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Diamagnetic susceptibility of neon and argon including leading relativistic effects
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We report theoretical calculations of the static diamagnetic susceptibility, χ0 of neon and argon atoms. The
calculations were performed using a hierarchy coupled-cluster methods combined with application of both
the Gaussian and Slater orbital basis sets. We included the complete relativistic correction of order of α4,
where α is the fine-structure constant, and obtained an estimate of the quantum electrodynamics contributions.
The finite nuclear mass and size corrections were also considered but were found to be small. The final results
are χ0 = −8.4786(7) × 10−5a3

0 for the neon atom and χ0 = −22.9545(32) × 10−5a3
0 for the argon atom, where

a0 is the Bohr radius. The uncertainties in the last digits, shown in the parentheses, are primarily due to the errors
in the nonrelativistic electronic wave function, as well as to the neglected quantum electrodynamics corrections.
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I. INTRODUCTION

In an earlier paper [1], we reported an accurate calculation
of the static magnetic susceptibility χ0 of the helium atom
taking into account the complete set of relativistic corrections
as well as the finite-nuclear-mass effects. The magnetic sus-
ceptibility is a fundamental property of atoms and molecules
that enables us to determine their leading-order response (for
closed-shell systems) to the applied external magnetic field.
Moreover, this quantity is an important ingredient of the
Lorentz-Lorenz formula [2,3], which relates the refractive
index n of an atomic gas to its density ρ. The latter can be
determined experimentally by measuring the resonance fre-
quencies of a quasispherical cavity under vacuum and when
the cavity is filled with a working gas. Such measurements
form the basis of the refractive-index gas thermometry (RIGT)
[4–7], a novel experimental technique in the field of metrology
[8–11]. Knowing the resonance frequencies in vacuum f (0)
and at some pressure p of the gas f (p) measured at a constant
temperature, the refractive index is calculated as

n = f (0)

f (p) (1 − κeff p)
, (1)

where κeff is an effective parameter, characteristic for a given
apparatus, that accounts for the compression of the cavity as
the pressure is increased. It is worth pointing out that this
parameter is not affected by the composition of the working
gas, which opens up a window for an alternative experimen-
tal setup for RIGT measurements, as discussed by Schmidt
et al. [12]. In this variant, two independent measurements are
performed with two different working gases, such as helium
and argon. The results are then combined to eliminate κeff

parameter entirely, thereby removing the uncertainty related
to the compressibility of the cavity (see Ref. [5]).
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In the current realizations of the RIGT experimental setup,
helium is the preferred working gas. This is justified by the
accuracy of the theoretical data available for this system, in
particular the polarizability [13–16], magnetic susceptibility
[1,17,18], density virial coefficients [19,20], and dielectric
or refractivity virial coefficients [21–24]. However, the main
disadvantage of helium is its small polarizability, making the
RIGT measurements sensitive to small perturbations caused
by inaccurate frequency or resonator compressibility deter-
minations and gas purity. The latter problem is especially
troublesome as the most common impurity—water vapor—is
roughly 2 orders of magnitude more polarizable than helium.
For this reason, using other elements, in particular neon or
argon, as the working gas has been suggested (see Ref. [5]
and references therein). Neon and argon have macroscopic
properties similar to those of helium, but their polarizabilities
are roughly a factor of 2 and 8 larger, respectively. This helps
to reduce the sensitivity of RIGT measurements to impurities
and to further improve their accuracy.

Despite the aforementioned advantages of neon and argon
as the working gas, knowledge of the fundamental properties
of these atoms is still incomplete. For example, their polar-
izabilities were only recently calculated from first principles
with high accuracy [25–27]. The magnetic susceptibilities χ0

of neon and argon are currently known with an estimated
error of several percent, which is not satisfactory from the
experimental point of view. In this work we report theoretical
determination of χ0 for neon and argon following the theoreti-
cal framework introduced in our earlier paper [1]. For brevity,
we refer to this work as paper I in the following. We compute
the complete set of relativistic contributions to χ0 (of the order
of α4, where α is the fine-structure constant) and consider
several other corrections due to finite nuclear mass and size
and quantum electrodynamics (QED) effects.

Atomic units are used throughout the present work, i.e.,
h̄ = me = e = 1, where me and e are the electron mass and
charge, respectively. We adopt the following values [28] for
the fundamental physical constants: fine-structure constant
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α = 1/137.035 999, Bohr radius a0 = 0.529 177 210 Å, and
Avogadro’s number NA = 6.022 140 76 × 1023. The conver-
sion factor between cm3/mol, frequently used in the literature
for χ0, and atomic units is 1 cm3/mol = 11.205 872 a.u.

II. THEORY

For closed-shell atoms the diamagnetic susceptibility χ0 is
defined as the second derivative of the energy E with respect
to the strength B = |B| of the uniform external magnetic field
B in the limit of B → 0,

χ0 = −∂2E

∂B2

∣∣∣∣
B=0

. (2)

In general, the magnetic susceptibility is dependent on the
frequency of the oscillating magnetic field. However, for
closed-shell atoms the frequency-dependent terms appear
only on the order of α5 and higher [29,30] or are quadratic
in the electron-to-nucleus mass ratio; see the discussion in
Ref. [25]. As a result, the frequency contribution to χ0 is
expected to be tiny, and in this work we consider only static
magnetic fields.

For closed-shell singlet electronic states, the dominant con-
tribution (of the order α2) to χ0 is given by the formula [31]

χ
(0)
0 = −α2

6

〈 ∑
i

r2
i

〉
, (3)

where the summation index i runs over all electrons in the
system, ri = |ri| are the electron-nuclear distances, ri are the
spatial coordinates of the ith electron, and, finally, 〈X 〉 is
shorthand notation for the expectation value of an arbitrary
operator X with the nonrelativistic ground-state electronic
wave function, �0.

The relativistic corrections to χ0 of the order α4 can be
divided into three groups. The first group comes from rel-
ativistic corrections to the electronic Hamiltonian resulting
from Foldy-Woythausen expansion of the magnetic-field-
dependent Dirac equation in powers of α2 [32]. In paper I
we identified three corrections of this type which make a
diamagnetic contribution to χ0 and do not vanish after spin
integration in a closed-shell system. They are given by the
formulas

δχ
(1)
0 = α4

12

〈∑
i

l2
i

〉
, (4)

δχ
(2)
0 = −α4

12

〈∑
i

r2
i ∇2

i

〉
, (5)

δχ
(3)
0 = α4

4
Ne, (6)

where l2
i is the square of the total electronic angular momen-

tum operator for the ith electron and Ne denotes the number
of electrons in the atom. These equations are equivalent to
the formulas presented previously for the helium atom [see
Eqs. (13)–(15)], and changes in the prefactors result solely
from the use of atomic units here.

The second group of corrections originates from the Breit
contribution to the electron-electron interaction. There are two
corrections in this group, namely,

δχ
(4)
0 = α4

6

〈∑
i< j

ri · r j

ri j

〉
, (7)

δχ
(5)
0 = α4

12

〈∑
i< j

ri · r j

ri j
− (ri · ri j )(r j · ri j )

r3
i j

〉
, (8)

where ri j = ri − r j and ri j is the electron-electron distance.
Finally, the third group of corrections takes into account

the relativistic corrections to the electronic wave function. Let
us recall the standard form of the Breit-Pauli Hamiltonian [31]

ĤBP = P̂4 + D̂1 + D̂2 + B̂, (9)

where the above operators are defined as

P̂4 = −α2

8

∑
i

∇4
i , (10)

D̂1 = α2 πZ

2

∑
i

δ(ria), (11)

D̂2 = α2π
∑
i> j

δ(ri j ), (12)

B̂ = α2

2

∑
i> j

[
∇i · ∇ j

ri j
+ ri j · (ri j · ∇ j )∇i

r3
i j

]
(13)

and Z is the nuclear charge. Following the usual con-
vention, we refer to these operators as the mass-velocity
(MV), one-electron Darwin (D1), two-electron Darwin (D2),
and orbit-orbit operators, respectively. Every operator X̂ =
P̂4, D̂1, D̂2, B̂ appearing in the Breit-Pauli Hamiltonian gives
an additional correction to the magnetic susceptibility of the
following general form:

δχX
0 = −α2

3
〈�0|

(∑
i

r2
i

)
Q

Ĥ − E0
X̂ |�0〉, (14)

where Ĥ is the nonrelativistic electronic Hamiltonian, E0 is
the ground-state electronic energy, and Q = 1 − |�0〉〈�0| de-
notes projection onto the subspace orthogonal to �0.

It is worth pointing out that besides the relativistic con-
tributions to χ0, there are some minor corrections that
account for the effects beyond the clamped-nucleus Born-
Oppenheimer approximation: the finite-nuclear-size (FNS)
and finite-nuclear-mass (FNM) corrections. They are consid-
ered in subsequent sections.

III. COMPUTATIONAL DETAILS

Calculation of the corrections listed in the previous sec-
tion is a nontrivial problem, and in many cases there are
no programs available that can perform this task. In these
cases, we developed and implemented the necessary for-
malism specifically for the purposes of this project. In this
section we provide the details of our calculations and specify
the level of theory used to determine each contribution.
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In the present work, two types of basis sets were employed
in the calculations: Gaussian-type orbitals (GTOs) [33] and
Slater-type orbitals (STOs) [34,35]. The choice of the basis-
set type used in the calculation of specific quantities was
dictated by limitations of the available computer programs
and by the accuracy required in the final results. In general,
the available GTOs for neon and argon are larger than the
corresponding STOs. Indeed, GTOs for neon up to the be-
wildering tredecuple-zeta (13Z) quality are available from
the recent work of Hellmann [26]. For argon, GTOs up to
nonuple-zeta (9Z) were optimized by us for calculations of
the polarizability [27]. In comparison, STOs only up to 7Z
quality were reported for neon and argon [25]. Therefore, we
use GTOs for the calculation of χ

(0)
0 , for which the accuracy

requirements are the most stringent. Three program packages
were used in these calculations: DALTON [36], CFOUR [37] and
MRCC [38], as detailed in the subsequent section. Additionally,
GTOs were used for the calculation of the δχMV

0 and δχD1
0

corrections; here we exploit the fact that such calculations can
be performed with the DALTON package without any modifi-
cations. Finally, GTOs were employed in the determination of
the δχD2

0 and δχB
0 contributions, which required us to write

a dedicated in-house program. The necessary orbit-orbit and
two-electron Darwin integrals within GTOs were exported
from the DALTON package. To the best of our knowledge,
a general implementation of the orbit-orbit integrals within
STOs is not available publicly.

The calculation of the remaining corrections, that is, δχ
(1)
0 ,

δχ
(2)
0 , δχ

(4)
0 , and δχ

(5)
0 , was accomplished within the STOs.

This choice is motivated by the fact that these corrections
are not large and hence do not have to be determined as
accurately. At the same time, we found that calculation of
matrix elements corresponding to the operators appearing in
Eqs. (7) and (8) is actually simpler within STOs than GTOs
(for atomic systems), which negates the main technical advan-
tage of GTOs. In fact, the calculation of two-electron integrals
within STOs with the interaction operators

K1(r1, r2) = r1 · r2

r12
, (15)

K2(r1, r2) = (r1 · r12)(r2 · r12)

r3
12

(16)

is a straightforward generalization of the formalism from
Refs. [39,40], provided that partial-wave expansions (PWEs)
of these operators are available. Therefore, we seek the fol-
lowing PWE:

Ki(r1, r2) =
∞∑

l=0

f (i)
l (r<, r>) Pl (cos γ ) (17)

for i = 1, 2, where r< = min(r1, r2), r> = max(r1, r2), and γ

is the angle between vectors r1 and r2. To derive the necessary
expressions we first recall PWEs for the Coulomb potential
and for the interelectronic distance:

1

r12
=

∞∑
l=0

rl
<

rl+1
>

Pl (cos γ ),

r12 =
∞∑

l=0

[
1

2l + 3

rl+2
<

rl+1
>

− 1

2l − 1

rl
<

rl−1
>

]
Pl (cos γ ). (18)

With these formulas at hand, the PWE for the first operator is
obtained straightforwardly if we additionally exploit the law
of cosines to eliminate r1 · r2:

K1(r1, r2) = r2
1 + r2

2

2r12
− 1

2
r12

=
∞∑

l=0

[
l + 1

2l + 3

rl+2
<

rl+1
>

+ l

2l − 1

rl
<

rl−1
>

]
Pl (cos γ ).

(19)

The manipulations are somewhat more involved for the sec-
ond operator. First, we recall the PWE for r−3

12 which can
be obtained as a special case of a more general formalism
introduced by Sack [41]:

r−3
12 = 1

r2
> − r2

<

∞∑
l=0

(2l + 1)
rl
<

rl+1
>

Pl (cos γ ), (20)

After some algebra necessary to eliminate the vector quanti-
ties we find

K2(r1, r2) =
(
r2

1 − r2
2

)2

4r3
12

− 1

4
r12

=
∞∑

l=0

[
l2

2l − 1

rl
<

rl−1
>

− (l + 1)2

2l + 3

rl+2
<

rl+1
>

]
Pl (cos γ ).

(21)

By inserting the PWE for Ki(r1, r2) into the corresponding
two-electron integrals within the STO, the infinite summation
over l truncates, and integration over all angles can be ex-
pressed through 3- j symbols. The remaining radial integrals
are simple linear combinations of the integrals encountered
for the standard 1/r12 and r12 operators, and hence, no addi-
tional classes of basic integrals need to be implemented. In all
calculations involving STOs, a locally modified version of the
GAMESS package developed in Ref. [42] was employed.

The calculation of one-electron integrals required to evalu-
ate δχ

(1)
0 and δχ

(2)
0 is equally simple within GTOs and STOs,

and hence, the choice of the latter was made for consistency.

IV. NUMERICAL RESULTS

A. The leading χ
(0)
0 contribution

The χ
(0)
0 contribution to the magnetic susceptibility is dom-

inant, and hence, it has to be determined highly accurately.
For this purpose we employ the doubly augmented GTO,
abbreviated as dXZ in the following, combined with a hierar-
chy of coupled-cluster (CC) methods [43,44] which converge
to the exact solution of the electronic Schrödinger equation.
The composition of the GTO basis sets and the number of
functions are provided explicitly in Table I.

The expectation value 〈∑i r2
i 〉 entering χ

(0)
0 is denoted by

the symbol 〈r2〉 in the following. This quantity is split into
several components calculated at different levels of theory:

〈r2〉 = 〈r2〉HF + δ〈r2〉SD(T) + δ〈r2〉T

+ δ〈r2〉Q + δ〈r2〉P, (22)
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TABLE I. The composition of the dXZ GTO basis sets used in the present work, taken from Ref. [26] for neon and Ref. [25] for argon. A
common set of 33s26p (neon) and 36s29p (argon) functions is used for all X (not included below). The total number of functions in each basis
is given in parentheses

Composition (excluding sp)

X Ne Ar

2 3d (126) 4d (143)
3 5d3 f (157) 6d4 f (181)
4 7d5 f 3g (208) 8d6 f 4g (241)
5 8d6 f 4g3h (262) 10d8 f 6g4h (327)
6 10d8 f 6g4h3i (354) 11d10 f 8g6h4i (438)
7 11d10 f 8g6h4i3k (471) 12d11 f 10g8h6i4k (576)
8 12d11 f 10g8h6i4k3l (615) 13d12 f 11g10h8i6k3l (726)
9 13d12 f 11g10h8i6k4l3m (788) 14d13 f 12g11h9i7k5l3m (877)

where 〈r2〉HF is the Hartree-Fock contribution and the re-
maining components δ〈r2〉X are corrections accounting for
electron correlation effects obtained with the method X . For
example, δ〈r2〉SD(T) is a correction to the Hartree-Fock result
calculated using the coupled-cluster with single, double, and
perturbative triple excitations CCSD(T) method [45], δ〈r2〉Q

is the difference between the CCSDTQ (coupled-cluster with
single, double, triple, and quadruple excitations) [46,47] and
CCSDT (coupled-cluster with single, double, and triple ex-
citations) [48,49] methods and so on. The correction δ〈r2〉P

was obtained using the CCSDTQP (coupled-cluster with
single, double, triple, quadruple, and pentuple excitations)
model [50,51]. Based on a set of preliminary calculations us-
ing CCSDTQPH (coupled-cluster with single, double, triple,
quadruple, pentuple, and sextuple excitations) [52] and full-
configuration-interaction methods in small basis sets, we
found that the contributions of CC excitations higher than
pentuple are negligible. In the calculations reported in this
section, we employed the DALTON program for the determi-
nation of the 〈r2〉HF and δ〈r2〉SD(T) contributions, the CFOUR

program for the δ〈r2〉T correction, and the MRCC program for
the δ〈r2〉Q and δ〈r2〉P corrections.

The Hartree-Fock contribution 〈r2〉HF is straightforward
to calculate accurately using GTOs, but even more accurate
results are available in the literature from purely numerical HF
computations based on the B-spline expansion method. The
following values were extracted from Ref. [53]:

He: 〈r2〉HF = 2.369 66,

Ne: 〈r2〉HF = 9.371 84,

Ar: 〈r2〉HF = 26.034 4.

(23)

The values given above are accurate to all digits shown, and
hence, the uncertainty of the 〈r2〉HF contribution is negligi-
ble. As a by-product of subsequent calculations, we obtained
〈r2〉HF contributions within GTOs for all atoms. Near-perfect
agreement was obtained with the data given in Eq. (23), dif-
fering only in the last digit in the case of neon and argon.

The next large contribution to χ
(0)
0 comes from the

CCSD(T) level of theory, denoted δ〈r2〉SD(T). We do not adopt
a frozen-core approximation in these calculations, and hence,
all electrons were correlated at this stage. In Table II we report
the results of the calculations of the δ〈r2〉SD(T) contribution.

To eliminate the remaining basis-set incompleteness error,
extrapolation towards the complete basis set (CBS) limit is
required. To this end, we employ the formalism based on the
Riemann ζ function [54]. Let us assume that the quantity of
interest O was calculated with two consecutive basis sets (X
and X − 1) and the results are denoted by the symbols OX

and OX−1, respectively. The CBS limit O∞ is then determined
from the formula

O∞ = OX + X 4

[
ζ (4) −

X∑
l=1

l−4

]
(OX − OX−1), (24)

where ζ (s) = ∑∞
n=1 n−s is the Riemann ζ function and ζ (4) =

π4/90. This extrapolation scheme will be used for estimating
CBS limits of all quantities considered in this work, unless
extrapolation is deemed unnecessary. The determined CBS
limits of the δ〈r2〉SD(T) contributions are given in Table II.
Clearly, the increments resulting from the extrapolation are
sizable and necessary to ascertain the reliability of the fi-
nal data. To illustrate this, in Fig. 1 we plot the calculated
δ〈r2〉SD(T) corrections as a function of the parameter X . Ad-
ditionally, we include the extrapolated results from basis-set
pairs (X, X − 1). The uncertainty of the extrapolation, repre-
sented in Fig. 1 by horizontal dashed lines, is estimated as
the difference between the CBS limits obtained with the two
largest basis-set pairs (for example, X = 9, 8 and X = 8, 7
for neon and argon). One can see that the extrapolation is

TABLE II. The correction δ〈r2〉SD(T) obtained within the dacXZ
basis-set family (all electrons are correlated). In the case of helium,
the d2Z and d9Z basis sets are not available in the literature.

δ〈r2〉SD(T)

X He Ne Ar

2 0.254 9 0.173 6
3 0.022 53 0.229 0 0.033 0
4 0.019 26 0.206 7 –0.059 7
5 0.018 19 0.197 8 −0.085 2
6 0.017 77 0.194 3 −0.096 4
7 0.017 58 0.192 5 −0.102 0
8 0.017 48 0.191 5 −0.104 7
9 0.190 8 −0.106 7
∞ 0.017 27(9) 0.189 1(4) −0.111 7(23)
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FIG. 1. The corrections δ〈r2〉SD(T) for helium (top panel), neon
(middle panel), and argon (bottom panel) atoms. Raw results ob-
tained within dacXZ basis sets are represented by green points, while
the values obtained by extrapolation from (X, X − 1) basis-set pairs
are given in red. The solid horizontal lines denote the best estimate
obtained for δ〈r2〉SD(T), and the dashed horizontal lines represent the
estimated error bars. For comparison, a curve a + b/X 3 obtained by
fitting the results from the largest two basis sets is also plotted.

TABLE III. Corrections to 〈r2〉 accounting for higher-order
coupled-cluster excitations for the neon atom (all electrons are cor-
related). For clarity, the results were multiplied by a constant factor
of 103.

X δ〈r2〉T × 103 δ〈r2〉Q × 103 δ〈r2〉P × 103

2 −0.268 −0.333 −0.328
3 −0.726 0.002 −0.103
4 −1.068 0.104
5 −1.219
6 −1.287
∞ −1.39(2) 0.19(4) 0.03(6)

remarkably stable with respect to X . In particular, for neon
and argon the last four extrapolated values already fall within
the estimated error bars. This gives us confidence that the final
value of δ〈r2〉SD(T) is not accidental and is supported by ample
numerical evidence.

As an additional test, we analyze the data obtained for the
helium atom and compare with the results reported in paper I.
The latter are significantly more accurate and can be treated as
a reference. By adding the 〈r2〉HF contribution from Eq. (23)
and the extrapolated δ〈r2〉SD(T) correction given in Table II, we
obtain 〈r2〉 = 2.38 693(9). This compares favorably with the
corresponding result from paper I, 〈r2〉 = 2.38 697, differing
only at the last digit. Moreover, the difference is smaller by a
factor of 2 than the determined error bars, suggesting that our
uncertainty-estimation scheme is quite conservative. More-
over, it is worth pointing out that without extrapolation, i.e.,
by taking the δ〈r2〉SD(T) correction obtained within the largest
basis set available in Table II, we obtain 〈r2〉 = 2.387 14. The
error of this quantity with respect to the reference data from
paper I is more than 4 times larger than of the recommended
extrapolated results. This shows that the adopted extrapolation
scheme is reliable and enables us to drastically reduce the
residual basis-set completeness error.

Next, we move to the determination of corrections to δ〈r2〉
accounting for higher-order coupled-cluster excitations. In the
case of argon, these corrections were determined in our recent
paper [27], and despite significant effort, we did not manage
to improve upon these results in a meaningful way. Therefore,
we adopt the following values for argon:

δ〈r2〉T = −0.0020(4),

δ〈r2〉Q = 0.0032(12),

δ〈r2〉P = −0.0012(2).

(25)

As one can see, these corrections accidentally nearly cancel
out.

For neon, we carried out a different set of calculations
of the corrections accounting for higher-order coupled-cluster
excitations. The results are reported in Table III. In the case of
the δ〈r2〉T contribution we managed to carry out calculations
within Gaussian basis sets up to X = 6. Therefore, we apply
the same extrapolation and error-estimation protocol as for
the lower-order contributions. Unfortunately, the calculations
of the δ〈r2〉Q and δ〈r2〉P corrections are feasible only within
basis sets X = 2, 3, 4 and X = 2, 3, respectively. Due to the
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relatively small size of these basis sets, the results are not as
reliable as the lower-level corrections. To account for this, the
extrapolation is still performed using formula (24), but the
error is estimated as half of the difference between the ex-
trapolated value and the result in the largest basis set available
(see Table III).

B. Relativistic corrections from the Dirac equation

In this section, we consider relativistic corrections to the
magnetic susceptibility that originate from the expansion of
the Dirac Hamiltonian, δχ (1)

0 and δχ
(2)
0 , defined in Eqs. (4) and

(5). The remaining correction δχ
(3)
0 is trivial to evaluate. Tech-

nically, the simplest way of evaluating δχ
(1)
0 and δχ

(2)
0 is the

finite-difference approach based on the Hellmann-Feynman
theorem:

〈O〉 = ∂λ

∣∣
λ=0〈H + λO〉 ≈ 〈H + λ0O〉 − 〈H − λ0O〉

2λ0
, (26)

where λ0 is a suitably chosen small constant. The calculations
were carried out at the all-electron CCSD(T) level of theory
within STOs, denoted by the abbreviation STOXZ, where
X is the maximum angular momentum present in the basis.
The STOs were adopted from Ref. [25] and include both the
diffuse and core-valence functions.

In order to calculate the corrections δχ
(i)
0 , i = 1, . . . , 5,

using the finite-difference method, the operators in Eqs. (4)–
(8) multiplied by the constant ±λ0 are added to the electronic
Hamiltonian. The atomic energies evaluated with the modi-
fied Hamiltonians are used to extract the expectation values
according to Eq. (26). This is straightforward in the case
of all operators except

∑
i r2

i ∇2
i , which is not Hermitian

and hence is incompatible with the usual form of the elec-
tronic Hamiltonian. However, any operator can be written
as a sum of Hermitian and anti-Hermitian operators as O =
1
2 (O + O†) + 1

2 (O − O†). Since expectation values of an
anti-Hermitian operator on an electronic wave function van-
ish, it is sufficient to calculate only the expectation value of
1
2 (O + O†), which is straightforward. Several values of the
displacement λ0 were tested in preliminary calculations, but
negligible differences were observed for λ0 within the range
10−3–10−5, and hence, the midpoint of this interval, λ0 =
10−4, was used in all subsequent calculations. In general, the
approximation (26) results in negligible errors in comparison
to, e.g., basis-set incompleteness.

In Tables IV and V we report the results of the calculations
of the expectation values 〈∑i l2

i 〉 and 〈∑i r2
i ∇2

i 〉, respectively.
These operators are closely related to the kinetic energy op-
erator and converge to the CBS limit at the same rate as
the kinetic energy (and hence the total energy by virtue of
the virial theorem). Therefore, we extrapolated the results
towards the CBS using formula (24), and the uncertainty
was estimated in the same way as in Sec. IV A. Finally, we
point out that the reference results obtained in our previous
work for helium, 〈∑i l2

i 〉 = 0.018 970 526 and 〈∑i r2
i ∇2

i 〉 =
−0.139 689 120, agree with the values determined here (see
Tables IV and V) within the estimated error bars of the latter.

The last correction, δχ
(3)
0 , depends only on the number of

electrons in the system and is trivial to evaluate. We attach no
uncertainty to this contribution.

TABLE IV. Expectation values 〈∑i l2
i 〉 obtained within the

STOXZ basis-set family at the CCSD(T) level of theory (all electrons
are correlated).

〈∑i l2
i 〉

X He Ne Ar

2 0.018 375 12.092 8 24.444 5
3 0.018 740 12.135 7 24.635 2
4 0.018 860 12.153 1 24.715 7
5 0.018 913 12.157 9 24.732 9
6 0.018 934 12.160 0 24.739 3
∞ 0.018 967(3) 12.163 2(7) 24.749 2(50)

C. Relativistic corrections from the Breit interaction

Relativistic corrections originating from the Breit inter-
action, Eqs. (7) and (8), are somewhat more complicated
than the contributions from the Dirac equation because they
involve two-electron operators. However, calculating the cor-
responding matrix elements within the STO is manageable,
as discussed in Sec. III. Fortunately, both operators present
in Eqs. (7) and (8) are purely real and multiplicative and
hence Hermitian. Therefore, expectation values appearing in
δχ

(4)
0 and δχ

(5)
0 can be calculated using the finite-difference

approach in a way analogous to that in Sec. IV B.
In Tables VI and VII we report the results of the calcu-

lations of the expectation values required in the δχ
(4)
0 and

δχ
(5)
0 corrections, respectively. The computations were per-

formed at the all-electron CCSD(T) level of theory. We adopt
the same extrapolation and uncertainty-estimation strategy as
for the corrections originating from the Dirac equation (see
Sec. IV B). For helium, the results agree perfectly with the
reference data from paper I.

D. Relativistic corrections to the electronic wave function

Relativistic corrections to the electronic wave function
lead to additional contributions to the magnetic susceptibility,
given by general formula (14). Evaluation of these corrections
requires some additional approximations. First, according to
the results for helium from paper I, the contribution of the
two-electron Darwin operator δχ

D2
0 is tiny. Note that this

quantity involves the two-electron Dirac δ distribution, which
is sensitive only to the regions of the wave function where

TABLE V. Expectation values 〈∑i r2
i ∇2

i 〉 obtained within the
STOXZ basis-set family at the CCSD(T) level of theory (all electrons
are correlated).

〈∑i r2
i ∇2

i 〉
X He Ne Ar

2 −0.140 616 13.892 8 38.130 6
3 −0.139 979 13.961 3 38.405 2
4 −0.139 884 13.986 7 38.530 1
5 −0.139 915 13.994 3 38.561 5
6 −0.139 838 13.998 0 38.574 2
∞ −0.139 7(2) 14.003 6(2) 38.593 9(63)
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TABLE VI. Expectation values present in the δχ
(4)
0 correction

[see Eq. (7)] obtained within the STOXZ basis-set family at the
CCSD(T) level of theory (all electrons are correlated)

〈∑i< j r−1
i j ri · r j〉

X He Ne Ar

2 0.060 31 1.928 6 6.772 4
3 0.059 73 1.851 4 6.467 1
4 0.059 52 1.823 7 6.353 5
5 0.059 43 1.815 8 6.325 2
6 0.059 37 1.812 3 6.314 1
∞ 0.059 29(3) 1.807 0(9) 6.296 8(64)

the electrons collide. This regime is governed by Kato’s cusp
condition, which is universal and does not depend on the
system [55]. Therefore, we argue that δχ

D2
0 is also small for

neon and argon and neglect this correction from further con-
siderations. It is worth pointing out that a similar phenomenon
was observed in calculations of the polarizability of noble-gas
atoms.

The corrections δχ
D1
0 and δχ

P4
0 are the dominant relativistic

corrections of this type and need to be calculated accurately.
For this purpose we employ the (orbital unrelaxed) linear
response coupled-cluster theory based on the CC3 (coupled-
cluster with single, double, and approximate triple excitations)
wave function as implemented in the DALTON program. The
corrections are obtained from the symmetric form of the po-
larization propagator at zero frequency as

δχX
0 = α2

6
〈〈X ; r2〉〉ω=0, (27)

where r2 is shorthand notation for
∑

i r2
i and X is either the D1

or P4 operator. The results obtained within the same GTO as
used in the δχ0

0 calculations are given in Tables VIII and IX.
The extrapolation towards the CBS limit and estimation of the
uncertainty are performed according to the same protocol as
for the previous contributions considered in Secs. IV B and
IV C.

Finally, we consider the orbit-orbit correction to the mag-
netic susceptibility δχB

0 . Taking into account the results for the
helium atom reported in paper I, we expect this correction to
be relatively minor. Therefore, it does not have to be computed
as accurately as the contributions described in the previous

TABLE VII. Expectation values present in the δχ
(5)
0 correction

[see Eq. (8)] obtained within the STOXZ basis-set family at the
CCSD(T) level of theory (all electrons are correlated).

〈∑i< j r−1
i j (ri · r j ) − r−3

i j (ri · ri j )(r j · ri j )〉
X He Ne Ar

2 0.212 9 7.416 8 22.048 7
3 0.212 8 7.373 3 21.895 1
4 0.212 7 7.360 1 21.849 4
5 0.212 6 7.355 9 21.837 4
6 0.212 6 7.353 9 21.832 5
∞ 0.212 5(1) 7.350 9(2) 21.824 8(22)

TABLE VIII. The correction −〈( ∑
i r2

i )(H − E0)−1Q D̂1〉 ob-
tained within the daXZ basis-set family using the linear-response
CC3 theory (all electrons are correlated). The data were multiplied
by a factor of 103 for clarity.

−〈( ∑
i r2

i )(H − E0)−1Q D̂1〉 × 103

X He Ne Ar

2 0.488 8 −0.331 3
3 −0.421 5 0.485 6 −0.437 6
4 −0.421 4 0.456 0 −0.725 7
5 −0.421 4 0.447 5 −0.800 5
6 −0.421 4 0.443 6 −0.830 6
7 −0.421 4 0.441 6 −0.843 9
8 −0.421 4 0.440 4
∞ −0.421 4(1) 0.437 8(2) −0.869 0(83)

paragraph. For simplicity, we adopt the Hartree-Fock approx-
imation in the calculation of δχB

0 . The ground-state wave
function is represented by a single Slater determinant, while
the first-order response function (Ĥ − E0)−1Q(

∑
i r2

i )|�0〉 is
expanded into a linear combination of singly excited deter-
minants. Contributions from higher-order excitations vanish
due to Slater-Condon rules as

∑
i r2

i is a sum of one-electron
operators.

The adoption of the Hartree-Fock wave function for �0

enables a significant truncation of the basis set used in the cal-
culations. To expand the Hartree-Fock orbitals only basis-set
functions with angular momenta l = 0, 1 (s and p) are needed.
Additionally, since the operator r2

i is spherically symmetric,
the same basis is sufficient also for the first-order response
function. To saturate the results with respect to basis-set size,
we used a large GTO comprising 33s26p and 40s40p func-
tions for neon and argon, respectively. The calculations were
carried out using a program written specifically for this pur-
pose, and all necessary basic integrals were imported from a
locally modified version of the DALTON package. We obtained

Ne: δχB
0 = 0.00028(14),

Ar: δχB
0 = 0.0010(5),

(28)

TABLE IX. The correction −〈( ∑
i r2

i )(H − E0 )−1Q P̂4〉 obtained
within the daXZ basis-set family using the linear-response CC3
theory (all electrons are correlated). The data were multiplied by a
factor of 103 for clarity.

−〈( ∑
i r2

i )(H − E0)−1Q P̂4〉 × 103

X He Ne Ar

2 2.786 29.46
3 0.530 4 2.800 29.34
4 0.531 8 2.852 29.65
5 0.532 4 2.872 29.74
6 0.532 7 2.880 29.78
7 0.532 9 2.885 29.80
8 0.533 1 2.888
∞ 0.533 4(1) 2.893(5) 29.83(2)
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where we adopted a large (50%) uncertainty estimate to ac-
count for all approximations involved in the calculations.

E. Estimation of higher-order QED contributions

Besides the relativistic corrections to the magnetic suscep-
tibility of the order of α4, one has to consider higher-order
corrections originating from QED. Rigorous calculation of
these corrections is a formidable task beyond the scope of the
present work. However, we can estimate the magnitude of the
QED effects like in paper I, namely, by taking the relativistic
correction which is the largest in magnitude and scaling it
by a factor of −α ln(α) ≈ 0.036. Both for neon and argon,
the largest relativistic correction (in absolute terms) is δχP4

0 .
By scaling its value by −α ln(α) we obtain the following
estimates of the QED effects:

Ne: δχ
QED
0 = 0.0002(2),

Ar: δχ
QED
0 = 0.0019(19),

(29)

where we have attached a very large (100%) uncertainty to the
resulting values.

F. Estimation of the finite-nuclear-mass and -size corrections

Finally, let us discuss the FNS and FNM corrections to
the magnetic susceptibility. In order to estimate the former,
we carried out calculations of the χ

(0)
0 contribution using the

Gaussian finite-nuclear model and compared the results with
the same results obtained with the point nucleus. Following
the recommendations of Visscher and Dyall [56], we used a
simple nuclear charge distribution in the form

ρ(r) = ρ0 e−ξr2
, ρ0 = Z

( ξ

π

)3/2
ξ = 3

2〈r2
c 〉

, (30)

where 〈r2
c 〉 is the averaged square of the nuclear charge radius,

which can be calculated for an isotope with atomic mass
number A from the empirical formula 〈r2

c 〉 = (0.836A1/9 +
0.570) fm. The advantage of the Gaussian charge model is
the fact that the corresponding electron-nucleus interaction
potential is given by the simple expression

V (r) = −Z

r
erf(

√
ξr), (31)

where erf(x) is the error function. This form of the potential
is trivial to incorporate into the standard quantum-chemical
programs operating within Gaussian basis sets, and the nec-
essary integrals are available in the LIBINT library [57]. For
simplicity, we applied the Gaussian nuclear model in the
Hartree-Fock calculations of χ

(0)
0 . By comparing the results

with analogous results obtained with the point nucleus, we
found that the FNS effects are of the order of 1 ppm for argon
and even less for neon. Therefore, they can be safely neglected
in the present work.

The finite-nuclear-mass effects are also small for neon and
argon. Even for 4He, these effects are not large, constituting
about 4 × 10−4 of the total value of χ0 (see paper I). For neon
and argon, the FNM effects are expected to be smaller (on a
relative basis) because they are dependent on the inverse of the
nuclear mass. To estimate the magnitude of these corrections,
we consider the dominant correction, i.e., the reduced-mass

TABLE X. Final results of the calculations of the static magnetic
susceptibility χ0 of neon and argon. For clarity, all terms are multi-
plied by a constant factor of 105.

Ne Ar

χHF
0 −8.317 7 −23.106 1

δχ
SD(T)
0 −0.167 8(4) 0.099 1(20)

δχT
0 0.001 2(1) 0.001 8(4)

δχ
Q
0 −0.000 2(1) −0.002 8(11)

δχP
0 −0.000 0(1) 0.001 1(2)

Contributions from the Dirac equation
δχ

(1)
0 0.000 3(1) 0.000 6(1)

δχ
(2)
0 −0.000 3(1) −0.000 9(1)

δχ
(3)
0 0.000 7 0.001 3

Contributions from the Breit interaction
δχ

(4)
0 0.000 1(1) 0.000 3(1)

δχ
(5)
0 0.000 2(1) 0.000 5(1)

Relativistic corrections to the wave function
δχD1

0 0.000 8(1) −0.001 5(1)
δχP4

0 0.005 1(1) 0.052 9(1)
δχD2

0 neglected neglected
δχB

0 −0.000 5(2) −0.001 8(9)
Other corrections

δχ
QED
0 0.000 2(2) 0.001 9(19)

δχFNM
0 −0.000 7(3) −0.000 9(4)

δχFMS
0 neglected neglected

Total
χ0 −8.478 6(7) −22.954 5(32)

scaling term, which is given by the formula

δχFNM
0 ≈ 3

mN
χ

(0)
0 , (32)

where mN is the nuclear mass. For the most abundant isotopes,
i.e., 20Ne and 40Ar, the mass-scaling corrections amounts to
roughly −7 × 10−4 and −9 × 10−4, respectively. Therefore,
FNM effects become important for Ne and Ar only if relative
accuracy levels better than 1 × 10−4 are desired. Nonetheless,
we include the δχFNM

0 correction in our final results and assign
a large 50% uncertainty to the corrections evaluated using
Eq. (32) in order to account for the missing terms (see paper
I).

The small magnitude of the FNM and FNS corrections is
straightforward to explain by noting that the dominant con-
tribution to the magnetic susceptibility, namely, χ

(0)
0 , involves

the operator
∑

i r2
i . This operator vanishes at the nuclear site

and hence is relatively insensitive to minor changes in the
electronic wave function in the vicinity of the nucleus result-
ing from FNM and FNS corrections.

V. SUMMARY AND DISCUSSION

In Table X we gather all contributions to the magnetic sus-
ceptibility of neon and argon considered in this work, together
with their respective uncertainties. The final values of χ0 are
obtained as a sum of these contributions; the overall error is
calculated by adding squares of the uncertainties in the indi-
vidual components and taking the square root. This approach
is justified by the standard-error-propagation formulas under
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TABLE XI. Comparison with other theoretical and experimental literature values for the static magnetic susceptibility of neon and argon.
The error estimation is not present in cases where it was not provided by the original authors. All values are given in atomic units.

χ0

Ref. Neon Argon

Experimental values
Havens [65] −8.574(9) × 10−5 −2.15(2) × 10−4

Mann [66] −7.56(20) × 10−5 −2.19(2) × 10−4

Barter et al. [67] −7.80(16) × 10−4 −2.16(2) × 10−4a

−2.16(15) × 10−5b

Theoretical values
Yoshizawa and Hada [68] −8.27 × 10−5 −2.22 × 10−4

Ruud et al. [69], Jaszuński et al. [70] −8.48 × 10−5 −2.31 × 10−4

Reinsch and Meyer [71] −8.57 × 10−5 −2.32 × 10−4

Levy and Perdew [72], Desclaux [73] −8.31 × 10−5 −2.30 × 10−4

Lesiuk and Jeziorski [25,27] −8.484(19) × 10−5 −2.30(2) × 10−4

This work −8.478 6(7) × 10−5 −2.295 48(32) × 10−4

aOriginal error estimate from Ref. [67].
bRevised error estimate proposed in Ref. [7].

the assumption that the uncertainties are not correlated in the
statistical sense.

The final results determined in this work are χ0 =
−8.478 6(7) × 10−5 and χ0 = −22.954 5(32) × 10−5 for
neon and argon atoms, respectively. The relative uncertainty
of both quantities is of the order of 1 part per 10 000. In the
case of neon, the total uncertainty is dominated by the δχ

SD(T)
0

contribution, amounting to more than 50% of the overall error.
It is possible that the accuracy of this component can be
improved in the future by using even larger Gaussian basis
sets in the calculations and/or adopting a different extrapola-
tion scheme. However, to reduce the total uncertainty by an
order of magnitude, two other contributions, namely, δχB

0 and
δχ

QED
0 , have to be determined more accurately. In the case

of δχB
0 this would require treatment with the inclusion of the

electron correlation. Fortunately, the correlation contribution
to δχB

0 appears to be small, so low-level methods such as
second-order Møller-Plesset [58] or CC2 [59] may be entirely
sufficient, avoiding technical complications of higher-order
methods. To improve the relative accuracy by an order of mag-
nitude, finite-nuclear-mass effects must also be determined
for neon. Finite-nuclear-size contributions are negligible up
to 1 ppm uncertainty level.

The dominant sources of uncertainty are similar for argon
but are somewhat larger in magnitude. In particular, due to
larger nuclear charge, the errors resulting from δχB

0 , δχ
QED
0 ,

and δχ
SD(T)
0 are comparable in magnitude. Therefore, further

improvements in accuracy would require a more rigorous
treatment of the δχ

QED
0 contribution. For both neon and argon,

there is an additional source of uncertainty from the δχT
0 , δχQ

0 ,
and δχP

0 corrections. However, these contributions cancel to a
significant degree, so their impact on the overall accuracy is
not expected to be large.

This analysis leads to the conclusion that it is worthwhile
to derive and evaluate the complete δχ

QED
0 correction for all

noble-gas atoms, as it constitutes the main source of uncer-
tainty that cannot be reduced by, e.g., using a larger basis set.
While determination of the QED corrections to the energy is

now possible [19,27,42,60–64], that is not the case for atomic
and molecular properties such as polarizability or magnetic
susceptibility. In fact, the required theoretical framework has
not been developed yet, and that would require considerable
progress beyond the current state of the art.

In Table XI we compare our results with the available
theoretical and experimental data. The previous theoretical
determinations are in rough agreement with our data but are
significantly less accurate. However, the present results are
in disagreement with the experimental data of Barter et al.
[67]. In the case of argon, the value given by Barter et al.
[67] is an average of three previous measurements (used to
calibrate the apparatus) and does not count as an indepen-
dent experimental determination. It was suggested [7] that
the experimental uncertainty for argon has to be increased to
about 7%. After this revision, theory and experiment agree
for argon, but for neon a large discrepancy remains. Some-
what unexpectedly, for neon good agreement is obtained with
older experimental data by Havens [65]. The reasons for the
observed disagreement with the work of Barter et al. [67]
are not known definitively. In paper I we discussed possible
sources of the discrepancy in the case of helium, and similar
conclusions apply to neon and argon. In short, physical effects
neglected in our calculations are most likely orders of magni-
tude too small to explain such a large discrepancy. We uphold
our conviction that new and independent measurements of the
magnetizability of the noble gases are needed to resolve this
issue.

To sum up, we have reported state-of-the-art calculations
of the static magnetic susceptibilities of neon and argon. The
results appear to be the most accurate available in the liter-
ature. They will be useful, for example, in refractive-index
gas-thermometry measurements or as a benchmark for other
theoretical methods.
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