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Trace expressions and associated limits for equilibrium Casimir torque
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We exploit fluctuational electrodynamics to present trace expressions for the torque experienced by arbitrary
objects in a passive, nonabsorbing, rotationally invariant background environment. We present trace expressions
for equilibrium Casimir torque which complement recently derived nonequilibrium torque expressions and
explicate their relation to the Casimir free energy. We then use the derived trace expressions to calculate,
via Lagrange duality, semianalytic structure-agnostic bounds on the Casimir torque between an anisotropic
(reciprocal or nonreciprocal) dipolar particle and a macroscopic body composed of a local isotropic electric
susceptibility, separated by vacuum.
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I. INTRODUCTION

Fluctuation phenomena have been successfully studied and
measured in the past few decades [1,2]. Experiments involving
a sphere-plate setup have measured radiative heat transfer
[3,4], an attractive Casimir force [5,6], and a long-range repul-
sive Casimir force [7]. Casimir torque, on the other hand, has
been less studied to date. In anisotropic media or systems ex-
hibiting chirality, thermal fluctuations can also cause objects
to exchange net angular momentum with their environments
or other nearby objects, resulting in a predicted net torque
[8–13]. Several theoretical proposals to detect the Casimir
torque include birefringent plates [14], anisotropic nanostruc-
tures [15,16], and liquid crystals [17]. The challenge in each
system for detection stems from the weakness of the effect and
the requirement of ultrasensitive measurements; a larger effect
requires the ability to place objects at a small separation. The
prediction of a Casimir torque was eventually confirmed ex-
perimentally between a liquid crystal and a solid birefringent
crystal where, to ensure that the two surfaces were parallel (a
problem less relevant for sphere-plate setups), the vacuum gap
was replaced by an isotropic material to act as a spacer layer
[18]. The measurement of Casimir torque between two objects
(a nanorod levitated by a linearly polarized optical tweezer
near a birefringent plate) with a vacuum gap was proposed
in Ref. [19] but has not yet been realized, although recent
experiments [20,21] with an optically levitated nanodumbbell
or nanosphere in vacuum demonstrated a torque detection
sensitivity on the order of 10−27 N m Hz−1/2, demonstrating
progress towards detecting a Casimir torque in a setup involv-
ing a dipolar particle near a macroscopic body, separated by
vacuum.

In calculating equilibrium Casimir forces on a rigid body,
it is common to start with a Casimir free energy and then
take a negative derivative with respect to the position of the
body to get a force [22–24]. The equilibrium Casimir torque
is expected to be a rotational derivative of the Casimir free
energy and indeed was calculated in the above-cited works
from the Casimir free energy. In this article we start from
the general Lorentz force law and then use the mathematical

framework of fluctuational electrodynamics [25,26] and scat-
tering theory [22] to derive trace expressions for the thermal
Casimir forces and torques experienced by a set of objects in
thermal equilibrium which elucidate in a unified framework
the precise relationship of force and torque to the Casimir free
energy. In particular, the torque is confirmed to be a rotational
derivative of the Casimir free energy but, since photons are
spin-1 particles, the rotation is an angular rotation of the center
of mass of the body plus a rotation of the vector components
of the scattering operator.

As an application of the derived torque expressions, we
calculate bounds on the Casimir torque on an anisotropic dipo-
lar particle from neighboring objects. There is the interesting
question of whether Casimir torques must be weak. Reference
[27] predicts a giant torque per unit area for two metallic one-
dimensional gratings rotated by a small angle, with diverging
torque near zero rotation angle as the system sizes diverge.
How large can the Casimir torque be if one object is restricted
to be finite in spatial extent or even dipolar? As the ability to
manipulate mechanical devices of increasingly smaller scales
continues to increase, so too will the interest in exploiting fluc-
tuation phenomena such as laser shot noise and the Casimir
effect as a mechanism of control in micromachines [28–30].
The natural question of which geometry leads to maximum
torque can be probed via large-scale optimization but cannot
in general provide guarantees of global optimality [31,32].
Further understanding, e.g., of quantitative bounds and scal-
ing behavior, can be gained by applying a recent framework
based on Lagrange duality to compute shape-independent
bounds [13,33–37]. In particular, Ref. [36] presents bounds
on the surface-perpendicular Casimir force on a dipole above
a half-space design domain and the authors remark that similar
methods can be used for bounds on Casimir torques by taking
a derivative of the dipolar basis functions with respect to a
rotation angle. Naive manipulations and rotational derivatives
will yield incorrect results by missing “spin” contributions.
Our derived expressions with an explicit appearance of a total
angular momentum operator Ĵ allow for a more lucid analysis
of torque phenomena.
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II. EQUILIBRIUM CASIMIR EFFECTS

As explained in detail in Refs. [13,38–41], starting from the
Lorentz force law, one can show that the thermally averaged
(〈· · · 〉T ) rate of absorption associated with an observable �̂ is
given by

〈�̂〉T = −Im
∫ ∞

−∞
dω

1

h̄c2μ0
Tr|Vbody

(
�̂CG−1†

0

)
, (1)

where substituting h̄ωI, p̂, and Ĵ for �̂ above yields the
absorbed power, force, and torque on the body, respectively.
Here p̂ ≡ −ih̄∇ is the linear momentum operator, Ĵ ≡ L̂ + Ŝ
is the total angular momentum operator, L̂ ≡ r × p̂ = −ih̄r ×
∇, and

Ŝ ≡ −ih̄

⎧⎨
⎩
⎡
⎣0 0 0

0 0 1
0 −1 0

⎤
⎦,
⎡
⎣0 0 −1

0 0 0
1 0 0

⎤
⎦,
⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦
⎫⎬
⎭

(2)

are orbital and spin angular momentum operators [42], re-
spectively, defined in the Cartesian basis and compactly
summarized by (Ŝa)bc = −ih̄εabc. The notation |Vbody denotes
that the outermost indices of the operator are traced over
positions in the body, while all others are over all space,
and a trace over the vector components of the dyadics, that
is, Tr|V (AB) =∑ab

∫
r∈V

∫
s∈R3 d3r d3sAab(r, s)Bba(s, r) or,

alternatively, Tr|V [(· · · )] = Tr[P (V )(· · · )], where P (V ) is a
projection operator into the spatial volume V . The opera-
tor G0 represents the background Green’s function, which
in vacuum satisfies (∇ × ∇ × −ω2

c2 I)G0(r, r′) = ω2

c2 Iδ(3)(r −
r′). For systems in thermal equilibrium the field-field corre-
lations satisfy Ceq

i j (T, ω, ω′; r, r′) ≡ 〈Ei(r, ω)E∗
j (r′, ω′)〉T =

h̄
2πε0

coth( h̄ω
2kBT )δ(ω − ω′)GA

i j (ω; r, r′), where G is the Green’s

function of the system, defined by [∇ × ∇ × −ω2

c2 (V +
I)]G(r, r′) = ω2

c2 Iδ(3)(r − r′), where V = (ε − I) + c2

ω2 ∇ ×
(I − μ−1)∇× is the potential or generalized susceptibility
introduced by the objects [43]. The superscript A on an
operator �̂ denotes a Hermitian operator which contains
the anti-Hermitian part of �̂, defined by �̂A ≡ 1

2i (�̂ − �̂†),
where the dagger denotes conjugate transpose. In our notation,
�̂

†
ab(x, y) = �̂ba(y, x)∗, treating the vector component and

spatial coordinate as an index pair.
For a single body, the Green’s function satisfies G = G0 +

G0TG0, where we have introduced the scattering T opera-
tor which transforms incident fields into induced currents in
the body and is formally defined by the relation T = V (I −
G0V )−1 [38]. Since T vanishes unless both spatial arguments
are within the body, the integral can be extended over all space
to get a trace expression

〈�̂〉eq
T = Re

∫ ∞

−∞

dω

4π
coth

(
h̄ω

2kBT

)
Tr[�̂(G0T − G†

0T
†)].

(3)

However, Re Tr[�̂(G0T − G†
0T

†)] = 0 independent of V
(reciprocal or nonreciprocal), so the net power absorption,

force, and torque on an isolated object in equilibrium are
identically zero, as expected.

Consider next the case of two or more bodies. The Green’s
function is found by starting with object 1 in isolation with
G1 = (1 + G0T1)G0 and then inserting the rest of the objects
to get G = (1 + G0T1̄ ) 1

1−G0T1G0T1̄
(1 + G0T1)G0, where T1̄

denotes the scattering operator of all objects excluding object
1 [38]. Changing the order of object insertion implies that
the same equation with the indices swapped 1 ↔ 1̄ holds as
well. Using these expressions for the Green’s function in the
equilibrium field-field correlation dyadic Ceq in Eq. (1), we
find that the thermally averaged torques on the objects are
(intermediate steps are provided in Appendix A)

τ (α,eq)(T ) = Re
1

π

∫ ∞

0
dω

[
n(ω, T ) + 1

2

]

× Tr

(
1

1 − G0TαG0Tᾱ

G0(Tα Ĵ − ĴTα )G0Tᾱ

)
,

(4)

where n(ω, T ) = 1
exp( h̄ω

kBT )−1
is the Bose-Einstein distribution

function. The Tr symbol denotes a trace over the complete
set of indices of the enclosed operators (for example, over all
positions and polarization indices of the dipole sources). The
switch from Tr|Vα

to Tr is possible since CeqG−1†
0 has a Tα

or T †
α with α = 1, 1̄ as the leftmost or rightmost term in the

expansion (Appendix A). Since Tα vanishes if at least one of
the spatial arguments is outside the volume Vα of body α, one
can extend the spatial integration to be over the entire space,
resulting in a trace expression. The above equations satisfy
τ (1,eq) = −τ (1̄,eq) (by the cyclicity of the trace along with
resumming of 1

1−G0T1̄G0T1
), as expected since the angular

momentum transfer to the far field should cancel and detailed
balance should hold. For the case of reciprocal materials, the
expressions can be further simplified to

τ (α,eq)(T ) = Re
2

π

∫ ∞

0
dω

[
n(ω, T ) + 1

2

]

× Tr

(
ĴG0TᾱG0Tα

1

1 − G0TᾱG0Tα

)
. (5)

The expressions for the equilibrium forces are identical but
with Ĵ → p̂, corresponding to a change in observable from
rate of angular momentum absorption to rate of linear mo-
mentum absorption.

Equation (4) elucidates the relationship of the torque (and
force) with the Casimir free energy F , defined as

F ≡ − h̄

π

∫ ∞

0
dω

[
n(ω, T ) + 1

2

]
Im Tr[ln(1 − G0T1G0T1̄ )]

(6)

= − h̄

π

∫ ∞

0
dω

[
n(ω, T ) + 1

2

]
Im ln[det(1 − G0T1G0T1̄ )],

(7)
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more directly than Eq. (5). Viewing the free energy F (Tα ) as a
function of Tα = Vα (I − G0Vα )−1, the equilibrium force and
torque can be written as

F(α,eq) = − lim
�x→0

F
(
exp
(− i�x·p̂

h̄

)
Tα exp

( i�x·p̂
h̄

)) − F (Tα )

�x
,

(8)

τ (α,eq) = − lim
�φ→0

F
(
exp
(− i�φ·Ĵ

h̄

)
Tα exp

( i�φ·Ĵ
h̄

)) − F (Tα )

�φ
,

(9)

as can be verified by taking the limit directly and recovering
Eq. (4). Thus, the equilibrium force and torque on object α are
changes in free energy due to a rigid translation and rotation of
the scattering operator Tα where, because photons are spin-1

particles, the relevant rotation operator exp(− i�φ·Ĵ
h̄ ) depends

on Ĵ and not L̂.
Assuming rigid bodies, the equilibrium Casimir force can

be written more explicitly as a negative gradient of a free
energy F (Appendix A of Ref. [38]). Concisely, assuming
rigid bodies, then ∇O1T1 = ∇T1 − T1∇ = i

h̄ p̂T1 − i
h̄T1p̂,

where ∇O1 is a derivative with respect to the center-of-mass
coordinate of object 1 so that

F(1,eq)(T ) = Im
h̄

π

∫ ∞

0
dω
[
n(ω, T ) + 1

2

]

× Tr∇O1 ln(1 − G0T1G0T1̄ ) (10)

= −∇O1F , (11)

where the last line follows since ∇O1 can be brought outside
the trace. When calculating equilibrium torque, care must be
taken to check if the torque is an angular derivative of the same
free energy F . In trying analogous steps for torque starting
from Eq. (4) we find that the trace expressions cannot in
general be rewritten as angular derivatives with respect to the
center-of-mass coordinates of the rigid body, −rO1 × ∇O1F ,
due to the spin terms.

Some intuition can be gleaned from a dilute limit.
In the Rytov formalism for fluctuational electrodynamics
[25], the object is viewed as a collection of free dipoles
which undergo fluctuations. In thermal equilibrium, the
fluctuation-dissipation theorem states that the fluctuations are
proportional to the polarizability tensor [43,44]. Consider
two objects (viewed as two collections of fluctuating free
dipoles) separated by a gap and call the free energy for a
given initial arrangement Fi. Then calculate the free energy
when one of them is geometrically rotated by �φ about the
z axis but the polarizability or susceptibility tensor at the
rotated spatial point is unchanged and call that final energy
F f ,L, that is, rotate the position of each dipole but not its
orientation. Likewise, starting from the initial arrangement,
keep the position of each dipole fixed but now instead ro-
tate the orientation by �φ around the z axis and call the
resulting free energy F f ,S . The torque on the object is given

by lim�φ→0 − (F f ,L−Fi )+(F f ,S−Fi )
�φ

. Physically, both the spatial
location and orientation of each free dipole are rotated during
the rotation of an object, which is precisely what Eq. (9) states
and Eq. (4) calculates.

As a word of caution, this simple interpretation
breaks down past the dilute limit, in which case
one can no longer view torque as due to a sum of
pairwise interactions τ (α,eq) ∝ Tr(ĴG0VᾱG0Vα ). In

particular, if Vα → exp(− i�φ·Ĵ
h̄ )Vα exp( i�φ·Ĵ

h̄ ), then

Tα → exp(− i�φ·Ĵ
h̄ )Tα exp( i�φ·Ĵ

h̄ ), as can be seen from
the definition Tα = Vα (1 − G0Vα )−1 and the fact that
ĴG0 = G0Ĵ. Similar statements do not hold for the Ŝ and
L̂ operators since the spin and orbital angular momentum
operators do not commute with G0. For example, the

statement that if Vα → exp(− i�φ·Ŝ
h̄ )Vα exp( i�φ·Ŝ

h̄ ) then

Tα → exp(− i�φ·Ŝ
h̄ )Tα exp( i�φ·Ŝ

h̄ ) is not generally true beyond
the dilute limit. Instead, one would need to use Tα →
Ṽα (1 − G0Ṽα )−1, where Ṽα ≡ exp(− i�φ·Ŝ

h̄ )Vα exp( i�φ·Ŝ
h̄ ).

III. BOUNDS ON EQUILIBRIUM CASIMIR TORQUE

In this section we consider a Wick rotation consistent with
a change of variables ω = iξ from ω to ξ . Unless stated
otherwise, all quantities in this section are taken to implicitly
depend on iξ . Regarding notation, a vector field v(x) will be
denoted by |v〉. At ω = iξ , although all relevant polarization
and field quantities as well as V and G0 can be defined to be
real valued in position space without loss of generality, we still
use the Hermitian inner product 〈u||v〉 = ∫ d3x u(x)∗ · v(x)
since the eigenbasis for which calculations are most conve-
nient can still be complex valued. An operator A(x, x′) will
be denoted by A, with

∫
d3x′A(x, x′) · v(x′) denoted by A|v〉.

As described in more detail below, following the procedure
laid out in Refs. [34–36], and as an exemplary application of
Eq. (4), we derive upper and lower bounds on the Casimir
torque that may be experienced by a dipolar particle neigh-
boring a structured surface. The torque bounds necessitate
only that the design region � containing the structured object
be rotationally invariant about the same axis going through
the dipolar particle about which torque is being considered.
The bounds encompass any possible structure composed of
a homogeneous, local, and isotropic electric susceptibility
χ (iξ ) in the design domain �. Concisely, we expand the
dipolar response, including local field effects, along its prin-
cipal axes as 1

2 [Tdip(iξ ) + T T
dip(iξ )] ≡∑a αa(iξ )|u(a)〉〈u(a)|,

where each αa(iξ ) > 0 is a polarizability component, while
u(a)(x) = naδ

(3)(x − R) corresponds to a localized basis func-
tion at R (the dipole location) in the na direction. The chosen
design domain � enclosing the second object is such that
projection into �, denoted by P (�), commutes with the ob-
servable of interest �̂. Our bounds � ∈ [�−,�+] for T =
0 K can be written concisely as

�± = ±
∫ ∞

0

dξ

2π

∑
a

αa

√
〈u(a), �̂†�̂Gsca(�)u(a)〉
〈u(a),Gsca (�)u(a)〉−1

, (12)

where Gsca (�) = G0(χ−1P (�) − P (�)G0P (�))−1G0 is the
scattering Green’s function of the equivalent object formed
by filling the entire domain � with the susceptibility χ .
The maximization and minimization bounds differ in sign,
but not magnitude, as expected on physical grounds if [�̂,

P (�)] = 0.
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A. Derivation

For concreteness, consider the Casimir torque at zero tem-
perature on a dipolar particle, which can be written as

τdip =
∫ ∞

0

dξ

2π
Re Tr

(
1

1 − G0TdipG0T

× G0(TdipiĴ − iĴTdip)G0T

)
, (13)

where T = (V−1 − G0)−1 = (1 − VG0)−1V and likewise
Tdip = (V−1

dip − G0)−1 = (1 − VdipG0)−1Vdip. We group i and

Ĵ together so that all operators are explicitly real valued
in position space. To simplify matters, we assume that the
dipole is small enough compared to the macroscopic body that
multiple scattering effects between different objects can be ne-
glected, though multiple scattering within each object cannot,
that is, we replace (1 − TdipG0TG0)−1 with 1. Also, assume
for simplicity that T is symmetric (V describes a reciprocal
material) but that Tdip can be nonreciprocal. Finally, using the
cyclic properties of the trace, the fact that ĴT

k = −Ĵk , and the
assumption that G0 and T are symmetric yields

τdip,k =
∫ ∞

0

dξ

2π
Re Tr
[
G0
(
Tdip + T T

dip

)
iĴkG0T

]
(14)

=
∫ ∞

0

dξ

2π
Re2
∑

a

αa〈u(a), iĴkG0TG0u(a)〉. (15)

The torque on the dipole depends only on the symmetric part
of Tdip, and it is this expression for the torque on the dipole
that we will maximize and minimize.

Our derivation of bounds is based on optimization using the
principles of Lagrangian duality [45]. The loosest such bound
only imposes that the optimal scattering operator satisfies the
conservation of power (optical theorem [46]) over the entire
design domain and not the full scattering equations. Instead
of optimizing over V which has support in �, we relax the
problem and instead take as the degree of freedom the induced
(polarization) current |P(a)〉 ≡ TG0|u(a)〉 with support only in
the design domain �. Since the polarization current is the
degree of freedom, the bounds are monotonic with respect
to the design domain; any polarization currents explored in
an optimization with support within some smaller domain
�′ ⊂ � are also explored in the bigger domain �. Simi-
lar techniques have recently been used to derive bounds on
deterministic scattering and nonequilibrium electromagnetic
phenomena [13,34–37,47–50]. Concretely, the problem we
solve is

max
{Pa (r;iξ )∈�}

∫ ∞

0

dξ

2π
2
∑

a

αaRe〈u(a),G0iĴkP(a)〉 (16a)

subject to

Re[〈u(a)|G0|P(a)〉
− 〈P(a)|P (�)(χ−1 − G0)P (�)|P(a)〉] = 0 (16b)

for all a and each ξ � 0.
First, we consider the problem of maximizing

Re(2〈Einc, i�̂P〉). For convenience, we define the eigenvalue
decomposition of the projection of G0 into the domain �

as P (�)G0P (�) = −∑μ gμ|N(μ)〉〈N(μ)|, where gμ > 0

and the eigenvectors are orthonormal: 〈N(μ), N(ν)〉 = δμν .
We also assume that |N(μ)〉 are eigenstates of �̂ so that
�̂|N(μ)〉 = θμ|N(μ)〉. For our operators of interest, �̂† = �̂,
so the eigenvalues θμ are purely real. Since �̂ commutes with
isotropic G0, the assumption of simultaneous diagonalization
therefore puts restrictions on P (�), i.e., the geometry of
the design domain. We then define the basis expansion
coefficients eμ = 〈N(μ), Einc〉 and pμ = 〈N(μ), P〉. This leads
to a constrained optimization problem with a Lagrangian
given by

L =
∑

μ

{Re(2e∗
μ pμiθμ) − λ[Re(e∗

μ pμ) − (χ−1 + gμ)p∗
μ pμ]},

(17)
where λ ∈ R is a Lagrange multiplier.

Carrying out the optimization, we find that e∗
μiθμ −

λ[e∗
μ/2 − (χ−1 + gμ)p∗

μ] = 0 and
∑

μ[Re(e∗
μ pμ) − (χ−1 +

gμ)p∗
μ pμ] = 0. The first equation gives pμ = eμ

χ−1+gμ
( 1

2 +
iθμ

λ
), which can then be plugged into the second equation

to get

λ = ±2

√√√√√
⎛
⎝∑

μ

|eμ|2θ2
μ

χ−1 + gμ

⎞
⎠/
⎛
⎝∑

μ

|eμ|2
χ−1 + gμ

⎞
⎠

= ±2

√
〈�̂Einc, [χ−1P (�) − P (�)G0P (�)]−1�̂Einc〉

〈Einc, [χ−1P (�) − P (�)G0P (�)]−1Einc〉 .

The objective has δ2L
δpμδp∗

ν
= λ(χ−1 + gμ)δμν , so the negative

value of λ gives the maximum while the positive value gives
the minimum. The stationary point corresponding to λ = 0,
which is a saddle point, can occur if �̂|Einc〉 = 0. However,
this cannot occur for the incident field radiated by a dipole
into the design domain, so we ignore this mathematical case
going forward. Consequently, L ∈ [L−, L+], with

L± = ±
√

〈Einc, �̂†[χ−1P (�) − P (�)G0P (�)]−1�̂Einc〉
〈Einc, [χ−1P (�) − P (�)G0P (�)]−1Einc〉−1

.

(18)

For our problem of interest, Eq. (16a), we set
|Einc〉 = G0|u(a)〉 and identify Gsca(�) = G0(χ−1P (�) −
P (�)G0P (�))−1G0 as the scattering Green’s function of the
equivalent object formed by filling the entire domain � with
the susceptibility χ . Since αa(iξ ) > 0, the net upper bound
cannot fall above the upper bound applied to each channel a,
just as the net lower bound cannot fall below the per-channel
lower bound. This argument also applies to each ξ in the
integral. Since it was assumed that �̂ and P (�) commute,
one can work with Gsca(�) and �̂†�̂Gsca(�) instead of
evaluating �̂ on a vector, yielding Eq. (12).

The extension to T > 0 K follows by noting that
coth( h̄ω

2kBT ) has poles at ωn satisfying h̄ωn
2kBT = iπn for n ∈ Z.

Thus, closing the contour
∫∞
−∞ dω into the upper-half plane

picks up poles with Im(ωn) � 0, so one only needs to con-
sider n = 0, 1, . . .. The residue of coth( h̄ω

2kBT ) at the poles as

a function ω is 2kBT
h̄ . The indented path around the simple

pole at ω = 0 contributes half the residue that a full circle
does. Therefore, if the actual observable or its bound at zero
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FIG. 1. Material dependence of bounds on Casimir torque.
Shown are the upper bounds (solid lines) on the Casimir torque
on a nondispersive dipolar particle above a planar half-space design
domain � which contains a structure made of nondispersive suscepti-
bility χ0 (inset schematic). The bounds saturate in the perfect electric
conductor limit (horizontal dotted lines). At T = 0 K, the bounds ap-
proach h̄c

32π2d4 (αxx,0 + αyy,0 ) as χ0 → ∞ and 7h̄c
640π2d4 (αxx,0 + αyy,0)χ0

for χ0 
 1, where d is the distance of the particle to the half-space
design domain. The expression for T > 0 K is more complicated [see
Eq. (22)]. The calculations were done with d = 10 µm

temperature is written as F (0) = ∫∞
0 f (iξ ) dξ

2π
for the corre-

sponding integrand f (iξ ), then the corresponding quantity for
temperatures T > 0 K is F (T ) = kBT

h̄

∑′∞
n=0 f (iξn), where the

Matsubara frequencies are ξn = 2πkBT n/h̄, and the prime on
the summation means a prefactor of 1

2 for the contribution at
n = 0.

B. Numerics, asymptotics, and discussion

For concreteness, we apply this bound expression on the
torque about the z axis exerted by structures contained within
a planar semi-infinite half space � = {(x, y, z)|z � 0} (Fig. 1
inset), in which case Gsca(�) and Ĵ2

z Gsca (�) have known
semianalytic forms (Appendix B), allowing for evaluation of

τ±
dip,z = ±

∫ ∞

0

dξ

2π

∑
a

αa

√
〈u(a), Ĵ2

z Gsca (�)u(a)〉
〈u(a),Gsca (�)u(a)〉−1

. (19)

This example encompasses a wide variety of possible struc-
ture designs, but by no means represents the full extent of the
theory; bounds can also be evaluated assuming other design
domains such as spherical or cylindrical shells.

For a dipole located at (0, 0, d ), we find

τ±
dip,z(T = 0) = ± h̄c

16π2d4

∫ ∞

0

∫ ∞

0

[
αxx

(
iξ̃c

d

)
+ αyy

(
iξ̃c

d

)]⎛⎜⎝− ξ̃ 2√
ξ̃ 2 + k̃2

√
ξ̃ 2 + k̃2 −

√[
1 + χ
( iξ̃c

d

)]
ξ̃ 2 + k̃2√

ξ̃ 2 + k̃2 +
√[

1 + χ
( iξ̃c

d

)]
ξ̃ 2 + k̃2

+
√

ξ̃ 2 + k̃2

[
1 + χ
( iξ̃c

d

)]√
ξ̃ 2 + k̃2 −

√[
1 + χ
( iξ̃c

d

)]
ξ̃ 2 + k̃2

[
1 + χ
( iξ̃c

d

)]√
ξ̃ 2 + k̃2 +

√[
1 + χ
( iξ̃c

d

)]
ξ̃ 2 + k̃2

⎞
⎟⎠e−2

√
ξ̃ 2+k̃2

k̃ dk̃ d ξ̃ , (20)

τ±
dip,z(T > 0) = ± kBT

8πd3

∞
′∑

n=0

[αxx(iξn) + αyy(iξn)]
∫ ∞

0

(
− (ξnd/c)2√

(ξnd/c)2 + k̃2

√
(ξnd/c)2 + k̃2 −

√
[1 + χ (iξn)](ξnd/c)2 + k̃2√

(ξnd/c)2 + k̃2 +
√

[1 + χ (iξn)](ξnd/c)2 + k̃2

+
√

(ξnd/c)2 + k̃2
[1 + χ (iξn)]

√
(ξnd/c)2 + k̃2 −

√
[1 + χ (iξn)](ξnd/c)2 + k̃2

[1 + χ (iξn)]
√

(ξnd/c)2 + k̃2 +
√

[1 + χ (iξn)](ξnd/c)2 + k̃2

)
e−2

√
(ξnd/c)2+k̃2

k̃ dk̃. (21)

Assume for simplicity that the polarizabilities are also dispersionless. In such a case, the bounds on the torque can be written as
τ±

dip,z(T = 0) = ±(αxx,0 + αyy,0) h̄c
16π2d4 g[χ (iξ̃c/d )] for some dimensionless functional g which depends only on the macroscopic

susceptibility χ evaluated at a frequency dependent on the separation d . We first consider a macroscopic body of dispersionless
susceptibility χ (iξ ) = χ0. See Fig. 1 for a numerical evaluation of the bounds. The bounds scale linearly [ 7h̄c

640π2d4 (αxx,0 + αyy,0)χ0

for T = 0 K] as a function of χ0 for χ0 
 1 and goes to 0 as χ0 → 0, as expected since χ0 = 0 implies the design domain is only
vacuum, in which case the equilibrium torque on the isolated dipole is identically 0. The bounds increase monotonically with χ0.
Monotonicity can also be expected from Eq. (19) since, expanding |E(a)

inc〉 ≡ G0|u(a)〉 in the basis defined in the previous section,√
〈u(a), �̂†Gsca(�)�̂u(a)〉〈u(a),Gsca (�)u(a)〉 expands to

√
(
∑

μ

|e(a)
μ |2|θμ|2
χ−1+gμ

)(
∑

μ

|e(a)
μ |2

χ−1+gμ
), from which it is clear that an increase

in χ (iξ ) can only increase the contribution to the bound at a given ξ . This holds for any ξ and, since αa > 0, therefore for the
total integrated (T = 0 K) or summed (T > 0 K) quantities as well. However, the bounds do not diverge but rather saturate to a
finite value in the perfect electrical conductor (PEC) limit χ0 → ∞. In the PEC limit, the integrals and summations can be done
explicitly and we find

τ PEC,±
dip =

{± h̄c
32π2d4 (αxx,0 + αyy,0), T = 0

± h̄c
32π2d4 (αxx,0 + αyy,0) a

2
1+(8a2−4a−1)e2a+(8a2+4a−1)e4a+e6a

2(e2a−1)3 , T > 0,
(22)
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FIG. 2. Distance dependence of bounds on Casimir torque for
gold and silicon structures. Shown are upper bounds to the Casimir
torque on a nondispersive dipole above a planar half-space design
domain which contains a structure with a macroscopic susceptibility
χ corresponding to that of gold or silicon. The results are normalized
by the perfect electrical conductor limit given by Eq. (22).

where a ≡ 2πkBT d
h̄c . For T 
 h̄c

2πkBd we find

τ±
dip(χ0 → ∞, T > 0)

τ±
dip(χ0 → ∞, T = 0)

=
[

1 − 1

45

(
2πkBT d

h̄c

)4

+ O(T 6)

]
,

(23)

while for T � h̄c
2πkBd ,

τ±
dip(χ0 → ∞, T > 0)

τ±
dip(χ0 → ∞, T = 0)

=
(

1

4

2πkBT d

h̄c
+ O(T 2)

)
, (24)

so nonzero temperature T changes the exact d−4 distance
scaling of the bounds. Although the bounds are applicable
at any temperature and any appropriate local, homogeneous,
isotropic model of material dispersion, the PEC limit, despite
resulting in a looser bound, has the benefit of being analytic,
resulting in easier extraction of scaling behavior.

Next we relax the assumption that χ (iξ ) is nondispersive
and consider the particular cases of (i) a gold medium with
electric susceptibility modeled by χAu(iξ ) = ω2

p/(ξ 2 + γ ξ ),
where ωp = 1.37 × 1016 rad/s and γ = 5.32 × 1013 rad/s,
and (ii) intrinsic (undoped) silicon with χSi(iξ ) = εSi(∞) −
1 + [εSi(0) + εSi(∞)]/(1 + ξ 2/ω2

0 ), where εSi(0) = 11.87,
εSi(∞) = 1.035, and ω0 = 6.6 × 1015 rad/s [36]. For sim-
plicity, we continue to neglect dispersion in αxx and αyy. See
Fig. 2. For d > 1 μm, we find that τ±

dip,z(χAu) is within 5% of
the PEC limit and within 1% for d > 10 μm, regardless of the
temperature.

IV. CONCLUSION

In summary, we presented trace expressions for equilib-
rium Casimir torque that apply to arbitrary object shapes
and materials, generalizing prior work on power transfer
[33,43,51] and forces [36,38,43]. The need for a full account
of the spin and orbital angular momentum carried by waves in
this setting is explicit in the trace expressions. Then, using
the derived trace expressions, we calculated bounds on the

Casimir torque on a dipolar particle next to a structure of
isotropic susceptibility χ enclosed within a prescribed domain
and evaluated the bounds specifically for a half-space design
domain as a demonstrative example. An interesting direction
for future work is the extension of the bounds for the case
where the structured medium is birefringent or, more gener-
ally, anisotropic.
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APPENDIX A: TRACE EXPRESSIONS
FOR NONRECIPROCAL MATERIALS

In this Appendix we provide the intermediate steps in the
derivation of the trace expressions for the torque in terms of
the scattering operators and the background Green’s function.

1. Single object

For the case of a single object (reciprocal or nonreciprocal),
we use G = G0 + G0TG0 to find that

Tr|V
(
ĴGAG−1†

0

) = Tr|V [Ĵ(G0T − G†
0T

†)]
1

2i
(A1)

= Tr[Ĵ(G0T − G†
0T

†)]
1

2i
, (A2)

where the first equality follows since ω2

c2 G
−1
0 = ∇ × ∇ ×

−ω2

c2 inside the body and so gives the identity operator when
acting on G0 or G†

0 which has one argument restricted to the
body. In more detail, G−1†

0 = G−1
0 − 2iG−1A

0 , where G−1A
0

is local and infinitesimal (it is proportional to V A
env). The

V A
env term is the famous environmental “dust” contribution

[38,52]. Its contribution is infinitesimal if integrated over a
finite region, but it can be noninfinitesimal if integrated over
infinite space. The second equality follows since the T opera-
tor vanishes unless both arguments are inside the body, so the
integration can be extended to the entire space. Therefore,

τ (eq) = −Im
∫ ∞

−∞

dω

2π
coth

(
h̄ω

2kBT

)
Tr|V
(
�̂GAG−1†

0

)
(A3)

= Re
∫ ∞

−∞

dω

4π
coth

(
h̄ω

2kBT

)
Tr[Ĵ(G0T − G†

0T
†)].

(A4)

Using Re Tr(A) = Re Tr(A†), Ĵ = Ĵ†, ĴG0 = G0Ĵ, and the
cyclicity of the trace, one finds that Re Tr[Ĵ(G0T −
G†

0T
†)] = 0 for any T .
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2. Two or more objects

We start with

G = (1 + G0T1̄ )
1

1 − G0T1G0T1̄
(1 + G0T1)G0 (A5)

= (1 + G0T1)
1

1 − G0T1̄G0T1
(1 + G0T1̄ )G0. (A6)

The relevant expression for G is the one for which the rightmost T operator is nonzero in the volume being integrated over. This
is because Tα vanishes outside the volume of α, allowing for the extension of the volume integration to be over all space, which
results in a basis-independent trace expression. Collecting terms with T1 as the rightmost term, we find

τ (1,eq) = −Im
∫ ∞

−∞

dω

2π
coth

(
h̄ω

2kBT

)
Tr|V1

(
ĴGAG−1†

0

)
(A7)

= −Im
∫ ∞

−∞

dω

2π
coth

(
h̄ω

2kBT

)[
Tr

(
Ĵ(1 + G0T1̄ )

1

1 − G0T1G0T1̄
G0T1

)

− Tr

(
ĴG†

0 (1 + T †
1̄
G†

0 )
1

1 − T †
1 G

†
0T

†
1̄
G†

0

T †
1

)]
1

2i
(A8)

= Re
∫ ∞

−∞

dω

4π
coth

(
h̄ω

2kBT

)[
Tr

(
Ĵ(1 + G0T1̄ )

1

1 − G0T1G0T1̄
G0T1

)
− Tr

(
ĴG†

0 (1 + T †
1̄
G†

0 )
1

1 − T †
1 G

†
0T

†
1̄
G†

0

T †
1

)]
.

(A9)

Applying Re Tr(A) = Re Tr(A†) to the second trace term leads to

τ (1,eq) = Re
∫ ∞

−∞

dω

4π
coth

(
h̄ω

2kBT

)
Tr

(
(ĴG0T1̄ − G0T1̄Ĵ)

1

1 − G0T1G0T2
G0T1

)
(A10)

= Re
∫ ∞

0

dω

π

[
n(ω, T ) + 1

2

]
Tr

(
1

1 − G0T1G0T1̄
G0(T1Ĵ − ĴT1)G0T1̄

)
, (A11)

which is precisely Eq. (4) when α = 1. It is clear that the derivation for 1̄ is analogous but with 1 ↔ 1̄ in intermediate expressions,

τ (1̄,eq) = −Im
∫ ∞

−∞

dω

2π
coth

(
h̄ω

2kBT

)
Tr|V1̄

(
ĴGAG−1†

0

)
(A12)

= Re
∫ ∞

0

dω

π

[
n(ω, T ) + 1

2

]
Tr

(
1

1 − G0T1̄G0T1
G0(T1̄Ĵ − ĴT1̄ )G0T1

)
, (A13)

which proves Eq. (4) for α = 1̄. Note that the above equations are valid for reciprocal and nonreciprocal objects since the
intermediate steps in the derivation did not assume reciprocity of the T operators.

APPENDIX B: GREEN’S-FUNCTION EXPRESSIONS IN REAL SPACE

Here we provide the expressions for the Green’s function necessary to compute bounds above a half-space design region.
Here G0 is defined as the operator that is the inverse of the Maxwell operator, satisfying [(∇ × ∇×) −

(ω/c)2I]G0(ω, x, x′) = (ω/c)2Iδ(3)(x − x′). In position space and evaluating at ω = iξ , this yields the expression
G0(iξ, x, x′) = [∇ ⊗ ∇ − (ξ/c)2](e−ξ |x−x′ |/c/4π |x − x′|).

The scattering Green’s function at ω = iξ in the vacuum region above a uniform planar semi-infinite half space of suscepti-
bility χ is [44]

Gsca (iξ, x, x′) = 1

2

∫ ∞

−∞

∫ ∞

−∞
[Ms(iξ, k) + Mp(iξ, k)]ei[kx (x−x′ )+ky (y−y′ )]−κz (z+z′ ) dkxdky

(2π )2
, (B1)

defined in terms of the Cartesian tensors

Ms(iξ, k) = −ξ 2rs(iξ, k)

c2κzk2

⎡
⎢⎣

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎤
⎥⎦, (B2)
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Mp(iξ, k) = rp(iξ, k)

k2

⎡
⎢⎣

κzk2
x κzkxky −ik2kx

κzkxky κzk2
y −ik2ky

ik2kx ik2ky k4/κz

⎤
⎥⎦, (B3)

which are in turn defined in terms of k = kxex + kyey, k = |k|, κz =
√

(ξ/c)2 + k2, and the Fresnel reflection coefficients

rs(iξ, k) =
√

(ξ/c)2 + k2 −
√

(1 + χ )(ξ/c)2 + k2√
(ξ/c)2 + k2 +

√
(1 + χ )(ξ/c)2 + k2

, (B4)

rp(iξ, k) = (1 + χ )
√

(ξ/c)2 + k2 −
√

(1 + χ )(ξ/c)2 + k2

(1 + χ )
√

(ξ/c)2 + k2 +
√

(1 + χ )(ξ/c)2 + k2
(B5)

at ω = iξ . To evaluate Gsca(iξ, x, x′) in torque settings, polar coordinates are a more natural choice, that is, we reparametrize
(kx, ky) as (k, ψ ) and (x, y, z) as (ρ, φ, z) so that

Gsca(iξ, x, x′) = 1

2

∫ 2π

0

∫ ∞

0
[Ms(iξ, k) + Mp(iξ, k)]ei{k cos(ψ )[ρ cos(φ)−ρ ′cos(φ′ )]+k sin(ψ )[ρ sin(φ)−ρ ′sin(φ′ )]}−κz (z+z′ ) k dk dψ

(2π )2
. (B6)

We then find (defining R̂z ≡ 1
h̄ Ŝz)

(ĴzGsca )(iξ, x, x′) = h̄

2

∫ 2π

0

∫ ∞

0
[−kcos(ψ )ρ sin(φ) + k sin(ψ )ρ cos(φ) + R̂z][M

s(iξ, k) + Mp(iξ, k)]

× ei{k cos(ψ )[ρ cos(φ)−ρ ′cos(φ′ )]+k sin(ψ )[ρ sin(φ)−ρ ′sin(φ′ )]}−κz (z+z′ ) k dk dψ

(2π )2
(B7)

and

(Ĵ2
z Gsca )(iξ, x, x′) = h̄2

2

∫ 2π

0

∫ ∞

0

{
[−k cos(ψ )ρ sin(φ) + k sin(ψ )ρ cos(φ)]2 − i[−k cos(ψ )ρ cos(φ) − k sin(ψ )ρ sin(φ)]

+ 2R̂z[−k cos(ψ )ρ sin(φ) + k sin(ψ )ρ cos(φ)] + R̂2
z

}
[Ms(iξ, k) + Mp(iξ, k)]

× ei{k cos(ψ )[ρ cos(φ)−ρ ′cos(φ′ )]+k sin(ψ )[ρ sin(φ)−ρ ′sin(φ′ )]}−κz (z+z′ ) k dk dψ

(2π )2
. (B8)

We are interested in the torque about the center of mass of the dipole. For x = x′ = (0, 0, d ) we get

(
Ĵ2

z Gsca
)
(iξ, dez, dez ) = h̄2

2

∫ 2π

0

∫ ∞

0
R̂2

z [Ms(iξ, k) + Mp(iξ, k)]e−2κzd k dk dψ

(2π )2
(B9)

= h̄2

2

∫ 2π

0

∫ ∞

0

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦[Ms(iξ, k) + Mp(iξ, k)]e−2κzd k dk dψ

(2π )2
. (B10)

It makes intuitive sense that (ĴzGsca )(iξ, dez, dez ) = (ŜzGsca )(iξ, dez, dez ) since a point dipole has no geometric structure so any
torque on it must come from the internal structure (the polarizability matrix). These expressions, after changing to dimensionless
integration variables, lead to Eq. (20) in the main text. Explicitly, in the limit that χ → ∞, then rs → −1 and rp → 1, leading
to the simplification

(Gsca )(iξ, dez, dez ) = 1

2

∫ 2π

0

∫ ∞

0

⎛
⎜⎝ ξ 2

c2κzk2

⎡
⎢⎣

k2sin(ψ )2 −k2cos(ψ )sin(ψ ) 0

−k2cos(ψ )sin(ψ ) k2cos(ψ )2 0

0 0 0

⎤
⎥⎦

+ 1

k2

⎡
⎢⎣

κzk2cos(ψ )2 κzk2cos(ψ )sin(ψ ) −ik3cos(ψ )

κzk2cos(ψ )sin(ψ ) κzk2sin(ψ )2 −ik3sin(ψ )

ik3cos(ψ ) ik3sin(ψ ) k4/κz

⎤
⎥⎦
⎞
⎟⎠e−2κzd k dk dψ

(2π )2
(B11)

= 1

32πd3

[
1 + 2

(
ξd

c

)
+ 4

(
ξd

c

)2
]

exp

(
−2

ξd

c

)⎡⎣1 0 0
0 1 0
0 0 0

⎤
⎦

+ 1

16πd3

[
1 + 2

(
ξd

c

)]
exp

(
−2

ξd

c

)⎡⎣0 0 0
0 0 0
0 0 1

⎤
⎦. (B12)
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× ×

FIG. 3. Torque on the top wire as a function of angle φ between the two wires separated by a fixed distance: (a) two birefringent wires and
(b) InSb thin wires in the xy plane subject to an external 1.0-T magnetic field in the z direction. Here T = 300 K, ω = kBT/h̄ = 3.92 × 1013,
the length of each wire is L = 4πc/ω = 96.087 µm, and the separation is d = L/10 = 9.6087 µm.

In the χ → ∞ limit, Ĵ2
z Gsca(iξ, dez, dez ) is the same as the

upper left 2 × 2 block as above but with an additional factor
of h̄2. These expressions lead directly to Eq. (22) after doing
the remaining integration over ξ .

APPENDIX C: TORQUE EXPRESSION IN THE
POINT-PARTICLE LIMIT IN THE TWO-BODY CASE

Using the point particle limit and the Born approximation,
a simplified expression for the torque exerted on particle 1 is
(assuming reciprocity of the materials)

τ (1,eq)(T ) = Re
2

π

∫ ∞

0
dω
[
n(ω, T ) + 1

2

]
Tr(ĴG0T2G0T1).

(C1)

Using the scattering operators in the small-sphere limit [53],

Tr(ĴzG0T2G0T1) = Re9
∫

V1

d3r
∫

V2

d3r′(ĴzG0)ab(r, r′)

×
(

ε2 − 1

ε2 + 2

)
bc

G0,cd (r′, r)

(
ε1 − 1

ε1 + 2

)
da

.

(C2)

Since the dimensions of the point particles are assumed
small compared to any other dimensions in the problem,
(ĴzG0)(r, r′) and G0(r′, r) do not vary significantly between
different points in the different particles. Letting r1 and r2

denote the centers of particle 1 and particle 2, respectively,
the integrals

∫
V1

and
∫

V2
simply introduce factors of 4πR3

1/3
and 4πR3

2/3 so that the torque is proportional to the volumes
of the spherical particles. Compactly,

τ (1,eq)(T ) = Re
2

π

∫ ∞

0
dω

[
n(ω, T ) + 1

2

]
Trcmp

× [ĴG0(r1, r2)α2G0(r2, r1)α1], (C3)

where Trcmp means a trace only over the vector components
(Trcmp[A(r, r′)] ≡∑a Aaa(r, r′)) and we introduce polar-

izability tensors α1 and α2(ω) ≡ 4πR3
2

ε2(ω)−I
ε2(ω)+2I

located a
positions r1 and r2, respectively. For the general nonreciprocal
case, similar arguments lead to

τ (1,eq)(T ) = Re
1

π

∫ ∞

0
dω

[
n(ω, T ) + 1

2

]
Tr

× [G0(T1Ĵ − ĴT1)G0T2] (C4)

= Re
1

π

∫ ∞

0
dω

[
n(ω, T ) + 1

2

]
Trcmp

× [ĴG0(r1, r2)α2G0(r2, r1)α1

− ĴG0(r2, r1)α1G0(r1, r2)α2]. (C5)

APPENDIX D: NUMERICAL EXAMPLES
IN THE DILUTE LIMIT

A natural question is how the magnitude of contributions of
the orbital and spin terms in the torque expression compare.
The comparison of the contributions of the orbital and spin
terms simplifies greatly in the dilute limit, for which one can
approximate each T operator as T = V (1 − G0V )−1 ≈ V .
In such limits, one can easily create scenarios for which (a)
τLz �= 0 and τSz �= 0, (b) τLz �= 0 but τSz = 0, and (c) τLz = 0
but τSz �= 0.

Consider two thin wires parallel to the x-y plane, separated
by a distance d in the z direction with an angle of orientation φ

between the wires (φ = 0 corresponding to parallel wires). To
simplify the numerics, we focus on a single angular frequency
ω. In such a case, one can approximate each T operator as

T (r, r′) =
{

(ε − I)δ(r, r′) for r, r′ ∈ Vwire

0 otherwise,
(D1)

where ε is an electric permittivity tensor. If the permittivity
tensor is anisotropic, then both the orbital and spin terms
are in general nonzero. If the permittivity tensor is isotropic,
the spin contribution is exactly 0 for all angles φ at each
frequency ω while the orbital terms are in general nonzero.
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FIG. 4. Torque on the top particle (small sphere) as a function
of angle φ of rotation with respective to a neighboring particle.
Here T = 300 K, both particles have radius R = 100 nm, and the
separation is d = 1 µm in the direction of the magnetic field.

Figure 3 shows the torque on the top wire as a function of
the orientation φ between the wires as well as the magnitude
and sign of the contributions of the L̂z and Ŝz terms. Using
finite-difference methods, we calculate −�FJ,L,S/�φ, where
�FJ,L,S is the change in free energy due to a slight geometric
structure and dielectric rotation of the top wire (J) or solely
geometric structure rotation (L) or solely from the dielectric
matrix rotation (S), respectively. We also directly compute
the torque using Eq. (C4) and plot the individual L̂z and Ŝz

contributions. The key takeaway is that the Ŝ contributions
can be of the same order of magnitude as the L̂ terms and can
have the same or opposite sign.

For the case for which τLz = 0 but τSz �= 0 perhaps the
simplest example is that of two subthermal-wavelength balls
(particles) which can be described by polarizability tensors
α1 and α2(ω) ≡ 4πR3

2
ε2(ω)−I
ε2(ω)+2I

located a positions r1 and r2,
respectively. In such a case, the torque expression reduces to
Eq. (C5). We consider particles with permittivities

ε =
⎡
⎣ ε1 −iε2 0

iε2 ε1 0
0 0 ε3

⎤
⎦

cart

. (D2)

For InSb one has [54]

ε1 = ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

+ ω2
p(ω + iγ )

ω
[
ω2

c − (ω + iγ )2
]),

(D3)

ε2 = ε∞ω2
pωc

ω
[
(ω + iγ )2 − ω2

c

] , (D4)

ε3 = ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − i�ω

− ω2
p

ω(ω + iγ )

)
, (D5)

where ε∞ = 15.7, ωL = 3.62 × 1013 rad/s, ωT = 3.39 ×
1013 rad/s, n = 1.07 × 1017 cm−3, m∗ = 1.99 × 10−32 kg,

ωp =
√

nq2

m∗ε0ε∞
= 3.15 × 1013 rad/s, q = 1.6 × 10−19 C, � =

5.65 × 1011 rad/s, γ = 3.39 × 1012 rad/s, and ωc = eB
m∗ . See

Fig. 4 for a plot of the torque contribution at a representative
frequency.

FIG. 5. Material dependence of bounds on Casimir force. Shown
are upper bounds to the Casimir force at zero temperature in
the surface-parallel direction on a nondispersive dipole above a
half-space design domain � which contains a structure made of
nondispersive susceptibility χ0. As χ0 → ∞, the bounds approach
the perfect electrical conductor limit given by Eq. (F4), marked by
horizontal dotted lines.

APPENDIX E: LINEAR RESPONSE AND
FLUCTUATIONAL ELECTRODYNAMICS

Near equilibrium, linear response functions can be related
to fluctuations of corresponding equilibrium quantities. This
was verified to hold in the T operator trace formalism for
fluctuational electrodynamics for heat transfer and forces in
Ref. [55]. Using the newly derived trace expressions for equi-
librium Casimir torque along with the nonequilibrium Casimir
torque trace expressions from Ref. [13], we verified that,
unsurprisingly, similar expressions hold for torque.

Let H (β )(t ) denote the absorbed power by object β. It can
be written as an integral over the volume Vβ of the local power
absorption, which is equal to the inner product of the electric
field E(r, t ) and the current density K(r, t ),

H (β )(t ) =
∫

Vβ

d3r{Ea(r, t ), Ka(r, t )}S, (E1)

where we use the Einstein summation convention. Here
{A, B}S ≡ (AB + BA)/2 is the symmetrized product of two,
in general, noncommuting operators.

A general operator �̂(β )(t ) can be written as

�̂(β )(t ) ≡
∫

r∈Vβ

d3r
∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω+ω′ )t

× 1

h̄ω
{Ka(r, ω′), �̂Ea(r, ω)}S. (E2)

We seek to evaluate

∫ ∞

0
dt〈�̂(β )(t )H (α)(0)〉eq, (E3)
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where Hα is as defined in Eq. (E1). Using Wick’s theorem and simplifying, we find that Eq. (E3) is equal to∫ ∞

0
dω

∫
r∈Vβ

∫
r′∈Vα

2π

h̄ω
[〈Kb(r)K∗

a (r′)〉−ω〈�̂Eb(r)E∗
a (r′)〉ω + 〈Kb(r)E∗

a (r′)〉−ω〈�̂Eb(r)K∗
a (r′)〉ω]. (E4)

Note that
∫∞

0 dt〈{A(t ), B(0)}S〉eq = ∫∞
0 dt〈A(t )B(0)〉eq, so we now work with unsymmetrized correlators to reduce the number

of terms from Wick’s theorem by half. Using E = iωμ0
c2

ω2 G0K along with the unsymmetrical correlator [44]

〈Ei(r, ω)E∗
j (r′, ω)〉ω = h̄

πε0

1

1 − e− h̄ω
kBT

GA
i j (ω; r, r′), (E5)

we find ∫ ∞

0
dt〈�̂(β )(t )H (α)(0)〉eq = 2

π

∫ ∞

0
dω

h̄ωeh̄ω/kBT

(eh̄ω/kBT − 1)2

[
�̂GA

ba(r, r′)G−1
0,ad (r′, v)GA

dc(v, u)G−1†
0,cb (u, r)

− �̂GA
bd (r, v)G−1†

0,da(v, r′)GA
ac(r′, u)G−1†

0,cb (u, r)
]
, (E6)

where repeated indices are to be summed or integrated over. Integration is over all space except for r ∈ Vβ and r′ ∈ Vα .
Consider next a temperature perturbation; consider a change in τ (β ), the torque on β, when all objects are at rest and at the

same temperature but then the temperature of object α is perturbed to nonequilibrium. We find that

d〈τ (β )〉neq

dTα

∣∣∣∣
{Tα}=Teq=T

= − 1

kBT 2

∫ ∞

0
dt〈τ (β )(t )H (α)(0)〉eq, (E7)

confirming a relationship between variations in nonequilibrium torque and the equilibrium correlation of torque and power
absorption. The equality is established by directly computing the right-hand side and comparing to a calculation of the left-hand
side starting from the trace expression for nonequilibrium Casimir torque presented in Ref. [13]. Intermediate steps are outlined
below. The explicit result of the correlation function in Eq. (E7) is provided in Eq. (E8). Using Eqs. (A5) and (A6) in Eq. (E6),
we find ∫ ∞

0
dt〈τ (1)(t )H (α)(0)〉eq = 2

π

∫ ∞

0
dω h̄ωeh̄ω/kBT n(ω, T )2Im Tr

(
ĴM(1)

α

)
, (E8)

where

M(1)
1 = (1 + G0T2)

1

1 − G0T1G0T2
G0
(
TA

1 − T1G
A
0 T

†
1

) 1

1 − G†
0T

†
2 G

†
0T

†
1

, (E9)

M(1)
2 = (1 + G0T1)

1

1 − G0T2G0T1
G0
(
TA

2 − T2G
A
0 T

†
2

)
G†

0

1

1 − T †
1 G

†
0T

†
2 G

†
0

T †
1 . (E10)

A key step is to note that Tα,ab(u, v) vanishes if one of spatial arguments u or v is outside Vα , which eventually allows one to
extend the integrals to be over all space, leading to a trace expression. The Casimir torque acting on an arbitrary object α is given
by [13]

〈τ (α)〉neq(Teq, {Tβ}) = 〈τ (α)〉eq(Teq ) +
∑

β

[
τ

(α)
β (Tβ ) − τ

(α)
β (Teq )

]
, (E11)

that is, the total Casimir torque in nonequilibrium can be written as a sum of an equilibrium contribution 〈τ (α)〉eq(Teq ) where all
objects are at a temperature Teq plus nonequilibrium contributions when the objects 1, . . . , N deviate from the temperature of
the background environment Teq. Here τ

(α)
β (T ) is the torque on α due to sources in β, when body β is at a temperature T . From

Eqs. (23) and (24) in Ref. [13],

τ
(1)
1,2(T ) = − 2

π

∫ ∞

0
dω n(ω, T )Im Tr

(
ĴM(1)

1,2

)
. (E12)

From Eqs. (E11) and (E12) it follows that

d〈τ (1)〉neq

dTα

∣∣∣∣
T

= − 2

πkBT 2

∫ ∞

0
dω h̄ωeh̄ω/kBT n(ω, T )2Im Tr

(
ĴM(1)

α

)
, (E13)

which combined with Eq. (E8) proves Eq. (E7).
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APPENDIX F: BOUNDS ON SURFACE-PARALLEL CASIMIR FORCES

In this Appendix we demonstrate how the derivation and discussion in the main text is also applicable to lateral forces. For
example, expressions such as(

p̂2
xGsca
)
(iξ, dez, dez ) = h̄2

2

∫ 2π

0

∫ ∞

0
[kcos(ψ )]2[Ms(iξ, k) + Mp(iξ, k)]e−2κzd k dk dψ

(2π )2
(F1)

= h̄2

128πd5

[
9 + 18

(
ξd

c

)
+ 16

(
ξd

c

)2

+ 8

(
ξd

c

)3]
exp

(
− 2

ξd

c

)⎡⎣1 0 0
0 0 0
0 0 0

⎤
⎦

+ h̄2

128πd5

[
3 + 6

(
ξd

c

)
+ 8

(
ξd

c

)2

+ 8

(
ξd

c

)3]
exp

(
− 2

ξd

c

)⎡⎣0 0 0
0 1 0
0 0 0

⎤
⎦

+ h̄2

32πd5

[
3 + 6

(
ξd

c

)
+ 4

(
ξd

c

)2]
exp

(
− 2

ξd

c

)⎡⎣0 0 0
0 0 0
0 0 1

⎤
⎦ (F2)

can also be used to derive bounds on lateral forces in the PEC limit on an anisotropic dipole above the half-space planar design
domain. The expression for the bound on surface-parallel forces on a dipole above a half-space design domain in the PEC limit
follows by, without loss of generality, setting �̂ = p̂x, resulting in

f ±,PEC
dip,x (T = 0) = ± h̄c

64πd5

∫ ∞

0
αxx

(
iξ̃c

d

)
(9 + 36ξ̃ + 88ξ̃ 2 + 112ξ̃ 3 + 80ξ̃ 4 + 32ξ̃ 5)1/2e−2ξ̃ d ξ̃

2π

± h̄c

64πd5

∫ ∞

0
αyy

(
iξ̃c

d

)
(3 + 12ξ̃ + 32ξ̃ 2 + 48ξ̃ 3 + 48ξ̃ 4 + 32ξ̃ 5)1/2e−2ξ̃ d ξ̃

2π

± h̄c

16
√

2πd5

∫ ∞

0
αzz

(
iξ̃c

d

)
(3 + 12ξ̃ + 16ξ̃ 2 + 8ξ̃ 3)1/2e−2ξ̃ d ξ̃

2π
. (F3)

Assuming quasistatic polarizabilities of the dipole gives

f ±,PEC
dip,x (T = 0) = ±

(
h̄c

128π2d5
γxxαxx,0 + h̄c

128π2d5
γyyαyy,0 + h̄c

32
√

2π2d5
γzzαzz,0

)
(F4)

≈ ±
(

h̄c

128π2d5
5.649 58αxx,0 + h̄c

128π2d5
3.953 99αyy,0 + h̄c

32
√

2π2d5
1.983 09αzz,0

)
, (F5)

where

γxx ≡
∫ ∞

0
(9 + 36ξ̃ + 88ξ̃ 2 + 112ξ̃ 3 + 80ξ̃ 4 + 32ξ̃ 5)1/2e−2ξ̃ d ξ̃ , (F6)

γyy ≡
∫ ∞

0
(3 + 12ξ̃ + 32ξ̃ 2 + 48ξ̃ 3 + 48ξ̃ 4 + 32ξ̃ 5)1/2e−2ξ̃ d ξ̃ , (F7)

γzz ≡
∫ ∞

0
(3 + 12ξ̃ + 16ξ̃ 2 + 8ξ̃ 3)1/2e−2ξ̃ d ξ̃ . (F8)

See Fig. 5 for a numerical evaluation of the bounds for finite nondispersive χ0 and comparison (horizontal dotted lines) to the
PEC limit given by Eq. (F4). For finite T , the expression for the bound on surface-parallel forces on a dipole above a half-space
design domain in the PEC limit is

f ±,PEC
dip,x (T > 0) = ± kBT

64πd4

∞
′∑

n=0

αxx(iξn)

[
9 + 36

(
ξnd

c

)
+ 88

(
ξnd

c

)2

+ 112

(
ξnd

c

)3

+ 80

(
ξnd

c

)4

+ 32

(
ξnd

c

)5]1/2

e−2ξnd/c

± kBT

64πd4

∞
′∑

n=0

αyy(iξn)

[
3 + 12

(
ξnd

c

)
+ 32

(
ξnd

c

)2

+ 48

(
ξnd

c

)3

+ 48

(
ξnd

c

)4

+ 32

(
ξnd

c

)5]1/2

e−2ξnd/c

± kBT

16
√

2πd4

∞
′∑

n=0

αzz(iξn)

[
3 + 12

(
ξnd

c

)
+ 16

(
ξnd

c

)2

+ 8

(
ξnd

c

)3]1/2

e−2ξnd/c, (F9)

where ξn = 2πkBT n/h̄ and the prime on the summation implies a prefactor of 1
2 for the contribution at n = 0.
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