system of coupled equations among auxiliary density
matrices or auxiliary density operators (ADOs) arranged in a

hierarchical structure. The algorithm requires a particular fit of
the correlation function C(t ) as a sum of K damped oscillatory
terms also called artificial decaying modes

C(t ) =
K∑

k=1

αkeiγkt (11)

and C∗(t ) = ∑K
k=1 α̃keiγkt . Analytical expressions for the αk ,

α̃k , and γk parameters can be derived from Eq. (7) [76] when
the spectral density is fitted by a sum of two-poles Tannor-
Meier Lorentzian functions [77]

J (ω) =
nl∑

l=1

plω[
(ω + �l )2 + �2

l

][
(ω − �l )2 + �2

l

] . (12)

The parameters fitting the spectral densities of Fig. 3 are
given in Ref. [41]. Each ADO is labeled by a collective
index n = {n1, . . . , nK} specifying the occupation number of
each artificial mode. The system density matrix has the index
n = {0, . . . , 0}. The HEOM equations are

ρ̇n(t ) = LS (t )ρn(t ) + i
K∑

k=1

nkγkρn(t ) − i

[
S,

K∑
k=1

ρn+
k

(t )

]

− i
K∑

k=1

nk (αkSρn−
k

(t ) − α̃kρn−
k

(t )S), (13)

where LS (t ) is the system Liouvillian and n+
k = {n1, . . . , nk +

1, . . . , nK }, and n−
k = {n1, . . . , nk − 1, . . . , nK }.

The OCT simulations make use of the HEOM [Eqs. (13)]
via our in-house developed software [41]. In RL simulations
[40] based on QuTip software, we use the QuTip-BOFiN
HEOMSOLVER [57] that allows the description of the Bosonic
baths by giving the real and imaginary parts of the correla-
tion function C(t ) = CR(t ) + iCI (t ). For each bath, they are
parametrized by a combination of decaying terms CR(t ) =∑NR

k=1 cR
k e−γ R

k
t and CI (t ) = ∑NI

k=1 cI
ke−γ I

k
t where the ck and

γ R,I
k are complex. This is an alternative to the expansion of

Eq. (11) already adopted for the second-order time nonlocal
[77] or time-local non-Markovian equations [78]. The HEOM
equations adapted to this partition of the correlation function
in real and imaginary part are given in Eq. (11) of Ref. [57].
The analytical expressions of the ck and γ R,I

k parameters when
the spectral density is fitted by the two-pole Lorentzian func-
tions [Eq. (12)] are given in Refs. [77,78].

IV. CONTROL

A. Reinforcement learning

The RL algorithm is summarized in many references, for
instance Refs. [79,80]. By using the generic vocabulary, the
principle is as follows. A target must be reached in an environ-
ment. At each time, an agent makes an observation and gets
information about its state. The agent then chooses an action
according to a policy to modify the state. The agent obtains
a reward that estimates the progress towards the target. In our
application, we have thus to define the environment, the agent,
the action, and the reward. The four points are represented in
Fig. 4. The RL environment is the active system and its sur-
rounding, i.e., the V-three-level system coupled to both tuning
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FIG. 4. Representaion of a cycle of the RL. At each time, the
reduced density matrix of the three-state system coupled to its sur-
rounding is the input of the neural network. The policy π (at |st ) is
optimized and provides two actions that are the pulse Rabi frequen-
cies. The reward is the fidelity to reach the target, which is here the
superposed state of the two excited states.

and coupling baths. The observation is the state of the system
described by the reduced density matrix solution of a mas-
ter equation. The agent is an algorithm called REINFORCE
[79]. It uses a neural network with three hidden layers in our
application. The input layer contains all the density matrix
elements (nine in our case). The output layer may provide
discrete values or a continuous distribution. The outputs are
discrete when only some actions are available, for instance, if
the laser may be only on or off, giving four outcomes in the
two-pulse case [38]. When the distribution is continuous, the
output layer gives parameters of this distribution, for instance,
the mean of the Gaussian distributions for the actions ay,z that
provide the Rabi frequencies �y and �z of the two pulses. The
reward is the control fidelity rt = Tr[ρ†

targetρ(t )]. The policy is
the conditional probability π (at |st ) that the agent takes action
a when the system state is s. The action at a time t only
depends on the state at that time and the process is called
a Markov decision chain. Note that this does not mean that
the dynamics of the system must be Markovian. The Markov
decision chain means that when two states s and s′ observed
by the agent are the same, the probability to choose a is the
same regardless of the history to reach the state s.

We employ the policy gradient method [81], which is a
technique used in reinforcement learning. It involves adjusting
the policy’s parameters aiming to maximize the cumulative
reward over time. All the parameters of the network are repre-
sented by the global index θ . They are initialized at random.
One then generates a batch of M episodes with the current
policy π (at |st ). An episode or trajectory τ is divided in N time
steps and lasts T = Nδt . For each episode, one collects the N
data triplets (st , at , rt ) where t = iδt for the ith time step. The
performance of the agent is estimated by the so-called return R
that depends on the network parameters θ and is the main tool
to optimize the policy. For each episode, the return R(τ ) may
be defined in more or less sophisticated ways by the simple
sum of all the rewards rt or a weighted sum of these with a
discount rate [32,33,82]. Here, R(τ ) is the sum of the rt and
all the rt = 0 if t < T so that R(τ ) = rN , i.e., it is given by the
final control fidelity. For the bunch of M episodes driven by

the same policy, the return is the expectation value

E [R] =
M∑

τ=1

pθ (τ )R(τ ), (14)

where pθ (τ ) is the probability of the driving trajectory τ . Fol-
lowing Ref. [83] we summarize the main points of the policy
optimization. The probability of each trajectory is different
since the actions are taken at random in the current policy. It
is a product for each time step of the probability p(st+1|at , st )
to have a transition from state st to state st+1 induced by action
at times the probability for the agent to choose action at for
state st ,

pθ (τ ) =
N∏
t

p(st+1|at , st )πθ (at , st ). (15)

p(st+1|at , st ) does not depend on the parameters θ but only on
the system dynamics. Therefore, the gradient of the average
return involves only the gradient of the policy

∇θ pθ (τ ) =
N∑

t=1

N∏
t ′=1

p( st ′+1|at ′ , st ′ )πθ (at ′ , st ′ )

× ∇θ ln πθ (at , st ) = pθ (τ )
N∑

t=1

∇θ ln πθ (at , st ).

(16)

The network parameters are optimized so that their gradient
∇θ is parallel to the gradient of the average return with a factor
η called the learning rate ∇θ = +η∇θE [R] and by Eqs. (14)
and (16) one has

∇θ = +η

M∑
τ=1

pθ (τ )R(τ )
N∑

t=1

∇θ ln πθ (at , st )

= +ηE

[
R(τ )

N∑
t=1

∇θ ln πθ (at , st )

]
. (17)

The parameters are updated according to the logarithmic gra-
dient of the policy times the return and the learning rate that
must be chosen neither too fast nor too slow. Since the gra-
dient contains the return, all the actions become more likely,
the more the return is larger. An important point is that the
optimization algorithm of the network parameters is indepen-
dent of the underlying dynamical model. This is a difference
with the standard optimization in OCT where the gradient of
the final fidelity involves the system Hamiltonian. RL operates
beyond static databases; it collects data during training.

B. Optimal control

The optimal field is built by iterations to maximize the cost
functional that is the fidelity F = Tr[ρ†

targetρ(T )] at the final
time T with constraints to restrain the field intensity and to
fulfill the master equation at any time. The optimization is per-
formed here by Rabitz’ monotonously convergent algorithm
[23,84] that involves forward and backward propagation of
the system density matrices with initial condition ρ(0) and of
an auxiliary system density matrix χ (t ) with final condition
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χ (T ) = ρtarget. It is worth noting that a two-point boundary-
value quantum control paradigm (TBQCP) has been presented
in the literature as an accelerated convergent algorithm [85].
However, for the sake of simplicity this method is not used in
our simulations. Dynamics is driven with HEOM. The itera-
tions begin with a guess field that strongly influences the final
field. The operational relations for the backward propagation
are given in Refs. [41,56]. The field at each iteration k is
obtained by ε(k) = ε(k−1) + �ε(k) where �ε(k) is estimated by

�ε(t ) = 1

α
Imm

⎧⎨
⎩Tr

⎛
⎝χ (t )

⎡
⎣∑

p

μp, ρ(t )

⎤
⎦

⎞
⎠

⎫⎬
⎭, (18)

where α is the intensity penalty factor. Note that we do not use
RWA in this approach.

V. CONTROL BY RL

We choose a pulse duration of T = 20 fs. This is relevant
to avoid a too large spectral band that would imply higher
bright excited states not included in the model system. For
RL simulations, the laser detunings are assumed to vanish, so
the only optimized parameters are the two Rabi frequencies
�y and �z at all times. In all the RL examples, the results
are given in reduced units for the time (t/T ) and the Rabi
frequency (T �). Conventional units are used in some OCT
examples.

The three hidden network layers contain 100, 50, and 30
neurons. The learning rate has its standard value η = 10−3.
Our investigation has confirmed the critical significance of
these meta-parameters. Reducing the number of neurons re-
sults in a decelerated convergence rate, while elevating it
prolongs computational duration without commensurate con-
vergence enhancement. Increasing the learning rate by a factor
of 10 is not efficient to reach the desired target. Data are
collected during a bunch of M = 10 episodes that are divided
in 50 time steps.

A. RL in the isolated system

We first consider the ideal case without dissipation. In RL,
the process begins by two Rabi frequencies chosen at random
in a given range. The analytical solution [Eq. (5)] is a land-
mark. By assuming a constant pulse envelope, the integrated
Rabi frequency is T � and the best value should be π/

√
2 =

2.22. We begin the RL simulation with an initial interval with
T �min = 0 and T �max = 3 that would give an area larger
than the best analytical value of 2.22. Figure 5(a) displays
the first iteration with initial random Rabi frequencies, here
1.54 for �y and 1.55 for �z. The integrated frequencies are
too small and the ground state is not completely depopu-
lated. Figure 5(b) gives the outcome after 100 episodes. It
reproduces the analytical result and is obtained after about
60 episodes as illustrated in Fig. 6. RL provides the good
integrated frequencies but with very simple pulses since the
envelopes are quasi constant. Figure 6 displays the return
achieved during five simulations of 100 episodes. The random
initial conditions differ from T � = 1.5 by about 10% giving
a return close to 0.75. Notably, the convergence rate exhibits
variability and does not follow the typical monotonic pattern

FIG. 5. Optimization of the superposed target state [Eq. (4)] by
RL in the isolated V-three-level system and T �max = 3. The upper
panels give the Rabi frequencies in reduced units (T �), the middle
ones show the populations in each state, and the lower ones the
modulus of the coherence ρ12 between the two excited states. (a) First
iteration with initial random Rabi frequencies. The integrated fre-
quencies are 1.54 for �y and 1.55 for �z. (b) After 100 episodes
both areas are 2.22 (π/

√
2), the best expected result.

observed in conventional OCT algorithms. However, from 60
iterations, the rate achieved its highest value.

To test the algorithm, we start with a larger initial interval
with T �max = 9. As the initial frequencies are random in
this range, RL converges towards different possibilities but
it is worth noting that it always finds a solution close to the
analytical result. Figure 7(a) illustrates a case where conver-
gence occurs towards the expected value π/

√
2 with a very

good final coherence. In Fig. 7(b) one sees that, according

FIG. 6. Return [Eq. (14)] during the optimization in the isolated
system presented in Fig. 5 for five different simulations displayed in
different colors. Each simulation runs 100 episodes. The green dotted
line serves as an indicator, highlighting the target return value of 1.
The random initial conditions differ from T � = 1.5 by about 10%
giving a return close to 0.75.
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FIG. 7. Optimization of the superposed target state [Eq. (4)] by
RL in the isolated V-three-level system and T �max = 9. The upper,
middle, and lower panels are as in Fig. 5. (a) Convergence towards
the best expected result (π/

√
2). The integrated frequencies are

2.286 for �y and 2.254 for �z. (b) Convergence towards (3 π/
√

2)
leading to a supplementary Rabi oscillation. The integrated frequen-
cies are 6.673 for �y and 6.825 for �z.

to the random initial values, optimization provides a solution
with higher intensity and an area close to 3π/

√
2 leading to

a supplementary complete Rabi oscillation before the final
coherence creation close to 0.5.

B. RL with Lindblad dynamics

In this section, we will undertake a comparative analysis
between scenarios involving constant Lindblad rates and those
incorporating time-dependent variations. The constant rates
associated to the four selected Lindblad operators (QuTip col-
lapse operators) Lk defined in Sec. III A are (in reduced units
T �): T �11 = 1 (L1), T �22 = 0.8 (L2), T �12 = 0.36 (L3), and
T �21 = 0.16 (L4). The operators L1 and L2 couple to the
tuning baths in excited states S1 and S2, respectively. The ratio
of the rates is approximated by

√
JS2/JS1 as elaborated upon

in Ref. [41]. The operators L3 and L4 induce nonadiabatic
transitions. The reduced rate T �12 and T �21 are different as
expected from the detailed balance. They are calibrated to
roughly approximate the exact HEOM field-free dynamics at
least during the early dynamics. Dynamics is performed with
the QuTip MESOLVE solver [51].

Non-Markovianity may be taken into account in an approx-
imated way by time-dependent rates. The transitory negativity
of the sum of the canonical rates that are the eigenvalues of
the decoherence matrix [Eq. (9)] is one of the signature. This
sum obtained for the field-free dynamics is given in Fig. 8(a)
in reduced units (T = 20 fs). It is obvious that its damped
oscillation follows that of the bath correlation functions [see
Fig. 3(b)]. This illustrates that, for this type of partition, the
non-Markovianity is closely linked to the damped vibrational
motion of the collective modes. Indeed, if the collective effec-
tive mode is underdamped, the nuclei oscillate and transitory

FIG. 8. (a) Sum of the canonical rates T �c
k (in reduced units)

of the field-free dynamics. They are the eigenvalues of decoherence
matrix [Eq. (9)]. (b) Time-dependent rates T � associated to the four
Lindblad operators describing the energy tuning (L1, L2 with rates
�11 and �22) and the interstate transition (L3, L4 with rates �12 and
�21) induced by the coupling bath.

return to the initial reference position. This tends to restore the
system in its initial condition. The decay towards equilibrium
is not monotonous.

Figure 8(b) presents the time-dependent rates associated to
the four Lindblad operators describing the energy tuning (L1,
L2) and the interstate transition (L3, L4) induced by the cou-
pling bath. Their shape are approximated from those of some
elements of the decoherence matrix [Eq. (9)] by considering
the basis operator Gk corresponding to the 1–2 transition (ana-
log of σx in the two-state case) and one operator corresponding
to an energy gap. The amplitudes are calibrated as in the
constant rate case from the field-free HEOM dynamics. The
functions are fitted by polynomials or by the product of a sine
function times a decreasing exponential. These functions are
introduced in the time-dependent collapse operators of QuTip
by using the MESOLVE solver [51].

Figure 9(a) shows the dynamics after 100 episodes with
constant decay rates. The return is only 0.8 and it saturates
after 60 iterations. Figure 9(b) presents the control with the
time-dependent rates. The return is slightly improved. How-
ever, this is due mainly to the better depletion of the ground
state and not to a better superposition. The optimal envelopes
remain very simple and quasiconstant in both cases. It is
a bit disconcerting that RL behaves in a very similar way
with constant or time-dependent rates. We will compare these
results with the OCT optimization in Sec. VI.

C. RL with HEOM dynamics

For a 20-fs simulation, truncating at level 6 of the hierarchy
proves to be satisfactory. However, it is worth noting that, for
longer dynamics, such as achieving a field-free asymptotic
state, a higher level 9 becomes necessary. The implementation
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FIG. 9. Optimization of the target state [Eq. (4)] by RL with
Lindblad or HEOM dynamics. The upper, middle, and lower panels
are as in Fig. 5. The first episode with random initial conditions
is given in dashed lines. The optimized results are given after 100
episodes. In each case, the return saturates after about 60 episodes.
(a) Dynamics with constant Lindblad rates. The area of the Rabi
frequencies are 2.35 and 2.48, respectively. (b) Dynamics with time-
dependent rates. The area are 2.38 and 2.39. (c) HEOM dynamics at
level 6 of the hierarchy in Schödinger representation without RWA.

of the RL algorithm with HEOM requires some comments. (i)
During the Markov decision chain the solver is called repet-
itively for each time step of the chain . . . st → at → rt →
st+1 → at+1 → rt+1 . . .. All the ADOs describing the state of
the surrounding must be saved for the following decision step
so that each bath retains its configuration and does not restart
with the initial conditions of the baths with ADOs equal to
zero. This is a difficulty that does not concern the local Lind-
blad dynamics. (ii) In our application, each spectral density
(see Fig. 3) is fitted by two Tannor-Meier Lorentzian functions
[77] leading to four decay modes for each bath. As the spectral
densities are centered at high frequencies, we do not include
Matsubara terms at room temperature. We use the description
of the baths by the expansion of the real and imaginary parts of
the correlation functions using the BOSONICBATH application
of the QUTIP HEOMSOLVER [57]. When working with re-
duced units the real or imaginary parts of the cR,I

k coefficients
must be scaled by T 2 and the rates γ R,I

k by T as usually.
(iii) In the HEOM solver, the system-bath coupling operators
are not written in interaction representation. Therefore, we
re-transformed the Hamiltonian in Schrödinger representa-
tion without the RWA approximation. We use 100 time steps
in each episode, which is enough to satisfy the Nyquist-
Shannon sampling rule [86] for the fields in the Schrödinger
representation.

The RL optimization with HEOM in the Schrödinger rep-
resentation without RWA is given in Fig. 9(c). The actions are
more erratic due to the oscillation of the field in this represen-
tation. After 100 episodes, the envelopes have a slightly higher
amplitude than in the Lindblad simulations. The populations
and coherence behave on a similar way in each simulation.

FIG. 10. RL optimization by RL with different guess fields. The
actions are the variation of the Rabi frequencies δ� in a range
of reduced units [−2, 2]. Dynamics is computed by HEOM in
Schrödinger representation without RWA at level 6 of the hierarchy.
The upper panels give the Rabi frequencies �y and �z in reduced
units, the middle ones, the populations, and the lower ones, the mod-
ulus of the coherence between the two excited states. (a) Guess fields
with sine square envelopes of integrated Rabi frequencies π/

√
2 in

solid line. The corresponding RL fields after 100 episodes in dashed
line (the areas are 3.77 and 3.96). (b) Guess fields with constant
envelope in solid line and the corresponding RL fields after 100
episodes in dashed line (the areas are 3.87 and 3.95).

The return is only 0.53 primarily due to the less-than-optimal
depletion of the ground state and the difference of population
in the two excited states. Other examples with guess fields are
given in Fig. 10.

Finally, we explore another strategy. We impose a guess
field for the RL control by choosing the actions to be the
variation δ� of the Rabi frequencies with respect to the guess
[see Fig. 2(b)]. These trial fields are a sine square envelope or
a constant satisfying the π/

√
2 rule. Simulations are carried

out in Schrödinger representation without RWA at level 6 of
the hierarchy. The actions T δ� are taken in an interval [−2, 2]
in reduced units. The Rabi frequencies of the guess fields and
of the RL optimization after 100 episodes are given in Fig. 10.
The envelopes are only very slightly modified during the
optimization. The first action is always the largest and shifts
the guess envelopes by adding a constant value. The further
fluctuations remain of weak amplitude. Increasing the initial
interval only modifies the initial shift. Only the area increases,
which generally enhances the depletion of the ground state but
not the target coherence. The sine square envelope is the best
guess giving a return of 80%. The constant envelope provides
only 70%.

VI. COMPARISON RL-OCT

The envelopes generated by RL consistently exhibit a high
degree of simplicity, characterized by their quasi-constant
profile when no guess is imposed. Given that the fields gen-
erated by standard OCT typically exhibit a higher degree of

013104-8



RE-EXPLORING CONTROL STRATEGIES IN A … PHYSICAL REVIEW A 109, 013104 (2024)

FIG. 11. Optimization by standard OCT after 15 iterations.
(a) Sine square guess fields, (b) constant envelope guess fields. The
upper panels give the fields times the corresponding transition dipole
in reduced units T μyEy(t ) and T μzEz(t ). Dynamics is computed by
HEOM in Schrödinger representation without RWA at level 6 of
hierarchy. The lower panels display the populations and the modulus
of the coherence between the two excited states.

structure [41], we compare in Fig. 11 the fields optimized by
OCT with the same initial guess fields drawn in solid lines in
Fig. 10. Simulations are performed utilizing our HEOM code
[41] in Schrödinger representation without RWA at level 6 of
the hierarchy. Standard OCT optimizes the field amplitudes
and not only the envelopes on a time grid. This offers more
flexibility and may slightly modify the carrier frequency. The
α penalty factor [Eq. (18)] is fixed to 2 × 10−4. It influences
the optimization rate. The field amplitudes increase regularly
at each iteration. We take two snapshots to remain in the same
order of magnitude as in the RL simulation. The results after
15 iterations are shown in Figs. 11(a) and 11(b). We draw
the fields times the dipole moment T μyEy(t ) and T μzEz(t )
in reduced units so that the envelopes may be compared with
the reduced Rabi frequencies T � used in the RL optimization.
OCT reshapes the envelopes more strongly than RL. In partic-
ular, the two envelopes do not remain similar. However, when
the maximum field amplitude are in the same range, the return
is similar around 80% for the sine square case and reaches
80% versus 70% in RL for the constant guess.

VII. SUMMARY AND CONCLUSION

Examining the potential of RL in quantum control has
primarily been explored within the domain of quantum in-
formation [32,34–36]. This analysis is particularly interesting
in the context of retrieving the STIRAP scheme using either
digital pulses [38] or continuous ones [39,40]. The outstand-
ing property is the ability to propose strategies without any
prior knowledge of the system leading to the denomination
as a “model-free algorithm” [83]. The main question is to
see whether RL will find new strategies in particular in the
presence of an environment. Most of the previous works
studied examples with dissipation treated by Lindblad master

equation, i.e., for a Markovian dynamics [32,40]. However,
even if RL is built on a succession of decision Markov
processes, non-Markovian noise could influence the system
dynamics [37].

In this work, we revisited a control in a system with a
strong non-Markovian dynamics due to the coupling to baths
with highly structured spectral densities leading to long bath
correlation times. The model is calibrated from ab initio
data [41,58,60]. We used an open source software [40,50]
based on the policy gradient method for the optimization
and on the QuTip MESOLVE solver of the Lindblad master
equation [51]. We enhanced its functionality to address non-
Markovian dynamics. In a first approximate go-between step
we incorporated time-dependent rate constants derived from
the field-free HEOM dynamics. Then we interfaced the RL
algorithm with the HEOM solver of the QuTip BOFIN package
[57].

An analytical solution exists to create the target superposi-
tion of two excited states addressable with orthogonal dipoles
in an isolated V-system. It is of significant interest to assess
the proficiency of RL to recover the expected solution from
random initial conditions in a given interval for the Rabi
frequencies. RL finds a very simple but efficient solution of
straightforward quasi-constant envelopes satisfying the inte-
grated Rabi frequency rule. The amplitudes display minimal
variations, typically within a few percentage points.

For each level of complexity of the dynamics, we observe
that the return saturates after about 60 iterations even if the
target is not perfectly reached. The Rabi frequencies are al-
ways very simple, nearly constant when no guess is imposed.
The proposal is basic and robust. Even if it is not completely
satisfactory, RL does not go further. When dynamics is driven
in Schrödinger representation without RWA, the process of
optimizing using reinforcement learning (RL) exhibits in-
creased complexity. This complexity is reflected in the erratic
behavior of the envelopes from one step to another. However,
it is worth noting that, despite these fluctuations, a smoother
average trajectory is observed with only minor fluctuations.

Lindblad dynamics even with some time-dependent rates
cannot take into account a possible influence of the field on
the baths. On the contrary, the memory kernel of HEOM con-
tains the time-dependent Hamiltonian [77] and this could, in
principle, induce an effect on the bath dynamics [87]. Indeed,
the decoherence matrix and thus the rates are modified by the
field [56]. However, in our application the behavior is qualita-
tively the same for the approximate non-Markovian approach
or for exact HEOM. RL successfully captures the crucial
condition regarding the integrated Rabi frequency, yet it does
not discover novel strategies to fight dissipation. It would be
powerful to increase the number of available actions, enabling
optimization of detuning parameters as well or directly the
amplitude of the fields and not only the envelopes. Another
possibility would be to let the algorithm choose a guess field.
Furthermore, the exploration of more sophisticated RL algo-
rithms holds promise for future investigations [88,89].

The simplicity of the RL envelopes suggests confronting
the standard OCT and to see if it can yield superior results.
OCT exploits the system dynamics and may seem more flex-
ible since it optimizes the field amplitude and the carrier
frequency and possibly finds some chirp effect. However, in
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our example OCT is not more efficient to reach the target with
dissipation. By imposing the same guess fields, RL and OCT
provide different optimal fields ensuring similar return. The
reshaping is stronger in OCT that proposes different envelopes
for the two polarizations which RL does not do. When the
envelope amplitudes are maintained in the same range as
in RL, OCT slighly improves the depletion of the ground
state, but not really the preparation of the superposition with
equal weights. Both strategies, RL and OCT depend on the
guess fields and the optimal fields are different. However, they
ensure similar final dynamics and the perfect target is not
achieved neither by RL nor by OCT control due to the strong
dissipation.

Our example is a complex system strongly coupled to a
structured environment with laser pulses in the femtosecond
range. RL seems more adapted to treat quantum information

in another spectral range operating with very simple square
box envelopes and weakly coupled Markovian noises [90].

The data are available upon request to the authors. The
modified ThreeLS.py file of Giannelli’s open-source soft-
ware [40,50] allowing dynamics with HEOM in Schrödinger
representation without RWA by using the QuTip BOFIN

package [57] is given in the Supplemental Material
[91].
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