
PHYSICAL REVIEW A 109, 012816 (2024)

Long-range interaction of hydrogen atoms at finite temperatures
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We reexamine the long-range interaction between two atoms placed in an equilibrium thermal radiation envi-
ronment. Employing the formalism of quantum electrodynamics at finite temperatures, we derive an expression
for the thermal correction to the interaction potential and explore various asymptotic behaviors. The numerical
calculations of temperature-dependent dispersion coefficients for both the ground and highly excited states of
the hydrogen atom are performed. We proceed from the first principles of the theory to derive the dipole-dipole
interaction at finite temperature. The analysis presented in this work reveals that the expressions established
earlier in the context of phenomenological extrapolation from zero- to finite-temperature scenarios exhibit
disparate asymptotic behavior and lead to overestimated results compared to those of the rigorous quantum
electrodynamics approach.
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I. INTRODUCTION

The long-range forces between two stationary atoms or
molecules characterized by polarizabilities were initially ex-
plored in pioneering studies by Casimir and Polder [1]. In
1956, Lifshitz was arguably among the first to contemplate
induced forces between two dipoles at nonzero temperatures
[2]. Since then, sporadic yet enduring interest has been ex-
hibited in dipole-dipole interactions at finite temperatures
[3–5]. Over the past decades, various approaches to the
theoretical description of this phenomenon have been consid-
ered [6–8]. Furthermore, recent experimental investigations
of interactions among atoms at long distances exposed to a
heated environment have sparked additional interest in this
problem [9,10].

Typically, the transition to finite temperatures is ac-
complished by a phenomenological generalization of the
well-established result at T = 0 through the introduction of
a relevant induced term into the expression for the interac-
tion potential. In the scenario where two interacting atoms
are placed within an equilibrium thermal radiation field de-
scribed by the Planck distribution, this generalization results
in the replacement of the term characterizing the vacuum zero-
point expectation energy, represented by the term 1/2, onto
1/2 + nβ (ω). Here, nβ (ω) is the Bose-Einstein frequency dis-
tribution defined as nβ (ω) = {exp[ω/(kBT )] − 1}−1, where kB

represents the Boltzmann constant and T is the temperature
in Kelvin. This approach has been employed, notably, in the
studies [11–13].

However, a comprehensive derivation of the interaction
potential between two atoms within the formalism of quantum
electrodynamics at finite temperatures (TQED) has hitherto
been limited to the study presented in [3]. This work primarily
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offers parametric estimates devoid of specific calculations for
particular systems. It is pertinent to highlight that the com-
putations conducted within the mentioned investigation do
not readily enable a direct comparison between the TQED
approach and the phenomenological extension applied to ther-
mal scenarios as witnessed in works [11–13].

In the present paper, within the framework of TQED utiliz-
ing the real-time formalism, we reexamine the derivation of
the interaction potential between two atoms at long distances
and compare it with findings from prior research. Specifically,
we perform a numerical computation of thermal corrections
to the dispersion coefficients for two interacting hydrogen
atoms in excited states. Calculations are carried out for various
asymptotics of interatomic distances and temperature regimes.

The paper is organized as follows. In Sec. II, we derive
the long-range interaction potential between two atoms within
the S-matrix formalism and discuss its generalization to the
finite-temperature case. A modification of the resulting ex-
pression for two identical atoms, but in different states, is also
discussed there. In Secs. III and IV, we consider the short-
and long-range limit of the obtained potential, respectively.
Details of the numerical calculations with analysis of the
results are presented in Sec. V. All additional algebraic calcu-
lations are located in the Appendixes A and B. The relativistic
units (r.u.) are used throughout the paper, h̄ = c = m = 1
(h̄ is the Planck constant, m is the electron mass, and c is
the speed of light), in which the fine-structure constant can
be expressed in terms of the electron charge as α = e2. The
Boltzmann constant in these units is kB = mα2ka.u.

B , where
ka.u.

B = 3.166 81 × 10−6 is given in atomic units.

II. LONG-RANGE INTERACTION BETWEEN TWO
ATOMS: S-MATRIX APPROACH

Within the framework of quantum electrodynamics (QED)
and perturbation theory, the interaction between two atoms,
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FIG. 1. (a) Ladder and (b) crossed-ladder Feynman diagrams
describing the long-range interaction of two atoms. Each solid line
denotes the particular atom, while wavy lines correspond to the
exchange of photon. The states of atoms are denoted by a, a′ and
b, b′ for atoms A and B, respectively, and the photon frequencies are
denoted by k0, k′

0.

designated as A and B, is described by the fourth-order S
matrix. The complete set of Feynman diagrams is shown in
Fig. 1.

We restrict ourselves to the description of the interaction
between two one-electron atoms as the main application of the
approach developed below. A generalization to many-electron
atomic systems can be made in the framework of the gen-
eral theory; see, e.g., [14]. Then, for the ladder (L) diagram
[Fig. 1(a)], the corresponding S-matrix element can be written
as follows:

S(4), L
AB = (−ie)4

∫
dx1dx2dx3dx4ψ

A
a′ (x1)ψ

B
b′ (x3)

× γ
μ1
A Dμ1μ3 (x1, x3)γ μ3

B SA(x1, x2)γ μ2
A

× Dμ2μ4 (x2, x4)γ μ4
B SB(x3, x4)ψA

a (x2)ψB
b (x4), (1)

where ψA
a (x) = e−iεA

a tψ (x) is the solution of the Dirac
equation for a bound electron in the state a of the atom A,
ψa = ψ+

a γ0 is the Dirac conjugated wave function with ψ+
a

being its Hermitian conjugate, γ
μ
A = (γ0, γ ) are the Dirac

matrices (indices A and B refer to the corresponding atoms),
εn is the Dirac energy, and

SA(x1, x2) = i

2π

∫ +∞

−∞
d	 e−i	(t1−t2 )

∑
n

ψA
n (r1)ψ

A
n (r2)

	 − εA
n (1 − i0)

(2)

is the eigenstate decomposition of the electron propaga-
tor for atom A. The components of the photon propagator
Dμν can be expressed as the sum of two contributions: the
zero-temperature part D0

μν and the thermal one Dβ
μν , which

accounts for the Planck frequency distribution associated with
photons in the thermal reservoir [15]. The latter allows us to
investigate and elucidate the influence of blackbody radiation
on the interaction of two hydrogen atoms separated by a
distance R.

To explore the effects resulting from the incorporation
of distribution function, we turn to the finite-temperature

quantum electrodynamics (TQED) approach formulated by
Donoghue and Holstein (DH) in [16]. Then, the interaction
between a free-electron gas (in the absence of an external
field) and a photon gas is considered under thermal equilib-
rium conditions. This interaction is described using a grand
canonical statistical operator, which alters both the elec-
tron and photon propagators. Our objective is to investigate
the impact of blackbody radiation (BBR) on atomic levels.
Therefore, we retain the electron propagator in the standard
(zero-temperature) form (its thermal part is exponentially
suppressed over temperature) and employ QED perturbation
theory to account for the influence of BBR. This involves
considering the thermal photon propagator only.

According to [16], the photon propagator in the Feynman
(F) gauge and momentum space reads

DDH
μν (k) = D0,F

μν + Dβ,F
μν

= −4πgμν

[
i

k2 + i0
+ 2πδ(k2)nβ (|k|)

]
, (3)

where gμν is the metric tensor of Minkowski space, k =
(k0, k) is the four-dimensional momentum, k2 = k2

0 − k2, and
nβ is defined as follows:

nβ (x) = 1

exp
(

x
kBT

) − 1
. (4)

Here, kB is the Boltzmann constant in relativistic units and T
is the temperature in Kelvin. Note that Eq. (3) differs from
the corresponding expression (4) in [16] by the factor of 4π ,
which reflects the definition of the charge units, e2 = α, used
in this paper. In the coordinate space, the photon propagator
can be found by four-dimensional Fourier transform,

DDH
μν (x1, x2) = −4πgμν

∫
d4k

(2π )4
e−ik(x1−x2 )

×
[

i

k2 + i0
+ 2πδ(k2)nβ (|k|)

]
. (5)

In the nonrelativistic problem that we are considering, it is
convenient to use the temporal gauge (also known as the Weyl
gauge) [17]. Then the components of the zero-temperature
part of the photon propagator are

D0
00(k) = D0

0i(k) = 0, (6)

D0
i j (k) = 4π i

k2

(
δi j − kik j

k2
0

)
. (7)

Similarly, for the finite-temperature part, we have [18,19]

Dβ

00(k) = Dβ

0i(k) = 0, (8)

Dβ
i j (k) = 8π2δ(k2)

(
δi j − kik j

k2
0

)
nβ (|k|), (9)

where i, j = 1, 2, 3. The evaluation of the corresponding
coordinate representation of zero-temperature and thermal
propagators in a temporal gauge is considered in Appendix A,
with the final result given by the following equation:

D0,β
i j (x1, x2) = i

2π

∫ ∞

−∞
dk0e−ik0(t1−t2 )D0,β

i j (k0, R), (10)
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where R = |r1 − r2| is the interatomic distance and

D0
i j (k0, R) =

(
δi j + ∇i∇ j

k2
0

){
−ei|k0|R

R

}
, (11)

Dβ
i j (k0, R) =

(
δi j + ∇i∇ j

k2
0

)

×
{
−ei|k0|R

R
+ e−i|k0|R

R

}
nβ (|k0|). (12)

Substituting Eq. (10) into Eq. (1) and performing integration
over the time variables, we find

S(4), L
AB = −2π iδ

(
εA

a′ − εA
a + εB

b′ − εB
b

)
U (4), L

AB (R). (13)

Here the amplitude of the process can be expressed as

U (4), L
AB (R) = i

∫ +∞

−∞

dk0

2π
Dil (k0, R)Dkm(k0, R)

×
∑
nn′

V (−)ik
a′nna (k0)V (+)lm

b′n′n′b (k0), (14)

where

V (−)ik
a′nna (k0) =

〈
ψA

a′
∣∣αi

∣∣ψA
n

〉〈
ψA

n

∣∣αk

∣∣ψA
a

〉
εA

a′ − k0 − εA
n (1 − i0)

, (15)

V (+)lm
b′n′n′b (k0) =

〈
ψB

b′
∣∣αl

∣∣ψB
n′
〉〈
ψB

n′
∣∣αm

∣∣ψB
b

〉
εB

b′ + k0 − εB
n′ (1 − i0)

. (16)

Each factor Di j (k0, R) = D0
i j (k0, R) + Dβ

i j (k0, R) is the sum
of zero- and finite-temperature contributions to the photon
propagator, specified in the “mixed” representation (i.e., in
frequency-space domain; see [17]) by Eqs. (11) and (12),
respectively.

Similarly, for the crossed-ladder (CL) diagram given by
Fig. 1(b), the corresponding S-matrix elements are

S(4),CL
AB = (−ie)4

∫
dx1dx2dx3dx4ψa′ (x1)ψb′ (x3)

× γ
μ1
A Dμ1μ4 (x1, x4)γ μ3

B Dμ2μ3 (x2, x3)γ μ4
B

× SA(x1, x2)γ μ2
A SB(x3, x4)ψa(x2)ψb(x4). (17)

Integration over the time variables in Eq. (17) yields

S(4),CL
AB = −2π iδ

(
εA

a′ − εA
a + εB

b′ − εB
b

)
U (4), L

AB (R), (18)

where

U (4),CL
AB (R) = i

∫ +∞

−∞

dk0

2π
Dil (k0, R)Dkm(k0, R)

×
∑
nn′

V (−)ik
a′nna (k0)V (−)lm

b′n′n′b (k0). (19)

For each of these two basic Feynman diagrams, we need to
consider three more contributions accounting for the total
symmetry of the system of two nonequivalent atoms with ex-
changed indexes in Fig. 1 as follows: (1) a′ ↔ b′, (2) a ↔ b,
and (3) simultaneous replacement of both states a′ ↔ b′ and
a ↔ b. Moreover, to all four of these contributions, it is also
necessary to add exactly the same set but with permuted k0

and k′
0 [this permutation just leads to additional terms given

by Eqs. (14) and (19) in which k0 is just replaced by −k0].
Thus the total number of terms is 16. For further consideration
of the long-range potential, it is convenient to assume that
the initial and final states of both atoms of the same type A
and B remain unchanged, i.e., we set a′ = a and b′ = b. The
latter circumstance decreases the number of nonequivalent
contributions for the case when one atom is in the excited state
to eight.

Collecting all terms together and going to the nonrelativis-
tic limit with Foldy-Wouthuysen transformation, which in the
leading order implies ψ+αψ ≈ φ+ p̂

m φ where φ is the solution
of the Schrödinger equation and p̂ is the electron momentum
operator, we find, for the total interaction amplitude, the fol-
lowing equation in the velocity form:

U (4), tot
AB (R) = i

∫ +∞

−∞

dk0

2π
Dil (k0, R)Dkm(k0, R)

∑
nn′

{[ 〈
φA

a

∣∣pi

∣∣φA
n

〉〈
φA

n

∣∣pk

∣∣φA
a

〉
EA

a − k0 − EA
n (1 − i0)

+
〈
φA

a

∣∣pi

∣∣φA
n

〉〈
φA

n

∣∣pk

∣∣φA
a

〉
EA

a + k0 − EA
n (1 − i0)

][ 〈
φB

b

∣∣pl

∣∣φB
n′
〉〈
φB

n′
∣∣pm

∣∣φB
b

〉
EB

b − k0 − EB
n′ (1 − i0)

+
〈
φB

b

∣∣pl

∣∣φB
n′
〉〈
φB

n′
∣∣pm

∣∣φB
b

〉
EB

b + k0 − EB
n′ (1 − i0)

]
±

[ 〈
φA

a

∣∣pi

∣∣φA
n

〉〈
φA

n

∣∣pk

∣∣φA
b

〉
EA

a − k0 − EA
n (1 − i0)

+
〈
φA

a

∣∣pi

∣∣φA
n

〉〈
φA

n

∣∣pk

∣∣φA
b

〉
EA

a + k0 − EA
n (1 − i0)

]

×
[ 〈

φB
a

∣∣pl

∣∣φB
n′
〉〈
φB

n′
∣∣pm

∣∣φB
b

〉
EB

b − k0 − EB
n′ (1 − i0)

+ 〈φB
a |pl

∣∣φB
n′
〉〈
φB

n′
∣∣pm

∣∣φB
b

〉
EB

b + k0 − EB
n′ (1 − i0)

]}
. (20)

Here, En in contrast to εn is the eigenvalue related to the
atomic state n of nonrelativistic Hamiltonian HS . Note that
the second contribution in curly brackets comes with the
± sign and has off-diagonal matrix elements in the nu-
merator. This problem was covered in detail in a series of
works [20,21], where it was shown that for the identical
atoms in different states, the potential becomes dependent

on the symmetry of the wave function of the diatomic
system. In our approach, these results are automatically
restored.

To reduce the integrand in the expression (20) to the prod-
uct of atomic polarizabilities, it is useful to transfer to the
length form of the matrix elements in the above equation.
This can be done via the well-known commutation relation
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pi = i[HS, ri] and some algebra. It is important to note that
in the nonrelativistic expression (20), the contribution arising
from summation over the negative spectrum in the initial fully
relativistic Eqs. (14) and (19) has already been omitted for
the sake of brevity, but it is exactly canceled when passing to
the length form using the mentioned commutation relation. A
detailed discussion of the corresponding transformations can
be found in Ref. [22] [see Eq. (29.37) in Chap. 29.8 therein
and also consult Chap. 35 for details] and Refs. [23,24]. Then
the interaction potential can be conveniently written in the
length form in terms of atomic polarizability tensors αi j as
follows:

U (4), tot
AB (R) = i

2π

∫ +∞

−∞
dk0k4

0Dil (k0, R)Dkm(k0, R)

× [
αA

ik (k0)αB
lm(k0) ± αAB

ik (k0)αAB
lm (k0)

]
, (21)

where, according to [20,21], the notations for diagonal αA
ik

and off-diagonal αAB
ik contributions are introduced. For atoms

in s states, both tensors can be written in terms of scalar
polarizabilities,

αA
ik = δikαA, (22)

where

αA(k0) = e2

3

∑
±

∑
n

〈φa|r|φn〉〈φn|r|φa〉
En(1 − i0) − Ea ± k0

, (23)

αAB(k0) = e2

3

∑
±

∑
n

〈φa|r|φn〉〈φn|r|φb〉
En(1 − i0) − Ea ± k0

, (24)

αAB(k0) = e2

3

∑
±

∑
n

〈φa|r|φn〉〈φn|r|φb〉
En(1 − i0) − Eb ± k0

. (25)

For further calculations, it is necessary to calculate the ex-
plicit form of the functions Dil (k0, R) and Dkm(k0, R) given by
the sum of zero-temperature [Eq. (11)] and finite-temperature
[Eq. (12)] contributions. This can be performed by noting that(

δi j + ∇i∇ j

k2
0

)(
−ei|k0|R

R

)
G0,β

=
[
δik

(
1 + i

|k0|R − 1

k2
0R2

)

+ xixk

R2

(
3

k2
0R2

− 3i

|k0|R − 1

)](
−ei|k0|R

R

)
G0,β , (26)

and(
δi j + ∇i∇ j

k2
0

)(
+e−i|k0|R

R

)
G0,β

=
[
δik

(
1 − i

|k0|R − 1

k2
0R2

)

+ xixk

R2

(
3

k2
0R2

+ 3i

|k0|R − 1

)](
+e−i|k0|R

R

)
G0,β ,

(27)

where G0 = 1 and Gβ = nβ (|k0|).
Substituting Eqs. (22), (23) and the zero-temperature part

of Dil (k0, R) given by Eq. (11) into Eq. (21), and taking
into account Eq. (26), we obtain the following well-known

expression for the interaction energy of two identical atoms
(A = B) in the ground state at T = 0:

U 0(R) = i

2πR2

∫ ∞

−∞
dk0k4

0αA(k0)αA(k0)

× e2i|k0|RF1(|k0|, R), (28)

where

F1(k0, R) = 1 + 2i

k0R
− 5

(k0R)2
− 6i

(k0R)3
+ 3

(k0R)4
. (29)

When one of the atoms is in the excited state (A �= B), it is
necessary to make a substitution,

αAαA → αAαB ± αABαAB. (30)

This generalization was recently obtained for the long-range
interaction of two hydrogen atoms in the 1s and 2s states
in [20].

A similar equation can be obtained for the finite-
temperature part by substituting Eq. (12) and taking into
account Eq. (26) as well as (27). Finally, we find the thermal
correction to the long-range interaction as

U β (R) = i

πR2

∫ ∞

−∞
dk0k4

0αA(k0)αA(k0)e2i|k0|R

× F1(|k0|, R)nβ (|k0|) − i

πR2

∫ ∞

−∞
dk0

× k4
0αA(k0)αA(k0)F2(|k0|, R)nβ (|k0|), (31)

where F1 is given by Eq. (29) and F2 is given by

F2(k0, R) = 1 + 1

(k0R)2
+ 3

(k0R)4
. (32)

Again, when one of the atoms is in the excited state, it is
necessary to make a substitution, given by Eq. (30). Below we
consider various boundaries of the thermal potential defined
by Eq. (31).

Note that the second term in Eq. (31) arises due to the pres-
ence of the additional term e−i|k0 |R

R in the equation for Dβ
i j ; see

Eq. (12). In contrast to the previous considerations [11–13],
the obtained finite-temperature potential consists of these two
contributions. It is interesting to note that the second term
with the same power expansion as in Eq. (32) was recently
obtained in [25] for long-range interaction between two atoms
embedded in an external electromagnetic field. The crucial
point is that according to the expression (31), both summands
comprise a divergence at k0 = 0 arising from the 3/(k0R)4

term multiplied by the singular at zero function nβ (k0) in
Eqs. (29) and (32), and only the total expression is infrared
finite. Furthermore, it is worth highlighting that the sum of
two exponentials [see Eq. (12)], which arises specifically in
the thermal case, yields the correct result when calculating
the temperature-dependent self-energy of a bound electron
[15]. In the nonrelativistic limit, the expression found in [15]
exactly coincides with the formula for the thermal Stark shift
as obtained within the framework of quantum mechanical
perturbation theory [26].
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III. SHORT-RANGE LIMIT OF INTERATOMIC
INTERACTION AT FINITE TEMPERATURE

Before proceeding to the analysis of the asymptotic behav-
ior of the temperature correction to the long-range potential,
we consider various limits for the leading nonthermal contri-
bution.

In the short-range limit [a0 
 R 
 λ0, where a0 ∼
1/(mαZ ) is the Bohr radius and λ0 ∼ 1/[m(αZ )2] is the typ-
ical atomic wavelength in relativistic units], the expression
(28) can be reduced to

U 0(R) = −C6

R6
, (33)

where the coefficient C6 is defined by

C6 = −3i

π

∫ ∞

0
dk0αA(k0)αA(k0). (34)

The integration over k0 in Eq. (34) can be carried out both
analytically (with the use of residue theorem) and numerically.
The summation over the entire spectrum in Eqs. (23)–(25)
is commonly performed numerically using, for example, the
B-splines approach for solutions of the Schrödinger equa-
tion [27]. In the numerical results below, we also treat
hydrogen atoms in the limit of infinite nucleus mass. Note
that the integral in Eq. (34) is purely real despite the fact that
polarizability in the general case is a complex quantity (see
the proof of this statement in Appendix B). As a consequence,
the imaginary part of the interaction potential appears only
in the following orders of decomposition over powers of k0R
in Eq. (28); see, e.g., [21,28].

For two identical hydrogen atoms in states A = B = 1s,
we arrive at the known result C6 = 6.499 in atomic units
(hereafter, a.u.). For the 1s − 2s interaction, the resulting
C6 constant becomes symmetry dependent according to the
substitution given by Eq. (30). This leads to the disper-
sion constant C6 = 176.735 ± 27.98 a.u., which is in perfect
agreement with the results given in [20,21]. As shown in
these works, in the case of quasidegenerated states (e.g, levels
2s and 2p in hydrogen), it is also necessary to separately
consider the interval λ0 
 R 
 λL, with λL = 1

mα(αZ )4 (the
wavelength of the Lamb shift in relativistic units), in which
the general dependence R−6 still remains. Then in this range,
C6 = 121.489 ± 46.61 a.u.

Let us proceed to the analysis of various asymptotics of
the finite-temperature contribution to the interaction poten-
tial given by expression (31). As was emphasized in [3], in
the thermal case, the interatomic distance parameter R cor-
relates with temperature T . Understanding this phenomenon
is straightforward, as the main contribution to the integral
in the expression is provided by the poles of the function
αA(k0)αB(k0), which is within the region bounded by the
function k4

0nβ (k0). The latter has a maximum at k0 ∼ kBT and
exponentially decreasing wings. Thus, in the thermal case,
the asymptotic behavior of the potential is determined by the
behavior of the oscillating exponential factor e2ik0R in two
different regions: (1) the short-range (SR) limit a0 
 R 
 1

k0
,

which also implies the thermal condition a0 
 R 
 1
kBT , and

(2) the long-range (LR) limit R � 1
k0

, with temperatures sat-

isfying the inequality R � 1
kBT .

In the short-range limit, we can set k0R 
 1. Then, de-
composing the exponential factor into a Taylor series in the
vicinity of a small argument up to terms of the order of
O[(k0R)6], we have

U β
SR(R) ≈ 2i

πR2

∫ ∞

0
dk0k4

0αA(k0)αB(k0)

{
4

15
i(k0R)5 + 2

3
(k0R)4 − 4

3
i(k0R)3 − 2(k0R)2 + 2i(k0R) + 1 + O[(k0R)6]

}

× F1(k0, R)nβ (k0) − 2i

πR2

∫ ∞

0
dk0k4

0αA(k0)αB(k0)F2(k0, R)nβ (k0). (35)

Substitution of F1, F2 leads to

U β
SR(R) = 2i

πR2

∫ ∞

0
dk0k4

0αA(k0)αB(k0)

{
1 + 1

(k0R)2
+ 3

(k0R)4
+ 22i

15
(k0R) − 16

15
(k0R)2 + O[(k0R)3]

}
nβ (k0)

− 2i

πR2

∫ ∞

0
dk0k4

0αA(k0)αB(k0)

[
1 + 1

(k0R)2
+ 3

(k0R)4

]
nβ (k0)

= − 44

15πR

∫ ∞

0
dk0k5

0αA(k0)αB(k0)nβ (k0) − 32i

15

∫ ∞

0
dk0k6

0αA(k0)αB(k0)nβ (k0). (36)

From Eq. (36), it is clearly seen that the terms proportional to
the 1 + 1

(k0R)2 + 3
(k0R)4 (see the second line in the equation) are

canceled out in the total result. Thus, the final expression rep-
resents the Coulomb behavior plus constant contribution. The
latter arises from the second integral in the last line of Eq. (35)
and depends only on the particular atomic polarizabilities. The
resulting leading term confirms the conclusion reached earlier

in [3], but with the caveat that both contributions under con-
sideration, as will be shown below, may be complex numbers.
In addition, by going to atomic units in Eq. (36), we find that
the temperature dependence is of the order of α5, which is
consistent with the result of [29] [see Eq. (C2) there].

The final expression for the short-range limit can be writ-
ten in the compact form with the dispersion constant Cβ

1 as
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follows:

U β
SR(R) = −Cβ

1

R
+ Cβ

0 , (37)

where

Cβ

1 = 44

15π

∫ ∞

0
dk0k5

0αA(k0)αB(k0)nβ (k0), (38)

Cβ

0 = −32 i

15

∫ ∞

0
dk0k6

0αA(k0)αB(k0)nβ (k0). (39)

It is important to note here that in contrast to the zero-
temperature case, both constants of the leading order of the
short-range limit are complex due to the definitions (23)–(25).
A detailed analysis of the origin of the imaginary contribution
to Cβ

1 and Cβ

0 is presented in Appendix B. From a physical
standpoint, this signifies the manifestation of line broadening.
This effect admits the analogy with examining the imagi-
nary part of the thermal self-energy correction for the bound
electron [15,26,30,31].

Additionally, one can consider asymptotic of Eq. (37) when
kBT 
 m(αZ )2 (i.e., the temperature is much less than the
binding energy). For the two hydrogen atoms (Z = 1) in the
ground states A = B = 1s, this inequality is valid up to tem-
peratures T ∼ 104 K. This implies that dynamic polarizability
α1s(k0) can be replaced by its static value α1s(0), which is
purely real. Performing integration over the frequency, we
obtain

Cβ

1 = −352π5

945
(kBT )6α2

1s(0), (40)

Cβ

0 = 1536 i ζ (7)(kBT )7α2
1s(0), (41)

where ζ (s) is the Riemann zeta function. At T = 300 K,
one can find Cβ

1 = −3.51 × 10−26 a.u. and Cβ

0 = −i 3.3 ×
10−30 a.u. These estimates lead to an energy shift and level
broadening of the order of 10−10 and 10−14 Hz, respectively,
which are negligible. If one or both atoms are in an excited
state, this estimate is no longer applicable. In this case, it
is necessary to take into account the quasidegenerate states
available in the sum over the entire spectrum in the expression
for the polarizabilities of atoms. In particular, one should
consider states of opposite parity separated by a Lamb shift
or a fine-structure interval, which are of the order of mα(αZ )4

and m(αZ )4, respectively.

IV. LONG-RANGE LIMIT OF INTERATOMIC
INTERACTION AT FINITE TEMPERATURE

In the long-range (LR) limit, k0R � 1 [this also implies
R � 1/(kBT )], only the first terms in Eqs. (29) and (32)
remain important, i.e., we can set F1 = F2 = 1. This leads to
the expression

U β
LR(R) ≈ 2i

πR2

∫ ∞

0
dk0k4

0αA(k0)αB(k0)e2ik0Rnβ (k0)

− 2i

πR2

∫ ∞

0
dk0k4

0αA(k0)αB(k0)nβ (k0). (42)

In Eq. (42), the second term obviously falls off slower (due
to the absence of a highly oscillating exponent under the

integral) with increasing R than the first term. Therefore, in
the long-range limit for the leading contribution, we find

U β
LR(R) ≈ Bβ

2

R2
, (43)

where

Bβ

2 = −2i

π

∫ ∞

0
dk0k4

0αA(k0)αB(k0)nβ (k0). (44)

In complete analogy with the reasoning in Sec. III, this con-
tribution also yields a complex number (see Appendix B).
The energy shift in the LR limit defined by Eq. (43) cor-
responds to the R−2 dependence. Numerical evaluation for
two 1s − 1s atoms at T = 300 K gives Bβ

2 = 7.75 × 10−43 −
i 7.04 × 10−22 a.u., which is also insignificant compared to
the present level of experimental accuracy.

V. RESULTS AND DISCUSSION

In this study, a rigorous quantum electrodynamics deriva-
tion of the long-range potential between two atoms placed in
an equilibrium thermal radiation environment is presented.
We explore two asymptotic behaviors of the resulting ex-
pression (short-range and long-range limits). The ultimate
outcome for the temperature correction is expressed by
Eq. (31), differing from the result obtained through a phe-
nomenological generalization of the known zero-temperature
result [11,32]. The latter approach results in a different
behavior in the short-range limit, leading to a significant
overestimation of the interaction induced by the thermal en-
vironment compared to the result presented in this work.

To analyze the statement above, we briefly compare our
results with the estimates given in [13,33]. In the short-range
limit, the following expression (see Eq. (10) in [13]) for the
total potential (zero + finite temperature) was found:

Ũ 0+β (R) = −3π

R6

∫ ∞

0
dk0αA(k0)αB(k0)

× coth

(
k0

2kBT

)
sin (2k0R). (45)

Assuming that k0R 
 1, the leading thermal contribution of
Eq. (45) can be estimated as

Ũ β (R) ≈ −12π

R5

∫ ∞

0
dk0k0αA(k0)αB(k0)nβ (k0), (46)

where we took into account equality coth( x
2 ) = 1 + 2nβ (x).

This equation is also infrared finite and can be evaluated
numerically. For the two hydrogen atoms in their ground
states and T = 300 K, we find Ũ β (R) = − 8.38×10−7

R5 a.u. At
R = 10 a.u., this leads to a thermal shift of the order of
8.38 × 10−12 a.u., which is much larger than the same shift
defined by Eq. (37), with the calculated coefficient Cβ

1 given
in Table I. Based on the fundamentals of the theory used in this
study (thermal radiation is treated rigorously in the framework
of QED at finite temperature rather than phenomenologically),
we conclude that the previous results on the thermal interac-
tion between two atoms (45) are significantly overestimated.

Numerical calculations, presented in Tables I and II, show
that only for highly excited states, the corresponding energy

012816-6



LONG-RANGE INTERACTION OF HYDROGEN ATOMS AT … PHYSICAL REVIEW A 109, 012816 (2024)

TABLE I. The real and imaginary parts of the dispersion coeffi-
cient Cβ

1 [see Eq. (40)] for two hydrogen atoms in states a and b (first
column) at different temperatures T in Kelvin. All values are given in
atomic units. The imaginary part of Cβ

1 for two atoms in ground states
(1s − 1s) is completely insignificant and therefore is not presented.

States a − b T = 300 T = 1000 T = 104

Re Cβ

1

1s − 1s −3.51 × 10−26 −4.84 × 10−23 −8.77 × 10−17

2s − 2s −2.53 × 10−23 −4.08 × 10−20 5.72 × 10−15

3s − 3s −2.02 × 10−21 −1.37 × 10−18 −5.48 × 10−15

4s − 4s −8.04 × 10−20 −3.91 × 10−17 −1.66 × 10−14

8s − 8s 2.11 × 10−17 −1.21 × 10−15 −1.98 × 10−13

Im Cβ

1

2s − 2s −1.03 × 10−42 −8.39 × 10−23 4.42 × 10−15

3s − 3s −3.76 × 10−25 −5.00 × 10−18 1.56 × 10−14

4s − 4s −3.62 × 10−20 −1.37 × 10−18 1.42 × 10−14

8s − 8s −2.14 × 10−16 −9.87 × 10−16 −3.06 × 10−15

shift barely reaches a value of the order of 1 Hz (for in-
teratomic distances of the order of 10 Bohr radii) at room
temperature. However, even this value is far beyond the
accuracy achievable in modern experiments measuring the
transition frequencies of involving Rydberg states.

The approach developed in this work also permits the gen-
eralization of thermal corrections to the interaction of an atom
with a wall, taking into account the interaction of multiple
distributed atoms. For an ensemble of atoms, the resultant
contribution should be notably greater. This is confirmed ex-
perimentally in the case of a Bose-Einstein condensate of 87Rb
atoms located a few microns from a dielectric substrate [9].
Furthermore, there exists a discrepancy between theory and
experiment, notably concerning the interaction of an atom
with a graphene layer [34]. It is important to emphasize that
the result we obtained here involves the disparity between a
rigorous QED derivation and the phenomenological approach.

TABLE II. The real and imaginary parts of dispersion coefficient
Cβ

0 [see Eq. (41)] for two hydrogen atoms in states a an b (first
column) at different temperatures T in Kelvin. All the values are in
atomic units. The real part of Cβ

0 for the two atoms in ground states
(1s − 1s) is completely negligible and therefore is not presented.

States a − b T = 300 T = 1000 T = 104

Re Cβ

0

2s − 2s 1.34 × 10−46 9.24 × 10−26 1.24 × 10−17

3s − 3s 1.46 × 10−28 1.62 × 10−21 −1.55 × 10−17

4s − 4s 6.02 × 10−24 −4.14 × 10−21 −9.44 × 10−18

8s − 8s 7.52 × 10−21 −3.29 × 10−20 2.97 × 10−22

Im Cβ

0

1s − 1s −3.31 × 10−30 −1.52 × 10−26 −2.88 × 10−19

2s − 2s −2.40 × 10−27 −1.37 × 10−23 5.35 × 10
−18

3s − 3s −1.99 × 10−25 2.34 × 10−22 −1.46 × 10−17

4s − 4s −7.60 × 10−24 7.62 × 10−21 −2.16 × 10−17

8s − 8s −8.38 × 10−22 −1.71 × 10−19 −1.54 × 10−16
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APPENDIX A: FOURIER TRANSFORM
OF PHOTON PROPAGATORS

Following [17], we define the four-dimensional Fourier
transform of function f (k) as follows:

f (x) =
∫

d4k

(2π )4
e−ikx f (k). (A1)

To find the corresponding coordinate representation of the
total photon propagator, one should apply the above transfor-
mation to the sum of the zero- and finite-temperature parts
given in momentum space,

Dμν (k) = D0
μν (k) + Dβ

μν (k). (A2)

Then, in the temporal gauge, the corresponding evaluation for
the first term in Eq. (A2) yields

D0
i j (x1, x2) =

∫
d4k

(2π )4
e−ik(x1−x2 )D0

i j (k)

= −4π i
∫

dk0

2π
e−ik0(t1−t2 )

∫
d3k

(2π )3

eik(r1−r2 )

k2
0 − k2

×
(

δi j − kik j

k2
0

)

= − i

2π

∫ ∞

−∞
dk0e−ik0(t1−t2 )

(
δi j + ∇i∇ j

k2
0

)
ei|k0|r12

r12
.

(A3)

Finally, we can write

D0
i j (x1, x2) = i

2π

∫ ∞

−∞
dk0e−ik0 (t1−t2 )D0

i j (k0, r12), (A4)

where we introduced the following notation:

D0
i j (k0, r) = −

(
δi j + ∇i∇ j

k2
0

)
ei|k0|r12

r
. (A5)

The temperature-dependent part in Eq. (A2) is

Dβ
i j (x1, x2) = 8π2

∫
d4k

(2π )4
e−ik(x1−x2 )Dβ,P

i j (k)

= 8π2
∫

dk0

2π
e−ik0 (t1−t2 )

∫
d3k

(2π )3
eik(r1−r2 ) nβ (|k|)

2|k|

× [δ(k0 − |k|) + δ(k0 + |k|)]
(

δi j − kik j

k2
0

)

=
∫ +∞

−∞
dk0e−ik0(t1−t2 )

(
δi j + ∇i∇ j

k2
0

)
sin(|k0|r12)

πr12

× nβ (|k0|). (A6)
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For our purposes, it is convenient to rewrite Eq. (A6) in terms
of two contributions,

Dβ
i j (x1, x2) = i

2π

∫ +∞

−∞
dk0e−ik0(t1−t2 )

(
δi j + ∇i∇ j

k2
0

)

×
{
−ei|k0|r12

r12
+ e−i|k0|r12

r12

}
nβ (|k0|). (A7)

Similar to Eq. (A4), the result of the Fourier transform of the
thermal part can be written as follows:

Dβ
i j (x1, x2) = i

2π

∫ ∞

−∞
dk0e−ik0(t1−t2 )Dβ

i j (k0, r12), (A8)

together with the notation

Dβ
i j (k0, r) =

(
δi j + ∇i∇ j

k2
0

)

×
{
−ei|k0|r12

r12
+ e−i|k0|r12

r12

}
nβ (|k0|). (A9)

The sum of the two equations (A5) and (A9) (often called the
“mixed” representation of photon propagator [17]),

Di j (k0, r) = D0
i j (k0, r) + Dβ

i j (k0, r), (A10)

is then used in the evaluation of the interaction potential given
by Eq. (21).

APPENDIX B: IMAGINARY PART OF INTEGRALS
WITH SQUARED POLARIZABILITY

In this Appendix, we describe how the imaginary part of
the integrals with the squared atomic polarizability contributes

to the dispersion coefficients in the zero- and finite-
temperature cases. Although, in the present work, all integra-
tions are performed completely numerically, such an analysis
would not be superfluous.

For this purpose, we consider the following model integral
arising in Eqs. (38), (39), and (44) for the dispersion coeffi-
cients:

J =
∫ ∞

0

f (k0)dk0

(a − k0 − i0)2
, (B1)

where a is the real positive number and f (k0) is a function
that is analytical on the real semiaxis and guarantees the
convergence of the J . With the use of the Dirac prescription,

1

a − k0 − i0
= P

1

a − k0
+ iπδ(k0 − a) (B2)

(P stands for the integral in the sense of the principal value),
Eq. (B1) can be simplified to

J =
∫ ∞

0

f (k0)dk0

(a − k0 − i0)2
= − ∂

∂a

∫ ∞

0

f (k0)dk0

a − k0 − i0

= − ∂

∂a

∫ ∞

0

[
P

1

a − k0
+ iπδ(k0 − a)

]
f (k0)dk0

= − ∂

∂a
P

∫ ∞

0

f (k0)dk0

a − k0
− iπ

∂

∂a
f (a). (B3)

The first term in the last line of Eq. (B3) is purely real,
while the second is imaginary (for the real f ) and nonzero for
f (k0) �= const. Since, for the finite-temperature case, f (k0) =
kN

0 nβ (k0) (here, N > 1 is the integer number), the correspond-
ing dispersion coefficients Cβ

1 and Cβ

0 [see Eqs. (38) and (39)]
become complex. The same holds for Bβ

2 , given by Eq. (44).
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