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Calculations of the integrated cross sections in dressed carbon-ion collisions with atomic hydrogen
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The two-center wave-packet convergent close-coupling approach is extended to model dressed ion collisions
with atomic hydrogen. This is done by reducing the problem to an effective three-body one and using a model
potential to approximate the interactions between the projectile ion with the target electron and target nucleus.
The method is applied to calculate the total ionization cross section along with the total and n-resolved electron-
capture and target-excitation cross sections in partially stripped C2+ and C3+ ion collisions with ground-state
atomic hydrogen. Calculations are performed across a broad projectile energy range from 1 keV/u to 1 MeV/u,
where one-electron collision processes are dominant. The calculated total electron-capture cross sections for
both systems generally agree very well with available experimental and previous theoretical data. We find that
at incident energies above 100 keV/u the total electron-capture cross sections in dressed carbon-ion collisions
are larger than the ones corresponding to collisions of bare projectile ions of the same charge. A possible reason
for this could be associated with the target-electron radial density and the behavior of the potential of interaction
between the target electron and the carbon ion. Our results for ionization in C3+ + H(1s) collisions overestimate
the experimental data. We also report a set of calculations for ionization in C2+ + H(1s) collisions.
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I. INTRODUCTION

Collisions between partially stripped ions and atoms are
important from a fundamental point of view. Given the multi-
electron nature of these systems, they allow us to explore the
role electron-electron interactions play in the overall collision
dynamics. Furthermore, there are many practical applications
that would benefit from a complete understanding of these
collisions. Modeling x-ray spectra from comets [1,2] and
hadron therapy for cancer treatment [3,4] are just two exam-
ples of areas that require accurate data from these collisions.
The development of hadron therapy as a method for treating
cancer has raised the importance of studying dressed carbon-
ion collisions in particular [5]. This modern cancer treatment
technique uses beams of protons and heavier ions such as
C6+ ions to bombard tumor sites and destroy cancerous tis-
sue. The advantage of this treatment over x-ray therapy is
that it significantly minimizes the damage to the surrounding
healthy tissues. This is possible because heavy ions deposit
most of their energy in the region of the Bragg peak towards
the end of the beam path. To ensure the Bragg peak occurs
at the location of a tumor site, extensive treatment plan-
ning is required. This includes depth-dose simulations which
rely on accurate stopping power cross sections for collisions
involving the beam ions and biological molecules. As the
initially bare ions travel through the medium, they can capture
one or more electrons forming partially stripped ions [4,6].
Therefore, modeling partially stripped ion collisions is very
important for radiation dose simulations. Calculating stopping
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power cross sections for bare and dressed carbon-ion colli-
sions with the water molecule H2O is of great importance for
radiation-dose simulations [7]. However, to begin developing
a theory capable of accurately modeling such systems, study-
ing these collisions with prototypal targets such as atomic and
molecular hydrogen is an important first step.

Obtaining accurate total and partial cross sections for elec-
tron capture (EC), target excitation, and ionization in dressed
ion collisions with atomic hydrogen is also necessary to per-
form impurity diagnostics in fusion plasmas [8]. In particular,
major fusion projects such as the International Thermonuclear
Experimental Reactor and the Joint European Torus are ex-
pected to contain dressed impurity species such as carbon,
oxygen, nitrogen, beryllium, and tungsten ions. These im-
purities form through either ion seeding [9] or by erosion
of plasma facing components [10]. How these impurity ions
affect properties of the plasma such as its temperature and
density can be investigated using the charge-exchange re-
combination spectroscopy (CXRS) technique [11]. A beam
of neutral hydrogen will be injected into the reactor so that
collisions between impurity ions and atomic hydrogen can
occur. These events may lead to charge-exchange processes
whereby dressed ions of various charge states form in excited
states. The CXRS approach to performing diagnostics on fu-
sion plasmas is to analyze the spectra of these ions as they
emit photons, through de-excitation processes, to determine
ion densities. This requires accurate cross-section data for
all possible collision processes including electron capture,
ionization, and target excitation [12].

There are a number of experimental studies on partially
stripped carbon-ion collisions with atomic hydrogen across
a broad range of projectile energies. In particular, the total
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and partial electron-capture cross sections for C2+ and C3+
collisions with H in the ground state were measured by Mc-
Cullough et al. [13], at energies from 50 eV/u to 1.5 keV/u.
Further measurements of the partial EC cross sections at low
energies in C3+ + H(1s) collisions by Wilkie et al. [14] and
Ćirić et al. [15] found good agreement with prior results by
McCullough et al. [13]. For C2+ + H(1s) collisions, the total
electron-capture cross section was measured across an energy
range from 40 eV/u to 200 keV/u by Nutt et al. [16], Phaneuf
et al. [17], Goffe et al. [18], and Gardner et al. [19]. Refer-
ences [17] and [18] also obtained data for the total EC cross
section at intermediate energies in C3+ + H(1s) collisions.
Overall, there is good agreement between the two sets of
measurements, except around 10 keV/u, where results differ
by approximately 34%. At low energies, the total EC cross
section for C2+ collisions was measured by Phaneuf et al. [20]
and Havener et al. [21]. Measurements for the total ionization
cross section in both C2+ and C3+ collisions with H were
reported by Shah and Gilbody in Refs. [22,23]. Overall, this
collection of experimental data involving dressed carbon-ion
collisions with atomic hydrogen provides a solid foundation
to test theories of such collisions.

There are a number of distinct theoretical methods devel-
oped to study ion-atom collisions [24]. The molecular-orbital
close-coupling (MOCC) approach [25,26] is applicable at
low projectile energies, whereas in the intermediate- to
high-projectile-energy domains the first-order perturbation
approach with corrected boundary conditions [27], the clas-
sical trajectory Monte Carlo (CTMC) method [28,29], the
two-center basis-generator method (TC-BGM) [30], the semi-
classical two-center atomic-orbital close-coupling (AOCC)
[31–33] approach, and lattice-based approaches [34,35] can
be used.

Modeling dressed ion-atom collisions in a completely ab
initio manner is challenging due to the multielectron struc-
ture inherent to these systems. It has been shown that even
developing a theory for collisions involving two-electron
targets requires some approximations (see, for example,
Refs. [36,37]). An alternative approach to study single-
electron processes taking place in dressed ion collisions is
to employ an effective potential that treats the interactions
with the multielectron ion in a spherically symmetric manner
[38]. This allows one to represent the scattering system as
an effective three-body problem with a single active electron.
The accuracy of such an approach depends on a number of
factors including the projectile energy range, the charge of the
ion, and the model potential used to describe the multielectron
projectile.

Many theoretical approaches to ion-atom collisions were
applied to study dressed carbon-ion collisions. Errea et al.
[39] studied EC processes in C2+ + H(1s) collisions using
the MOCC method at incident energies between 8 eV/u and
25 keV/u. In earlier experiments [13] it was unclear what
effect an unknown percentage of metastable 3P C2+ projec-
tiles had on the measurements of the EC cross section. Errea
et al. found no strong evidence of metastable contamination
of the beam. They showed that any possible effect due to the
contribution of the metastable 3P projectile ion beam would
only be important at energies below 0.1 keV/u. Using the
electron-nuclear dynamics (END) method, Guevara et al. [40]

calculated the total EC cross sections in C3+ + H(1s) colli-
sions from 0.1 eV/u to 10 keV/u. At higher energies, between
10 and 200 keV/u, there are a number of theoretical calcu-
lations for the total and state-selective EC cross sections of
dressed carbon-ion collisions with H which use the CTMC
[41–44], AOCC [45], boundary-corrected initial state (BCIS)
[46], END [40], and two-center basis-generator [30] methods.
However, the only calculation for the total ionization cross
section in C3+ + H(1s) collisions available is by Leung and
Kirchner [30]. There has been no previous theoretical investi-
gation of the ionization process in C2+ + H(1s) collisions.

In this work we incorporate an effective potential
into the two-center wave-packet convergent close-coupling
(WP-CCC) approach to three-body problems [47,48] to study
dressed carbon-ion collisions with atomic hydrogen. In this
approach we expand the total scattering wave function in
terms of bound and pseudocontinuum states around both
centers to account for transitions to all final channels. The
WP-CCC method has been applied to study a variety of mul-
tiply charged bare-ion collisions with atomic hydrogen such
as He2+ [49], Li3+ [50], Be4+ [51–53], C6+ [48], and Ne10+

[54] collisions with H. The obtained results compare favor-
ably with available experimental data, which demonstrates the
method’s utility in studying three-body ion-atom collisions. In
this paper, as a proof of principle, we test this model potential
WP-CCC approach to dressed ion collisions by first applying
it to C2+ and C3+ ion collisions with H(1s). These two carbon
ions were chosen as they have a sufficient number of bound
electrons to highlight differences in the cross sections when
comparing them to results for collisions with the correspond-
ing bare projectile ions with the same charge. The total and
n-resolved cross sections are presented for electron capture,
target excitation, and ionization in these two collision sys-
tems. These calculations are performed at collision energies
ranging from 1 keV/u to 1 MeV/u, where coupling between
the channels is important. We compare the results with exper-
imental measurements and previous theoretical calculations
where available.

The remainder of this paper is structured as follows. We
begin by giving an overview of the WP-CCC formalism in
Sec. II, where we highlight changes to the method needed to
study dressed ion collisions with H. In Sec. III the details of
the calculations are given. The results of the calculations are
presented in Sec. IV. In Sec. V we summarize and draw con-
clusions from this study. Unless specified otherwise, atomic
units are used throughout this paper.

II. TWO-CENTER WAVE-PACKET CONVERGENT
CLOSE-COUPLING FORMALISM

The formalism of the WP-CCC approach to bare-ion col-
lisions with atomic hydrogen is given in Refs. [47,48]. In
this paper we extend the approach to model partially stripped
ion collisions with atomic hydrogen. This is done by treating
the problem as an effective three-body one. The formalism is
similar to the bare ion-hydrogen case; however, the form of the
interaction between the projectile ion with the active electron
and target nucleus will be different. Hence, in this section we
will primarily cover aspects of theory that require changing
when the functional form of the scattering potential changes.
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A. Close-coupling equations

Let us consider a dressed ion scattering from the hydrogen
atom. We call the electron that is initially bound to the target
proton the active electron. We refer to the projectile nucleus
and its bound electrons collectively as the projectile ion. This
way we describe the scattering problem as an effective three-
body one. The system is described using Jacobi coordinates.
Vectors rT and rP denote the position of the active electron
relative to the target proton and projectile ion, respectively.
The position of the projectile ion relative to the center of
mass of the target is given by σT, while the position of the
projectile-active electron pair relative to the target nucleus is
σP. The vector R is the position of the projectile ion relative
to the target center.

The effective three-body scattering wave function �+
i , sub-

ject to the outgoing-wave boundary conditions, is governed
by the nonrelativistic time-independent Schrödinger equa-
tion (TISE)

(H − E )�+
i = 0, (1)

where H denotes the total Hamiltonian and E denotes the
total energy of the collisional system. The index i specifies the
initial channel. The Hamiltonian for the system consisting of
the projectile ion, target proton, and active electron is written
in the two equivalent forms

H = − 1

2μT
∇2

σT
+ HT + V T (2)

= − 1

2μP
∇2

σP
+ HP + V P. (3)

Here μT is the reduced mass of the system in the channels
where the electron is associated with the target and μP is the
reduced mass in the channels where the electron is associated
with the projectile. The operators HT and HP are the target
proton-electron and projectile ion-electron Hamiltonians, re-
spectively. The potentials V T and V P are given as

V T = Vmod(R) − Vmod(rP), (4)

V P = Vmod(R) − 1

rT
, (5)

where Vmod is a model potential that represents the interactions
the projectile ion experiences with the active electron and
target proton. We use a model potential of the form

Vmod(r) = qP

r
+ e−ζ r

r
[(ZP − qP) + kr]. (6)

Here qP is the asymptotic charge of the projectile ion and ZP is
the projectile nucleus charge. The quantities ζ and k are free
parameters. Their values are determined in such a way that
solving the effective one-electron (E1E) radial Schrödinger
equation(

− 1

2

d2

dr2
− 1

r

d

dr
− qP

r
− e−ζ r

r
[(ZP − qP) + kr]

+ �(� + 1)

2r2
− εn�

)
Rn�(r) = 0 (7)

for the radial wave function Rn� describing the projectile ion-
electron system reproduces the ground-state orbital energy εn�

given by the Hartree-Fock theory. The values of ζ and k we
use in this work to construct Vmod for the C2+ and C3+ pro-
jectiles are those presented in Ref. [46]. These were obtained
with a variational method using the Hartree-Fock calculations
performed by Clementi and Roetti [55].

To solve the effective three-body TISE (1), we expand
the total scattering wave function using a basis consisting of
N target-centered (ψα) and M projectile-centered (ψβ) pseu-
dostates as

�+
i ≈

N∑
α=1

F̃α (σT)ψα (rT)eikα ·σT

+
M∑

β=1

G̃β (σP)ψβ (rP)eikβ ·σP , (8)

where indices α and β correspond to states where the electron
is associated with the target and projectile centers, respec-
tively. The momentum of the projectile ion, relative to the
target atom in state α, is given by kα , and similarly the relative
momentum of the projectile ion-electron system in state β

with respect to the residual target proton is given by kβ .
The quantities F̃α and G̃β are initially unknown expansion
coefficients.

The interaction each center experiences with the active
electron is spherically symmetric. In the case of the target pro-
ton this is described by the exact Coulomb potential, whereas
for the projectile ion we approximate the interaction using
Vmod in Eq. (6). Therefore, all pseudostates ψα (β ) are sepa-
rable in radial and angular parts as

ψα (r) = Rnα�α
(r)Y�αmα

(r̂), (9)

where Rnα�α
(Rnβ�β

) is the radial wave function and Y�αmα

(Y�βmβ
) is a spherical harmonic. We use the true negative-

energy eigenstates to describe the bound-state structure of the
target. For the ion formed after the active electron is trans-
ferred to the projectile, we construct effective one-electron
bound pseudostates by numerically solving Eq. (7) using the
Numerov method. The first few orbital energies obtained in
this work for the C2+ + e− and C3+ + e− systems are com-
pared with the spectral data from NIST [56] in Table I. Here
one can see that the obtained orbital energies are in reasonably
good agreement with the recommended data.

In this approach we do not consider different spin states
of the formed projectile ion after capture. Instead we generate
states with the same spin that corresponds to the ground state
of the outermost electron. This is particularly important for
C3+ + H(1s) collisions, where it is possible for the C2+ ion to
form through EC in a either a singlet or triplet state. As we
treat the projectile ion to be a structureless particle that inter-
acts with the target electron and proton through Vmod, we are
unable to differentiate the final spin states of the formed C2+
ion. Indeed, in principle it is possible to also generate states
with energies resembling those of the triplet configurations by
altering the model potential parameters. However, incorporat-
ing both of these sets of pseudostates into the expansion of
the scattering wave function leads to the question of what set
of parameters do we use to define Vmod when constructing the

012817-3



N. W. ANTONIO et al. PHYSICAL REVIEW A 109, 012817 (2024)

TABLE I. Orbital energies (in a.u.) of single-electron states of
C2+ and C+. The present results, obtained by solving the E1E radial
Schrödinger equation (7), are shown alongside energies from NIST
[56]. Only the outermost electron is considered active while the inner
electrons are frozen in their ground-state configuration.

C2+(1s22sn�) C+(1s22s2nl )

State Present NIST State Present NIST

2s −1.6941 −1.7598
2p −1.3672 −1.2935 2p −0.9050 −0.8961
3s −0.6439 −0.6337 3s −0.3656 −0.3651
3p −0.5640 −0.5800 3p −0.3026 −0.2959
3d −0.5038 −0.5000 3d −0.2250 −0.2329
4s −0.3384 −0.3395 4s −0.1785 −0.1797
4p −0.3073 −0.2907 4p −0.1559 −0.1556
4d −0.2833 −0.2826 4d −0.1265 −0.1300
4 f −0.2813 −0.2895 4 f −0.1250 −0.1261

scattering potentials in Eqs. (4) and (5). We emphasize though
that accounting for both singlet and triplet states individu-
ally should only become important at low energies, close 1
keV/u, which is the lowest projectile energy considered in this
work.

In addition to the negative-energy bound states, there is a
positive-energy continuum state. For the hydrogen atom, the
continuum solution is known analytically to be the Coulomb
wave whereas, for the dressed ion projectiles, the Coulomb-
like wave is obtained through numerically solving Eq. (7)
for a given ejected-electron energy. However, the continuum
solution is not square integrable. To overcome this issue, we
incorporate the wave-packet (WP) continuum-discretization
approach, which was first outlined in Refs. [47,57]. Briefly,
we subdivide the continuum in momentum space into a
number of bins. Then WP pseudostates are generated by in-
tegrating the Coulomb or Coulomb-like wave functions over
each bin. In this approach the total scattering wave function
(8) is expanded using the true negative-energy eigenstates and
positive-energy WP pseudostates around the target center as
well as the negative-energy and positive-energy WP pseu-
dostates around the projectile center. It is worth noting that
all basis states belonging to the same center are orthonormal
to each other. However, we do not require basis functions from
one center to be orthogonal to basis functions belonging to the
other center.

To formulate the close-coupling equations we begin by
substituting the expansion of the total scattering wave function
�+

i given in Eq. (8) into the TISE (1). After some lengthy al-
gebra we apply the semiclassical approximation. Specifically,
we use the impact-parameter description whereby the target
proton is fixed at the origin and the projectile ion moves along
a straight-line trajectory given by R(t, b) = b + vt . Here b is
the impact parameter, t is time, and v is the projectile velocity
which is orientated entirely along the z = vt axis. Prior to
the collision we have t = −∞ and t = 0 corresponds to the
closest approach of the projectile ion. This approximation
brings temporal dependence into the picture and allows us to
write F̃α (σT) ≈ Fα (t, b) and G̃β (σP) ≈ Gβ (t, b). Finally, we

obtain the set of coupled first-order differential equations

iḞα′ + i
M∑

β=1

ĠβKT
α′β =

N∑
α=1

FαDT
α′α +

M∑
β=1

GβQT
α′β,

i
N∑

α=1

ḞαKP
β ′α + iĠβ ′ =

N∑
α=1

FαQP
β ′α +

M∑
β=1

GβDP
β ′β, (10)

α′ = 1, 2, . . . , N, β ′ = 1, 2, . . . , M

for the expansion coefficients Fα and Gβ . Dots over the coeffi-
cients denote their time derivatives. Here the direct-scattering
matrix elements are defined as

DT
α′α (R) = 〈ψα′ |V T|ψα〉 ei(εα′ −εα )t ,

DP
β ′β (R) = 〈ψβ ′ |V P|ψβ〉 ei(εβ′ −εβ )t , (11)

where εα and εβ are the energies of the active electron in the
α target channel and β projectile channel, respectively. The
overlap matrix elements are given as

KT
α′β (R) = 〈ψα′ |eiv·rT |ψβ〉 exp[i(−v2/2 + εα′ − εβ )t],

KP
β ′α (R) = 〈ψβ ′ |e−iv·rP |ψα〉 exp[i(−v2/2 + εβ ′ − εα )t]

(12)

and the electron-transfer matrix elements are given by

QT
α′β (R) = 〈ψα′ |eiv·rT (HP + V P − εβ )|ψβ〉

× exp[i(−v2/2 + εα′ − εβ )t],

QP
β ′α (R) = 〈ψβ ′ |e−iv·rP (HT + V T − εα )|ψα〉

× exp[i(−v2/2 + εβ ′ − εα )t]. (13)

The close-coupling equations are solved using the initial
condition

Fα (−∞, b) = δα,i, α = 1, . . . , N

Gβ (−∞, b) = 0, β = 1, . . . , M, (14)

which ensures the active electron is initially bound to the
target proton in channel i. In this work we set i = 1, which
corresponds to the ground state of H. In the limit as t → +∞
the expansion coefficients Fα and Gβ represent the scattering
amplitudes in the impact-parameter representation for transi-
tions into channels α and β, respectively. Therefore, solving
the system of equations for Fα and Gβ and taking t → +∞,
the state-resolved cross sections for direct scattering and elec-
tron capture can be determined.

B. Evaluation of the scattering matrix elements

Here we provide details of evaluations of the scattering
matrix elements (11)–(13). In particular, we focus on the
modifications to the matrix elements that appear due to the
inclusion of Vmod within potentials V T and V P.

Let us begin by considering the integral within the direct-
scattering matrix elements for β → β ′ transitions

〈ψβ ′ |V P|ψβ〉 = δβ ′βVmod(R) − ∫
drPψ

∗
β ′ (rP) 1

rT
ψβ (rP). (15)
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Since rT = |rP + R|, the Coulomb interaction can be ex-
panded in spherical harmonics with expansion coefficients

Uλ(R, rP) = [min(R, rP)]λ

[max(R, rP)]λ+1
. (16)

Separating the radial and angular parts of the pseudostates
ψβ ′ and ψβ and substituting the expansion of the Coulomb
interaction into Eq. (15), we get

〈ψβ ′ |V P|ψβ〉 = δβ ′βVmod(R) −
∑
λμ

4π (−1)λ

2λ + 1
Y ∗

λμ(R̂)

×
∫

drPr2
PRnβ′ �β′ (rP)Rnβ�β

(rP)Uλ(R, rP)

×
∫

d r̂PYλμ(r̂P)Y ∗
�β′ mβ′ (r̂P)Y�βmβ

(r̂P). (17)

The angular integral can be taken analytically. As a result,
Eq. (17) simplifies to

〈ψβ ′ |V P|ψβ〉 = δβ ′βVmod(R) −
∑
λμ

√
4π (2�β + 1)

(2�β ′ + 1)(2λ + 1)

× (−1)�β′+�βC
�β′ 0
�β0λ0C

�β′ mβ′
�βmβλμY ∗

λμ(R̂)

×
∫

drPr2
PRnβ′ �β′ (rP)Rnβ�β

(rP)Uλ(R, rP),

(18)

where C�′m′
�mλμ are the Clebsch-Gordan coefficients. The radial

part of the integral is left to be evaluated numerically.
We follow the same procedure to derive the direct-

scattering matrix elements for α → α′ transitions. However,
in this case the form of the potential between the active elec-
tron and the projectile ion is no longer purely Coulombic.
There are two additional terms present in the potential that
screen the Coulomb attraction between the active electron
and the projectile nucleus. These screening terms approximate
the shielding effects of the frozen electrons on the projectile
center. Therefore, after expressing rP = |rT − R|, we must
also expand the exponential factors that are present in Eq. (6)
as

e−ζ |rT−R|

|rT − R| = −4πζ
∑
λμ

Vλ(R, rT)Y ∗
λμ(R̂)Yλμ(r̂T) (19)

and

e−ζ |rT−R| = 2π
∑
λμ

Fλ(R, rT)Y ∗
λμ(R̂)Yλμ(r̂T). (20)

The expansion coefficients Vλ in Eq. (19) are given by

Vλ(R, rT) =
{

jλ(iζR)h(1)
λ (iζ rT) if R � rT

jλ(iζ rT)h(1)
λ (iζR) otherwise,

(21)

where jλ and h(1)
λ denote the spherical Bessel and spherical

Hankel functions of the first kind, respectively. Following the
same approach as in Ref. [58], we evaluate these functions
using the COULCC subroutine by Thompson and Barnett [59].

The expansion coefficients Fλ present in Eq. (20) are given by

Fλ(R, rT) =
∫ 1

−1
dz exp

( − ζ

√
R2 + r2

T − 2RrTz
)
Pλ(z),

(22)

where z = r̂T · R̂ and Pλ are the Legendre polynomials. These
coefficients are calculated numerically. However, evaluating
these integrals accurately is especially difficult given the sin-
gularitylike behavior that can appear at the boundary (z = 1).
For this reason, we employ the tanh-sinh quadrature method
[60], which is designed to handle integrals with singularities
or infinite derivatives at the boundaries. Using Eqs. (19) and
(20), we now expand Vmod(rP) as

Vmod(rP) =
∑
λμ

4π

2λ + 1
Jλ(R, rT)Y ∗

λμ(R̂)Yλμ(r̂T), (23)

where

Jλ(R, rT) = qP Uλ(R, rT) + ζ (qP − ZP)(2λ + 1)Vλ(R, rT)

+ k

2
(2λ + 1)Fλ(R, rT). (24)

As done before, the angular part of 〈ψα′ |V T|ψα〉 is evaluated
analytically in terms of the Clebsch-Gordan coefficients, lead-
ing to the final expression for the integral appearing in the
α → α′ direct-scattering matrix elements

〈ψα′ |V T|ψα〉 = δα′αVmod(R) −
∑
λμ

√
4π (2�α + 1)

(2�α′ + 1)(2λ + 1)

× C�α′ 0
�α0λ0C

�α′ mα′
�αmαλμY ∗

λμ(R̂)

×
∫

drTr2
TRnα′ �α′ (rT)Rnα�α

(rT)Jλ(R, rT).

(25)

The overlap (12) and rearrangement (13) matrix elements
are evaluated in spheroidal coordinates where the azimuthal
component of the integral is calculated analytically in terms
of the Bessel functions. The remainder of the integral is
evaluated numerically using the Gauss-Laguerre and Gauss-
Legendre quadrature rules. Therefore, no significant changes
need to be made when incorporating the model potential. The
details regarding this method of evaluating the overlap and
rearrangement matrix elements are provided in Ref. [61].

III. DETAILS OF CALCULATIONS

The close-coupling equations (10) are solved numerically
using the Runge-Kutta method along a discretized z grid in
the interval [−zmax, zmax] with a sufficient number of points.
Setting zmax = 150 a.u. and zmax = 175 a.u. gives negligible
differences in the results. Therefore, we set zmax = 175 a.u.
for all calculations. For both collision systems, the number of
points used to construct the z grid ranges from 600 to 4000
depending on the projectile energy. We find that more points
are required at the lower energies compared to the higher ones
in order to achieve stable results. However, across the entire
projectile energy range, the overall uncertainty in the obtained
results with respect to the number of time steps is kept below
0.1%.
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FIG. 1. Weighted probability distributions for total electron cap-
ture, target excitation, and ionization in C2+ + H(1s) collisions at
the projectile energy of 100 keV/u. Results are shown only up to an
impact parameter of 12 a.u.; however, these calculations extend to
25 a.u.

At energies below 30 keV/u, our impact-parameter grid
ranges from 0 to 14 a.u. Much like the z grid, the number
of impact-parameter points required depends on the projectile
energy. At lower energies a total of 128 impact-parameter
points are needed to resolve the structures that appear in the
probabilities. This number is systematically decreased to 64
points at 30 keV/u. At energies above 30 keV/u, we find the
impact-parameter range needed for the target-excitation and
direct-ionization processes is much larger than that needed
for both EC into bound states and EC into the continuum
of the projectile [53]. Therefore, in this work we employ
two-center calculations up to an impact parameter b2c

max where
all EC probabilities have fallen at least three orders of mag-
nitude. These calculations are then extended by performing
one-center calculations up to some larger impact parameter
b1c

max. We then integrate over the entire combined b-weighted
probability distributions to obtain the total ionization and
target-excitation cross sections. Figure 1 demonstrates this
approach by showing the weighted probabilities for electron
capture, target excitation, and ionization in C2+ + H(1s) col-
lisions at 100 keV/u projectile energy. The red lines indicate
the two-center calculations, whereas the black lines represent
the one-center ones. Here we see that the two-center and
one-center probabilities join seamlessly.

For further details regarding this approach, see Ref. [53].
At projectile energies above 30 keV/u, the largest b2c

max needed
is 13 a.u., whereas the largest b1c

max necessary is 50 a.u.
The quality of the final results obtained using close-

coupling approaches also depends on the basis size. The
structure of our basis is described using three parameters.
These are the maximum principal quantum number of bound
states included nmax, the maximum angular momentum quan-
tum number of all included states �max, and the number of
pseudocontinuum WP states included nc. For both C2+ +
H(1s) and C3+ + H(1s) collision systems, we fix nmax = 12
and nc = 18 at all energies considered in this work. However,
we vary �max with increasing projectile energy to ensure that

approximately the same degree of convergence is maintained.
At lower energies we use �max = 7 for both collision systems,
whereas at higher incident energies we set �max = 5. Thus,
the largest basis size used in our calculations is 3224 states.
All the cross sections presented in this work have converged
within a few percent.

Ill-conditioning effects in calculations can appear when
establishing convergence in results with increasing basis size
due the nonorthogonality of the underlying basis. These ef-
fects are diminished when evaluating the scattering matrix
elements with sufficiently high precision. In this work we ex-
tend the radial grid used to evaluate the direct matrix elements
in Eqs. (18) and (25) to 400 a.u., using up to 5500 quadra-
ture points. We also use a maximum of 320 Gauss-Laguerre
and 320 Gauss-Legendre quadrature points to calculate the
overlap and electron-transfer matrix elements. The number of
Gauss-Laguerre and Gauss-Legendre quadrature points used
depends on the projectile energy. This is due to the fact that
these matrix elements contain an oscillatory factor in the
integrand which depends on the projectile speed. Therefore,
the largest number of quadrature points used is at 1 MeV/u,
the largest incident energy considered.

IV. RESULTS AND DISCUSSION

In this section we present results for the total electron-
capture, ionization, and target-excitation cross sections in
C2+ + H(1s) and C3+ + H(1s) collisions. Furthermore, we
present the partial electron-capture and target-excitation cross
sections into the n = 2 and 3 states. We compare our results
to experimental measurements and other theoretical calcula-
tions where available. In all figures below, we present our
calculations with points connected by straight lines to guide
the eye of the reader. The incident energies at which we
have performed calculations were chosen to best represent any
structures in the cross sections.

Figure 2 presents the WP-CCC results for the total cross
section for electron capture in C2+ + H(1s) collisions along-
side the experimental [16–19] and other theoretical [46]
data. Above 20 keV/u, the present results are in excellent
agreement with the measurements by Phaneuf et al. [17]
and Goffe et al. [18]. Between 8 and 20 keV/u, the two
sets of experimental data appear to display contradictory
behaviors. The results by Goffe et al. show an increase in
the cross section within the energy range from about 8 to
15 keV/u, whereas the measurements by Phaneuf et al. sug-
gest it declines. However, the WP-CCC results display a
local minimum at about 12 keV/u. Therefore, this apparent
disagreement in the behavior of the cross section between
the two sets of experiments may simply be due to the lack
of measurements in the energy range from 10 to 15 keV/u.
Our results agree better with the data by Goffe et al. around
8 keV/u; however, we see better agreement with the measure-
ments by Phaneuf et al. at 15 keV/u. Some disagreement is
seen when comparing the WP-CCC results to the BCIS ones
by Sounda et al. [46] from 50 to 200 keV/u where the latter
are available. A possible reason for this discrepancy is that the
BCIS method does not account for the coupling between the
channels, which is important to obtain accurate results in the
intermediate-energy region.
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FIG. 2. Total cross section for electron capture in C2+ + H(1s)
collisions, using (a) linear and (b) logarithmic scales. The experi-
mental data are from Goffe et al. [18], Phaneuf et al. [17], Nutt et al.
[16], and Gardner et al. [19]. Theoretical results include the present
WP-CCC calculations and BCIS calculations by Sounda et al. [46].
The WP-CCC results for He2+ + H(1s) collisions by Faulkner et al.
[49] are also shown. The legend in (b) applies to both panels.

The energy dependence of the total electron-capture cross
section for C3+ + H(1s) collisions is shown in Fig. 3. Along-
side the WP-CCC results, the experimental [15,17,18,21] and
other theoretical [30,40,41,45] data are shown. We find ex-
cellent agreement with measurements by Phaneuf et al. [17]
across the entire projectile-energy range where the latter are
available. Furthermore, excluding the measurement at about
12 keV/u, the WP-CCC results agree well with the exper-
imental data by Goffe et al. [18]. The AOCC calculations
by Tseng and Lin [45] show a noticeable difference in the
functional behavior of the EC cross section below 30 keV/u.
Nevertheless, for C3+ + H(1s) collisions, we see improved
agreement between the WP-CCC results and the BCIS ones,
compared to the case for the C2+ + H(1s) system. Between 10
and 20 keV/u the WP-CCC results disagree with the CTMC
calculations by Errea et al. [41]. However, above 20 keV/u
the two sets of calculations converge to each other. We find
excellent agreement with the TC-BGM results by Leung and
Kirchner [30] across the energy range from 1 to 100 keV/u
where the latter are available.
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FIG. 3. Total cross section for electron capture in C3+ + H(1s)
collisions, using (a) linear and (b) logarithmic scales. The experimen-
tal data are from Goffe et al. [18], Crandall et al. [62], Phaneuf et al.
[17], Havener et al. [21], and Ćirić et al. [15]. Theoretical results
include the present WP-CCC calculations, AOCC calculations by
Tseng and Lin [45], END method by Guevara et al. [40], CTMC
calculations by Errea et al. [41], and TC-BGM results by Leung and
Kirchner [30]. The WP-CCC results for Li3+ + H(1s) collisions by
Kotian et al. [50] are also shown. The legend in (b) applies to both
panels.

As one can see in Figs. 2 and 3, at projectile energies
below 5 keV/u, the WP-CCC results for the total EC cross
section underestimate the available measurements. Experi-
mental data from Ćirić et al. [15] and McCullough et al. [13]
along with MOCC calculations by Errea et al. [39] for the
state-resolved cross sections show that, at low energies, two-
electron processes have a significant contribution to the total
EC cross section. Specifically, it is found that the transitions
where the target electron is captured into the 2p shell of the
projectile and one of the projectile electrons is simultaneously
excited to the 2p state can contribute up to 35% of the total
EC cross section. The WP-CCC approach presented here is
based on an effective one-electron description of the collision
problem. Therefore, our results do not include contributions
from two-electron processes at this stage. For this reason the
present WP-CCC results for EC underestimate the experimen-
tal data. It is also worth mentioning that given the significant
role the two-electron processes play in the total EC cross
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section at low energies, coupling to these channels should also
be important.

To understand the effect the projectile electrons have on
the total EC cross section in C2+ and C3+ collisions with H,
in Figs. 2 and 3 we also present the WP-CCC results for the
total EC cross section in He2+ + H(1s) [49] and Li3+ + H(1s)
[50] collisions, respectively. It is not surprising that the results
for C2+ + H(1s) and He2+ + H(1s) collisions differ at low
energies. However, Fig. 2 shows that, starting at about 100
keV/u, the total EC cross section for C2+ + H(1s) collisions
becomes increasingly larger than the one for He2+ + H(1s)
collisions. The reason for this is related to (i) the radial prob-
ability distribution for finding the electron of the H target and
(ii) the projectile–target-electron interaction. To show this,
in Fig. 4(a) we present the impact-parameter dependence of
the weighted probabilities for EC in both C2+ + H(1s) and
He2+ + H(1s) collisions at a collision energy of 1 MeV/u.
Furthermore, in Fig. 4(b) we show the radial dependence
of the target-electron probability density and the projectile

effective charge Zeff (r). Here we define the effective charge
Zeff (r) as the radius-weighted model potential, i.e., Zeff (r) =
rVmod(r). The figure shows that at values of r ≡ rP on the
order of the impact parameter where EC is most likely to occur
for both systems, the target electron is more attracted to the
C2+ ion than the He2+ one. Generally speaking, as the projec-
tile energy increases, EC is more likely to occur at smaller
impact parameters. Therefore, in C2+ + H(1s) collisions as
the incident energy increases the target electron is able to
approach the bare carbon nucleus more closely. This results in
a stronger attraction to the carbon ion than to the bare helium
one. It is for these reasons the EC cross section for the C2+
is increasingly larger than for the He2+ one with increasing
projectile energies. Comparing the total cross sections for
EC in C3+ + H(1s) and Li3+ + H(1s) collisions shown in
Fig. 3, we see smaller differences. In fact, up to 1 MeV/u
incident energy the cross section for C3+ + H(1s) collisions
is marginally larger than the one for Li3+ + H(1s) collisions.
To explain this result, in Fig. 5(a) we present the impact-
parameter weighted probability for EC in C3+ + H(1s) and
Li3+ + H(1s) collisions at 1 MeV/u. Additionally, we present
the radial dependence of the effective charge for the C3+
ion in Fig. 5(b), as was done in Fig. 4 for the C2+ ion.
The figure shows that at radial distances on the order of the
impact-parameter value where EC is most likely to occur,
the C3+ ion has a greater effective charge than the charge of
Li3+. This leads to a larger EC cross section for C3+ collisions
compared to Li3+ collisions. However, the difference between
the effective charge of the C3+ ion in this region compared
to the charge of Li3+ is smaller than the same for the C2+
and He2+ pair. This explains why the difference in the EC
cross sections for C3+ + H(1s) and Li3+ + H(1s) collisions is
smaller compared to the differences found for C2+ and He2+

collisions with H(1s).
Another factor that contributes to the difference in the

results for the dressed ion and the fully stripped ion of the
corresponding charge is the Q value. The Q values are particu-
larly important at low and intermediate energies. In part, this is
why we see significant deviations between the corresponding
systems at these energies. However, at high energies, where
we compare the results for the dressed ion and the fully
stripped ion of the corresponding charge, the Q values become
less important. This is because at high energies, capture to the
lowest-energy state available on the projectile becomes dom-
inant regardless of the Q value. This has been demonstrated
in the example of Be4+ + H(1s) collisions in Ref. [51] (see
Fig. 3 of [51]) and Ne10+ + H(1s) collisions in Ref. [54] (see
Fig. 4 of [54]).

The total cross sections for ionization in C2+ + H(1s)
and C3+ + H(1s) collisions are shown in Figs. 6 and 7, re-
spectively, in comparison with the measurements by Shah
and Gilbody [22,23]. Ionization in the C3+ + H(1s) system
has been calculated by Leung and Kirchner [30] using the
TC-BGM. For C2+ scattering on H, the WP-CCC results
significantly differ from the experimental data at all energies.
At the same time, for C3+ + H(1s) collisions our calcula-
tions reasonably agree with the measurements between 20 and
50 keV/u. The TC-BGM results agree with the experiment
slightly better; however, they are limited to energies below
100 keV/u. For both systems, at the energies where the cross
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section peaks the present results deviate most from the exper-
imental data. It is worth noting that this level of disagreement
between close-coupling calculations and measurements per-
formed by Shah and Gilbody is also found for the case of
proton collisions with atomic hydrogen [63,64], which rep-
resents the simplest true three-body system. Whether there is
an issue with the modeling of ionization within the two-center
close-coupling framework or an inaccuracy in the measure-
ments remains to be determined. We conclude that more
experimental and theoretical work on ionization in these col-
lisions is required.

As done for EC, in Figs. 6 and 7 we include the WP-CCC
results for the total ionization cross section in He2+ + H(1s)
and Li3+ + H(1s) collisions, respectively. It can be seen that
the results for C2+ collisions are considerably larger than
the ones for He2+ collisions across the entire projectile en-
ergy range. In particular, at energies below 30 keV/u we
see that the C2+ projectile produces a cross section over a
factor of 2 larger than the one in He2+ + H(1s) collisions.
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lisions. The present WP-CCC calculations are compared with the
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shown.

However, despite the quantitative differences, we note that
the functional behavior of both cross sections is similar for
both collision systems at all incident energies. In contrast
to the C2+ projectile, the difference in the ionization cross
section for C3+ + H(1s) and Li3+ + H(1s) collisions appears
to be quite small; however, as the projectile energy increases
towards 1 MeV/u, the differences become visible.

The cross sections for target excitation into the n = 2
and 3 states in C2+ + H(1s) and C3+ + H(1s) collisions are
presented in Figs. 8 and 9, respectively. Also included in
both figures is the projectile energy dependence of the to-
tal target-excitation cross section. Here we define the total
target-excitation cross section as the sum of all state-selective
cross sections for excitation up to the principal and angular
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Li3+ + H(1s) collisions from Kotian et al. [50] are also shown.

012817-9



N. W. ANTONIO et al. PHYSICAL REVIEW A 109, 012817 (2024)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 10  100  1000

cr
os

s s
ec

tio
n 

(1
0−1

6  c
m

2 )

projectile energy (keV/u)

WP-CCC total
WP-CCC n=2
WP-CCC n=3
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momentum quantum numbers nmax and �max, respectively, that
we use to characterize our basis. Since our results are checked
for convergence with respect to the size of the basis used
to expand the scattering wave function, the remaining states
give a negligible contribution. We see that for C3+ induced
excitation of H(1s) into the n = 2 and 3 states, the WP-CCC
results and TC-BGM ones by Leung and Kirchner [30] agree
well below 30 keV/u. However, above this energy the two sets
of calculations begin to deviate from one another. Looking
at the results for target excitation in both C2+ and C3+ ion
collisions, we find that the cross section for total excitation is
dominated by transitions to the n = 2 states across the entire
incident energy range considered in this work.

Figure 10 presents the first few n-partial cross sections for
EC in C2+ + H(1s) collisions as a function of incident en-
ergy. Interestingly, we see that capture into the n = 2 states
is dominant between 1 and 10 keV/u and above 30 keV/u;
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FIG. 10. The WP-CCC n-resolved cross sections for electron
capture in C2+ + H(1s) collisions.

however, between 10 and 30 keV/u capture into the n = 3
states dominates. Furthermore, the cross section for capture
into the n = 2 states peaks at about 4 keV/u and for n = 3
at 20 keV/u. It is these different projectile energies where the
cross section for EC into the n = 2 and 3 states peaks that give
rise to the saddle shape with a local minimum seen in the total
EC cross section.

The n-resolved cross sections for EC in C3+ + H(1s) col-
lisions are presented in Fig. 11. In contrast to the C2+ case
where at energies below 100 keV/u the dominant capture
channel oscillates between the n = 2 and 3 states, for C3+
we find that EC into the n = 3 states is largest everywhere.
Further, we see that the cross section for EC into the n = 3
states between 1 and 30 keV/u is over three times larger than
the ones for EC into the n = 2 and 4 states.

V. CONCLUSION

The two-center WP-CCC approach was extended to
dressed ion collisions with atomic hydrogen. A model po-
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FIG. 11. Same as in Fig. 10 but for C3+ + H(1s) collisions.
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tential was used to approximately describe the interaction
of the incoming projectile ion with the target. This reduced
the scattering problem to an effective three-body one with a
single active electron. The method was applied to calculate
the total and n-resolved cross sections for electron capture,
target excitation, and ionization occurring in C2+ + H(1s)
and C3+ + H(1s) collisions. The calculations were performed
across a broad incident energy range from 1 keV/u to 1
MeV/u. To ensure the accuracy of our results (within the
model), we performed stringent convergence tests with in-
creasing basis size and numerical parameters. We compared
the present calculations with the experimental data and pre-
vious theoretical results, where available. For both collision
systems, our results were in excellent agreement with the
available measurements for the total EC cross section above
5 keV/u; however, they underestimated the experimental data
below 5 keV/u. One possible reason for this difference comes
from the two-electron processes that our approach, at this
stage, does not take into account. For the energy dependence
of the total EC cross section in C2+ + H(1s) collisions, we
provided theoretical results below 50 keV/u. This allowed
us to compare theory with some of the experimental mea-
surements for this process. To investigate the effect projectile
electrons have on the total EC cross section in C2+ + H(1s)
and C3+ + H(1s) collisions, we compared our results with
those for He2+ + H(1s) [49] and Li3+ + H(1s) [50] colli-
sions, respectively. We found that the C2+ + H(1s) results
differ significantly from the He2+ + H(1s) ones across the
entire projectile energy range considered. Furthermore, an
increasingly larger cross section for EC in C2+ ion collisions
was obtained than in the He2+ ones at energies above 100
keV/u. This was due to the fact that at higher energies, the
projectile could approach the target electron closer, resulting
in a stronger attraction to the carbon ion than the bare helium
one. Similar observations were also made when comparing the
total cross section for EC in C3+ + H(1s) collisions against

the one for Li3+ + H(1s) collisions. However, here the dif-
ferences between the results were less than the ones between
the C2+ and He2+ projectiles. Therefore, the difference in the
corresponding cross sections was also smaller.

As to the ionization process, the present results gener-
ally overestimated experimental data by Shah and Gilbody
[22,23]. We also found that the C2+ results are somewhat
larger than those for the He2+ projectile and the C3+ results
are slightly larger than the Li3+ ones, similar to the situation
observed for EC. The reason for this may be similar as well.
When the projectile comes close to the target, the active elec-
tron can penetrate deeper, experiencing a stronger attraction
towards the projectile nucleus than at asymptotically large
distances. This increases the probability of ionization.

In this work we showed that the WP-CCC method is capa-
ble of calculating the total and n-resolved cross sections for
dressed ion collisions with hydrogen so long as the projectile
energy is sufficiently large that two-electron processes can be
ignored. The incorporation of this model potential into the
WP-CCC approach for two-electron targets is left for future
work [36]. This would allow us to study various dressed ion
collisions with He. Further work could also incorporate a
two-electron structure model for the dressed ion projectiles.
This would allow us to study the spin-resolved partial cross
sections, which are of importance in astrophysics.

All the data obtained in this work are available from the
authors upon request.
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Kadyrov (World Scientific, Singapore, 2019).

[25] C. Harel, H. Jouin, and B. Pons, At. Data Nucl. Data Tables 68,
279 (1998).

[26] L. F. Errea, C. Harel, H. Jouin, L. Méndez, B. Pons, and A.
Riera, J. Phys. B: At. Mol. Opt. Phys. 31, 3527 (1998).
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