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Quantum control of rovibrational dynamics and application to light-induced molecular chirality
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Achiral molecules can be made temporarily chiral by excitation with electric fields, in the sense that an average
over molecular orientations displays a net chiral signal [D. S. Tikhonov et al., Sci. Adv. 8, eade0311 (2022)].
Here, we go beyond the assumption of molecular orientations to remain fixed during the excitation process.
Treating both rotations and vibrations quantum mechanically, we identify conditions for the creation of chiral
vibrational wave packets, with net chiral signals, in ensembles of achiral molecules which are initially randomly
oriented. Based on the analysis of symmetry and controllability, we derive excitation schemes for the creation of
chiral wave packets using a combination of (a) microwave and IR pulses and (b) a static field and a sequence of IR
pulses. These protocols leverage quantum rotational dynamics for pump-probe spectroscopy of chiral vibrational
dynamics, extending the latter to regions of the electromagnetic spectrum other than the UV.
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I. INTRODUCTION

The insight that molecular chirality may be explored in
gas phase ensembles of molecules with random orientations
[1,2] has triggered a surge of experimental activity, and chiral
molecules interacting with light in the electric dipole ap-
proximation have become a central focus of current atomic,
molecular, and optical research, both experimental [3–9]
and theoretical [10–18]. Methods like photoelectron dichro-
ism [1,3,9,19–22], chiral-sensitive high-harmonic generation
[23], laser-induced enantiomer selective molecular orientation
[6,12], and microwave three-wave mixing [2,4,5,7,8,24] allow
one to discriminate between enantiomers of chiral molecules
in the gas phase. At the same time, it is not yet clear what ul-
timately determines the magnitude of these chiral signatures.
One way to approach this question is to imprint chirality onto
achiral molecules [25,26] or atoms [27–31].

For example, an achiral molecule can become temporarily
chiral if the nuclei are distorted from their achiral equilibrium
configuration by exciting nuclear vibrations and the oscilla-
tion between chiral and achiral structures can be measured
by photoelectron circular dichroism [26]. When starting from
a planar molecule, Raman excitation of an out-of-plane nor-
mal mode in the presence of a static electric field has been
proposed to create a chiral vibrational wave packet [26]. In
general, the interaction of three orthogonal components of
the molecular (transition) dipole moment with electric fields
with three orthogonal polarization directions is sufficient to
induce chirality in an achiral structure and yield a net chiral
signal when averaged over random orientations [26]. This is
in full analogy to the conditions for enantiomer-selective re-
sponse in a sample of randomly oriented chiral molecules with
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light-matter interaction in the electric dipole approximation
[32]. In both cases [26,32], the conditions for enantiomer sen-
sitivity have been derived under the assumption that molecular
rotations are frozen during the interaction and can be de-
scribed by a classical probability distribution over Euler
angles. For ultrafast Raman excitation, this is a valid assump-
tion but rotations and vibrations can also be driven by much
slower processes, e.g., by long, narrowband IR pulses. In the
latter case, the molecules rotate while external fields excite
molecular vibrations, and the rotation affects even purely
vibrational observables. On the one hand, the rotation may
result in decoherence of the vibrational superpositions. On
the other hand, it may allow for new excitation processes to
create chiral vibrational wave packets. Here we identify and
describe these new routes to imprint temporal chirality onto
achiral molecules. To this end, we present a full quantum-
mechanical treatment of the rovibrational dynamics which
allows us to generalize the conditions for creating tempo-
ral chiral structures to rotating molecules and to distinguish
between classical and quantum-mechanical routes to induce
chirality.

In order to determine the conditions for creating chirality
in randomly rotating molecules, we apply two methods. (i)
We employ the symmetry properties of asymmetric top rotors
[33], extending an earlier symmetry analysis for rigid chiral
molecules [14] to rovibrational dynamics. (ii) We analyze the
controllability of a vibrating quantum rotor. Controllability
analysis answers the question whether it is possible to reach
a control target with a given set of external fields [34]. Ana-
lyzing the controllability of rotational systems is challenging
due to the inherent degeneracies. In the rigid rotor limit where
vibrations are ignored, controllability properties have been
derived for linear rotors [35–37] as well as symmetric [38,39]
and asymmetric tops [40–42]. Recently developed graphical
methods to analyze the controllability [43–45] have been
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proven helpful to analyze controllability of quantum rotors
[40,41]. Here we apply these methods to vibrating rotors. This
analysis allows us to identify the new excitation processes for
the creation of chiral vibrational wave packets which we ver-
ify by numerical simulations of the rovibrational dynamics.

The paper is organized as follows. In Sec. II we present the
theoretical framework for describing vibrational observables
in a driven rovibrational quantum system. General conditions
for exciting coherent vibrational wave packets in randomly
oriented molecules based on the symmetry as well as the
formulation of the control problem are discussed in Sec. III.
In Secs. IV and V we present two different strategies to create
a chiral vibrational wave packet. The first scheme combines
a purely rotational excitation using microwave pulses with an
IR pulse that induces rovibrational transitions. This scheme is
described in Sec. IV. In Sec. V we demonstrate that a chiral
wave packet can also be excited with three IR pulses in com-
bination with a static electric field. In Sec. VI we summarize
our findings.

II. VIBRATIONAL WAVE PACKETS IN ROTATING
MOLECULES: THEORETICAL FRAMEWORK

In order to describe vibrational excitation in randomly ori-
ented molecules, we model the molecular Hamiltonian as

H0 =
∑

ν

∑
j

(
Evib

ν + E rot
j

)|ν〉|φ j〉〈φ j |〈ν|, (1)

where we neglect any rovibrational coupling. We consider a
single vibrational mode, represented by the operator χ̂ , and
the vibrational eigenstates |ν〉 along this normal. The eigen-
states of a rigid top are denoted by |φ j〉, where j indicates the
quantum numbers of the rigid rotor. The vibrational energies
are denoted by Evib

ν , and E rot
j are the eigenvalues of the rigid

rotor. The molecules evolve according to the time-dependent
Schrödinger equation

ih̄
∂

∂t
|ψ (t )〉 = [H0 + Hint(t )]|ψ (t )〉. (2)

The interaction between the molecules and a set of electric
fields

Ei = eiEiui(t ) (3)

is described in the electric dipole approximation as

Hint(t ) = −
∑

i

ui(t )Hi, (4)

with

Hi = Eiμ · R(γR) · ei. (5)

Here ei is ex, ey, or ez and it denotes the polarization of the ith
electric field in the space-fixed coordinate system. The maxi-
mal field strength is given by Ei, and ui(t ) = si(t ) cos(ωit +
φi ) is the time dependence of the electric field with the
dimensionless envelope si(t ), frequency ωi, and phase φi.
The molecular dipole moment μ = (μa, μb, μc)T is given
in molecule-fixed coordinates, and the rotation matrix R(γR)
transforms between the space-fixed and molecule-fixed coor-
dinate system. It depends on the Euler angles γR = (θ, ψ, ϕ).
The components of the dipole moment μα , α = a, b, c, are

functions of the nuclear coordinates, i.e., the normal mode χ .
The interaction with the electric field thus couples molecular
vibrations with the rotational degrees of freedom.

Upon excitation with electric fields, a rovibrational wave
packet of the form

|ψ (t )〉 =
∑

j

∑
ν

cν, j (t )|ν〉|φ j〉 (6)

is excited. We now consider an operator that acts only on
the vibrational subspace, e.g., the coordinate χ̂ of a normal
mode of the molecule. The expectation value of χ̂ , which
includes integrating over the rotational degrees of freedom,
is then given by

〈χ̂〉(t ) = 〈ψ (t )|χ̂ |ψ (t )〉 =
∑

j

∑
ν,ν ′

cν, j (t )c∗
ν ′, j (t )〈ν ′|χ̂ |ν〉.

(7)

Inserting χ̂ =
√

h̄
2mω

(â + â†), where m is the reduced mass
and ω = (Evib

1 − Evib
0 )/h̄ the normal-mode frequency, the ex-

pectation value can be written as

〈χ̂〉(t ) =
√

h̄

2mω

∑
j

Re

(∑
ν

√
ν + 1cν, j (t )c∗

ν+1, j (t )

)
, (8)

where we assume that the relevant vibrational states can be
approximated by a harmonic-oscillator wave function. The
expectation value is nonzero only if the rovibrational states
with ν and ν + 1 belong to the same rotational state j.
For an ensemble of molecules, a nonzero expectation value
〈χ̂〉(t ) �= 0 means that all molecules vibrate in phase de-
spite their random orientation in space, forming a coherent
vibrational wave packet. The coupling to the rotational mo-
tion thus imposes additional conditions for the excitation of
coherent vibrational motion if the molecules are randomly
oriented.

For simplicity, we consider in the following a vibrational
wave packet that consists of the ground and first excited
vibrational states only, as shown in Fig. 1(a). This implies a
slight anharmonicity in the vibrational potential so that the
energy gaps between subsequent vibrational states are not the
same and it is thus possible to address the transition between
|0〉 and |1〉 without driving the transition between |1〉 and
|2〉 and so on. In this case, the expectation value for the
elongation becomes

〈χ̂〉(t ) =
√

h̄

2mω

∑
j

Re[b0, j (t )b∗
1, j (t ) exp(iωt )], (9)

where bν, j (t ) = cν, j (t ) exp[i(Evib
ν + E rot

j )t/h̄]. The elongation
along the normal mode becomes maximal with 〈χ̂〉max =
1
2

√
h̄

2mω
if the population is equally distributed between the

ground and excited vibrational state for each rotational state j.
In this paper we discuss the excitation of vibrational wave

packets in a planar molecule, for example COFCl (see Fig. 1),
where the molecular plane is the only symmetry element. The
normal mode can describe either an in-plane vibration, which
we denote by χ = ζ [see Fig. 1(c)], or an out-of-plane vibra-
tion χ = ξ [as shown in Fig. 1(e)]. Excitation of an in-plane
vibrational wave packet leaves a planar molecule achiral.
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FIG. 1. Creation of a vibrational wave packet in a planar
molecule for the example of COFCl. (a) Vibrational eigenstates
|0〉 and |1〉 of a normal mode χ . (b) Vibrational wave packet as
superposition of eigenstates |0〉 and |1〉. (c) Sketch of an in-plane
normal mode χ = ζ of COFCl. (d) Permanent dipole moment of
COFCl with components μ(00)

a and μ
(00)
b lying in the molecular

plane. For the in-plane vibration, the transition dipole moment with
components μ(01)

a and μ
(01)
b lies also in the molecular plane. (e)

Sketch of the out-of plane normal mode χ = ξ of COFCl. (f) Per-
manent dipole moment with components μ(00)

a and μ
(00)
b lying in the

molecular plane. The transition dipole moment for the out-of plane
vibration with component μ(01)

c perpendicular to the molecular plane.

Vibrations along the out-of-plane normal mode ξ break the
planar symmetry [26]. If a wave packet with 〈ξ̂ 〉(t ) �= 0 is ex-
cited, the molecule becomes temporarily chiral and oscillates
between its two enantiomeric structures with the frequency of
the out-of-plane vibration.

In the following, we discuss different interaction schemes
for the excitation of coherent vibrational wave packets in
randomly oriented molecules. In Sec. III A we make use of
symmetry properties of asymmetric top rotors to derive con-
ditions for the external fields Ei(t ) so that after excitation
〈χ̂〉(t ) �= 0, i.e., the average elongation measured for an en-
semble of molecules does not vanish. This rather technical
part is followed by Sec. III B, where the results of Sec. III A
are illustrated with examples for the creation of achiral and
chiral wave packets in planar molecules. In Sec. III C we
address the question of full controllability of the Schrödinger
equation (2) as a means to defining conditions for external
fields that can induce maximal molecular response 〈χ̂〉 =
〈χ̂〉max for any given initial condition. In Secs. IV and V we
then concentrate on inducing chirality in an achiral molecule
and present two examples for the excitation of chiral vibra-
tional wave packets.

TABLE I. Character table of D2, the molecular rotation group
for asymmetric top molecules, and transformation properties of the
asymmetric top eigenfunctions [33]. The transformation properties
of the rotational states depend on whether the quantum numbers Ka

and Kc are even (e) or odd (o).

D2 E Rπ
a Rπ

b Rπ
c KaKc

A 1 1 1 1 ee
Ba 1 1 −1 −1 eo
Bb 1 −1 1 −1 oo
Bc 1 −1 −1 1 oe

III. CONDITIONS FOR CREATING A COHERENT
VIBRATIONAL WAVE PACKET

A. Symmetry of the rovibrational wave functions
According to Eq. (9), for the simplest case of two vibra-

tional states forming a coherent superposition, a net chiral
signal after averaging over rotations is obtained if the co-
efficients b0, j (t ) and b1, j (t ) are nonzero. Vanishing of these
coefficients due to symmetry arguments can be determined
by using perturbation theory to solve the time-dependent
Schrödinger equation (2). Starting from the initial state
|ψ (0)〉 = |ν0〉|φ j0〉 and considering resonant transitions, the
coefficients bν, j (t ) are not identically zero only if

〈φ j |〈ν|Hl
int|ν0〉|φ j0〉

= 〈φ j |〈ν|Hint|ν (l−1)〉|φ j (l−1)〉 · · ·
× 〈φ j′′ |〈ν ′′|Hint|ν ′〉|φ j′ 〉〈φ j′ |〈ν ′|Hint|ν0〉|φ j0〉 �= 0 (10)

for at least one l = 0, 1, 2, . . ., where l is the order of per-
turbation and |φ j′ 〉|ν ′〉, |φ j′′ 〉|ν ′′〉, and so on, are arbitrary
intermediate rovibrational states. Since a nonzero expectation
value 〈χ̂〉(t ) in Eq. (9) requires both b0, j (t ) and b1, j (t ) to
be nonzero, the following condition has to be fulfilled: For
a given initial rotational state |φ j0〉 and |ν0〉 = |0〉, at least one
j must exist for which both transition matrix elements

〈φ j |〈0|Hl
int|0〉|φ j0〉 �= 0, (11a)

〈φ j |〈1|Hl ′
int|0〉|φ j0〉 �= 0 (11b)

are nonzero for at least one l and l ′.
Next we analyze what Eq. (11) implies for vibrating asym-

metric top rotors. We represent the rotational part of the
rovibrational wave function in the basis of asymmetric top
eigenfunctions |φ j〉 = |JKa,Kc , M〉, with J = 0, 1, 2, . . . the
rotational quantum number, M = −J,−J + 1, . . . , J the pro-
jection quantum number for rotation around the space-fixed
axis, and Ka = 0, 1, . . . , J (Kc = 0, 1, . . . , J) the projection
quantum number for rotation around the molecular axis of a
prolate (oblate) symmetric top.1 The symmetry of the rovi-
brational wave functions with respect to the space-fixed and
molecule-fixed coordinate systems determines whether the

1Each asymmetric top eigenfunction is uniquely described by J ,
M, and the two corresponding symmetric top quantum numbers Ka

and Kc. Since the rotational energy eigenvalues E rot
j = E rot

JKa ,Kc
do not

depend on M, we denote the rotational energy levels by JKa,Kc .
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transitions matrix elements in Eq. (11) are nonzero. Symmetry
with respect to the space-fixed frame results in the (usual)
M-selection rules for electric dipole interaction: �M = 0 for
transitions induced by z-polarized fields and �M = ±1 for
transitions induced by x- or y-polarized fields. Since both
conditions in Eq. (11) need to be fulfilled, the polariza-
tions ei of the external fields Ei(t ) have to be chosen such
that for the lth-order process in Eq. (11a) the final quan-
tum number M is the same as for the l ′th-order process in

Eq. (11b). We will discuss this condition for several examples
in Sec. III B.

Equation (11) also involves the symmetry of the rovi-
brational wave functions with respect to the molecule-fixed
frame. The corresponding condition can be obtained from
the properties of the symmetry group D2 of an asymmetric
top, recalled in Table I [33]: The transition matrix elements
[Eq. (11)] can be nonzero only if they transform according to
the totally symmetric irreducible representation of D2, i.e.,

�(|φ j〉) × �(〈0|Hint|ν (l−1)〉) × · · · × �(〈ν ′′|Hint|ν ′〉) × �(〈ν ′|Hint|0〉) × �(|φ j0〉) = A, (12a)

�(|φ j〉) × �(〈1|Hint|λ(l ′−1)〉) × · · · × �(〈λ′′|Hint|λ′〉) × �(〈λ′|Hint|0〉) × �(|φ j0〉) = A (12b)

for conditions (11a) and (11b), respectively, where
ν ′, . . . , ν (l−1), λ′, . . . , λ(l ′−1) ∈ {0, 1}. According to Table I,
the irreducible representations of the rotational wave
functions are �(|φ j〉) = �(|JKa,Kc , M〉) = A or Bα , with
α = a, b, c, depending only on the values of Ka and Kc. In
Eq. (12) we have further utilized that Bα × Bα = A.

Finally, Eq. (11) needs to be evaluated for the vibrational
part. In order to determine the irreducible representations of
the vibrational transition matrix elements in Eq. (11), we
decompose the interaction Hamiltonian into its irreducible
components. Therefore, we consider an electric field E =
epEu(t ) with polarization ep, amplitude E , and time depen-
dence u(t ).2 The vibrational transition matrix elements can be
written as

〈ν ′|Hint|ν〉 =
∑

α

〈ν ′|Hint,α|ν〉

= −Eu(t )
∑

α

μ(ν ′ν)
α Rα,p(γR), (13)

with α = a, b, c and μ(νν ′ )
α = 〈ν ′|μα|ν〉. Here μ(01)

α = μ(10)
α

are transition dipole moments. For the permanent dipole
moments we assume for simplicity that μ(11)

α = μ(00)
α . The

matrix elements of the rotational matrix R(γR) are denoted
by Rα,p(γR). The irreducible components of the interaction
Hamiltonian transform according to the irreducible represen-
tations of D2 (Table I), namely,

〈ν ′|Hint,a|ν〉 ∼ Ba, (14a)

〈ν ′|Hint,b|ν〉 ∼ Bb, (14b)

〈ν ′|Hint,c|ν〉 ∼ Bc (14c)

(see the Appendix). In order to obtain nonvanishing coeffi-
cients b0, j (t ) and b1, j (t ), the excitation process has to contain
an lth-order process with

�(〈0|Hint|ν (l−1)〉) × · · · × �(〈ν ′|Hint|0〉) = �0, (15)

2For a set of electric fields Ei [Eq. (3)], an additional sum over i is
required.

where �0 is one of the irreducible representations of D2, and
an l ′th-order process that fulfills

�(〈1|Hint|λ(l ′−1)〉) × · · · × �(〈λ′|Hint|0〉) = �0 (16)

with the same �0. Equations (12a) and (12b) are thus both ful-
filled if �(|φ j〉) × �0 × �(|φ0〉) = A, i.e., the final rotational
state |φ j〉 transforms according to �(|φ j〉) = �(|φ0〉) × �0. In
combination with Eq. (14), the conditions (15) and (16) can
be utilized to determine which combination of external fields
Ei is capable of exciting a coherent vibrational wave packet in
initially randomly oriented molecules.

B. Examples of creating coherent rovibrational wave packets

We now show how to use the conditions just derived to
create coherent vibrational wave packets, both achiral and
chiral. To this end, we consider a planar molecule, with the
molecular plane as the only symmetry element, e.g., COFCl,
as shown in Fig. 1. Due to the planar symmetry, the molecule
has a permanent dipole moment in the molecular plane, i.e.,
μ(00)

a �= 0 and μ
(00)
b �= 0 while μ(00)

c = 0. For an in-plane vi-
bration χ = ζ , also the transition dipole moment lies in the
molecular plane, i.e., μ(01)

a �= 0, μ
(01)
b �= 0, and μ(01)

c = 0 [see
Fig. 1(d)]. For an out-of-plane vibration χ = ξ , the transition
dipole moment is perpendicular to the molecular plane, i.e.,
μ(01)

a = 0, μ
(01)
b = 0, and μ(01)

c �= 0, as in Fig. 1(f) (see also
Ref. [26]). In the following, we discuss various excitation
scenarios, assuming that the molecules are initially in their
vibrational and rotational ground state |0〉|φ0〉 = |0〉|00,0, 0〉.

Scenario (a). Rovibrational excitation in first-order pertur-
bation theory, i.e., excitation of a vibrational state with one
IR photon, is described by the case l = 0 and l ′ = 1. This
reduces the condition (11a) to 〈φ j |φ j0〉 �= 0, which requires
j = j0. For l ′ = 1 and j = j0, the condition (11b) can only be
fulfilled if �(〈1|Hint|0〉) = A. However, this is in contradiction
to Eq. (14). It is thus not possible to excite a vibrational wave
packet with 〈χ̂〉 �= 0 with a single IR interaction in a sample
of randomly oriented molecules. The same result is obtained
when the molecular rotation is treated classically [26]. In
both cases, it corresponds at any instant of time to as many
molecules (each with a given orientation) with +〈χ̂〉 as with
−〈χ̂〉 such that the overall normal-mode elongation vanishes
when averaged over random orientations.
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Scenario (b). Next we consider the case l = 1 and l ′ = 1.
The conditions (15) and (16) are then fulfilled if μ(01)

α �= 0
and μ(00)

α �= 0 for the same α, i.e., if both the transition dipole
moment and the permanent dipole moment have a nonva-
nishing component along the same molecular axis. This is
the case if the normal mode is an in-plane vibration χ = ζ

with μ(00)
a and μ(01)

a or with μ
(00)
b and μ

(01)
b [see Fig. 1(d)]. A

purely rotational transition within the vibrational ground state
with 〈0|Hint|0〉 �= 0 can be realized with a microwave field
resonant to an allowed rotational transition. The vibrational
transition with 〈1|Hint|0〉 �= 0 can be driven by an IR pulse
resonant to the frequency of the normal mode. In addition,
the overall excitation must fulfill the M-selection rules. Start-
ing from the rotational state |φ0〉 = |00,0, 0〉, the transitions
described by Eq. (11), namely, 〈JKa,Kc , M|〈0|Hint|0〉|00,0, 0〉
and 〈JKa,Kc , M|〈1|Hint|0〉|00,0, 0〉, must both end in the same
rotational state M. Since one can always choose the quan-
tization axis, we can assume, without loss of generality, the
first interaction to be with a z-polarized field, inducing rota-
tional transitions with �M = 0. Then M = 0, and the second
field also has to be z polarized such that the condition (11b)
is fulfilled with M = 0. Thus, an achiral vibrational wave
packet with 〈ζ̂ 〉 �= 0 can be excited with a combination of a
z-polarized microwave pulse and an IR pulse with the same
polarization. However, excitation of a chiral vibrational wave
packet is not possible.

Scenario (c). In order to induce a chiral vibrational wave
packet, it is necessary to excite the out-of plane vibrational
mode χ = ξ . In this case, the transition dipole moment is
perpendicular to the permanent dipole moment [see Fig. 1(f)].
The lowest order for which the conditions (15) and (16) can
be fulfilled in this case is for l = 2 and l ′ = 1 (or vice versa)
with

�(〈0|Hint,a|0〉) × �(〈0|Hint,b|0〉) = Ba × Bb = Bc (17)

and

�(〈1|Hint,c|0〉) = Bc. (18)

In other words, three interactions are required, transforming
according to the irreducible representations Ba, Bb, and Bc,
respectively. Equation (17) describes purely rotational transi-
tions within the vibrational ground state which can be realized
with two microwave pulses, while the vibrational transition
(18) can be driven by an IR pulse. We discuss such an excita-
tion scheme in Sec. IV. Exchanging the roles of l and l ′, the
condition (15) can also be fulfilled by

�(〈0|Hint,a|1〉) × �(〈1|Hint,b|0〉) = Ba × Bb = Bc. (19)

Equation (19) together with Eq. (18) describes the conditions
for exciting a chiral wave packet with three rovibrational
transitions, which can be driven by three IR pulses. For
a planar molecule in free space, 〈0|Hint,α|1〉 = 0 for α =
a, b. In Sec. V we show that such transition matrix ele-
ments do occur in the presence of an external static electric
field.

Moreover, the above conditions imply that the three electric
fields that are (at least) necessary to excite a chiral vibrational
wave packet have to be polarized orthogonally to each other.
Starting with M0 = 0 and assuming without loss of generality
that the first-order transition 〈φ j |〈1|Hint,c|0〉|φ0〉 is driven by

a z-polarized field, the final rotational state has the quantum
numbers J = J0 + 1 = 1 and M = M0 = 0. This rotational
state can be addressed by a second-order process only with
a combination of x- and y-polarized fields [14]. Note that this
corresponds exactly to the general condition for distinguishing
enantiomers when exciting molecules that are chiral in the
first place [32]. It has also been determined as condition for
creating a chiral wave packet when considering a classical
angular distribution of the rotors [26].

C. Controllability of the rovibrational Schrödinger equation

The conditions discussed in Secs. III A and III B ensure
that a coherent vibrational wave packet can be created start-
ing from the ground rovibrational state. In order to ensure
that a coherent vibrational wave packet with maximal elon-
gation 〈χ̂〉max can be excited from an arbitrary initial state,
we pursue a different approach, namely, we analyze the
controllability [34]. The Schrödinger equation is said to be
controllable if the system can be steered from any given
initial condition to any given target state, with a suitable
choice of control fields Ei(t ), i = 1, . . . , f . This implies
that one can create a target state corresponding to maximal
elongation 〈χ̂〉.

In order to analyze the controllability of the rovibrational
Schrödinger equation (2) we make use of graph theory based
methods [36,43,46]. We consider a graph G consisting of the
eigenstates |ν〉|φ j〉 of H0 as nodes and the nonzero transi-
tion matrix elements 〈φ j |〈ν|Hint|ν ′〉|φ j′ 〉 as edges. A quantum
system has been shown to be controllable if the associated
graph G has a connected subgraph that contains all nodes
of G and only decoupled transitions [44].3 Here two tran-
sitions are called coupled by a control Hamiltonian if they
are nonvanishing and have equal energy gaps. A transition
is uncoupled if for any other transition there exists at least
one control Hamiltonian that does not couple them. Finally,
a transition is decoupled if for any other transition there
exists at least one nested commutator (of arbitrary length)
between control and drift Hamiltonians that does not couple
them [46]. For a quantum rotor, most transitions are coupled
due to the degeneracy of the rotational states. Recently, a
graph-theoretic method to decouple the resonant transitions
between asymmetric top states was developed [41] and the
maximal number of external fields required to control finite
subsystems of an asymmetric top was identified [40]. Here
we generalize these methods to analyze the controllability
of the rovibrational Schrödinger equation (2). However, con-
trollability analysis requires an a priori selection of controls,
i.e., external fields that interact with the molecule, in contrast
to symmetry analysis. We carry out controllability analysis
for two practical examples in Secs. IV and V, focusing on
the excitation of a chiral vibrational wave packet under the
conditions derived in scenario (c) in Sec. III B. In particular,
in Sec. IV we study the interaction of a planar molecule with
a combination of microwave pulses and an IR pulse, whereas

3Actually, this condition implies a stronger notion of controlla-
bility, namely, controllability at the level of the propagators, which
implies, in particular, controllability of the density matrices.
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in Sec. V we consider the interaction with a sequence of IR
pulses in the presence of a static electric field. We exemplify
in both cases that the symmetry conditions derived in scenario
(c) in Sec. III B are fulfilled and then prove controllability to
ascertain that the excitation process can result in a maximal
chiral response, irrespective of the initial state.

IV. EXCITATION WITH A COMBINATION
OF MICROWAVE AND IR PULSES

In the first example, microwave pulses are employed to
induce transitions between rotational states of an asymmetric
top molecule and IR radiation is applied to produce an excited
vibrational state of the out-of-plane normal mode.

The Hamiltonian describing the interaction with mi-
crowave and IR pulses in the electric dipole approximation
reads

Hint(t ) = Hmw
int (t ) + H IR

int (t ). (20)

The interaction of the microwave pulses with the electric fields
Ei(t ) as defined in Eq. (3) is then given by

Hmw
int (t ) =

∑
i

ui(t )Hmw
i , (21)

with

Hmw
i = − Ei

∑
j, j′

1∑
ν=0

|ν〉|φ j′ 〉〈φ j′ |

× [μ(00) · R(γR) · ei]|φ j〉〈φ j |〈ν| + c.c. (22)

The transformation between the space-fixed and molecule-
fixed coordinate system can be expressed in terms of the
Wigner D-matrix elements DJ

MK (γR) [47] as

μ(00) · R(γR) · ex = μ(00)
a√
2

(
D1

−10 − D1
10

)

+ μ
(00)
b

2

(
D1

11 − D1
1−1 − D1

−11 + D1
−1−1

)
,

μ(00) · R(γR) · ey = −i
μ(00)

a√
2

(
D1

−10 + D1
10

)

+ i
μ

(00)
b

2

(
D1

11 − D1
1−1 + D1

−11 − D1
−1−1

)
,

μ(00) · R(γR) · ez = μ(00)
a D1

00 − μ
(00)
b√
2

(
D1

01 − D1
0−1

)
. (23)

The evaluation of the matrix elements 〈φ j′ |μ(00)R(γR)ep|φ j〉
between the asymmetric top eigenstates |φ j〉 = |JKa,Kc , M〉 is
described, e.g., in [14,40]. The time dependence of the mi-
crowave pulses can be written as ui(t ) = si(t ) cos(ωit + φi ),
where si(t ) is the dimensionless envelope and ωi and φi are
the frequency and phase of the field. The frequencies ωi are
chosen to be resonant to one of the rotational transitions. The
field intensity can then be tuned such that only those transi-
tions resonant to the frequency of the field are excited [40]
and 〈φ j′ |μ(00) · R(γR) · ei|φ j〉 = 0 if ωi �= |E rot

j − E rot
j′ |/h̄.

The frequency of the IR pulse is chosen such that it is (ap-
proximately) resonant to the transition between the vibrational

states |0〉 and |1〉, that is, only transitions between the vibra-
tional states can occur, but no rotational transitions within
one of the vibrational states. The corresponding interaction
Hamiltonian can thus be expressed as

H IR
int (t ) = u(t )Ĥ IR, (24)

with

Ĥ IR = − EIR

∑
j, j′

|0〉|φ j′ 〉〈φ j′ |

× [μ(01) · R(γR) · eIR]|φ j〉〈φ j |〈1| + c.c., (25)

where eIR denotes the polarization of the IR pulse. Recall
that the transition dipole moment has only one component
perpendicular to the molecular plane, i.e., only μ(01)

c �= 0.
The transformation from the space-fixed to the molecule-fixed
frame is thus given by [47]

μ(01)R(γR)ex = −i
μ(01)

c

2

(
D1

11 + D1
1−1 − D1

−11 − D1
−1−1

)
,

μ(01)R(γR)ey = μ(01)
c

2

(
D1

11 + D1
1−1 + D1

−11 + D1
−1−1

)
,

μ(01)R(γR)ez = i
μ(01)

c√
2

(
D1

01 + D1
0−1

)
. (26)

The time dependence of the IR pulse can be written as u(t ) =
s(t ) cos(ωIRt + φ). If the duration of the IR pulse is longer that
the rotational period of the molecule, its bandwidth is small
enough to selectively excite individual rovibrational states,
i.e., only transitions with ωIR = |E rot

j′ + Evib
0 − E rot

j − Evib
1 |/h̄.

However, the bandwidth of a short IR pulse can be large
enough to excite several rotational states simultaneously. In
this case the interaction Hamiltonian contains all transition
matrix elements which are allowed according to the dipole
selection rules.

In the following, we show that the combination of mi-
crowave and IR pulses fulfills the requirements derived in
scenario (c) in Sec. III B for the creation of a chiral wave
packet. We analyze the controllability of the rovibrational
Schrödinger equation (2) with an interaction Hamiltonian of
the form (20) and discuss the results of numerical simulations
demonstrating the excitation of a chiral wave packet with a
combination of microwave and IR pulses.

A. Conditions for exciting a chiral wave packet

The conditions for creating a chiral vibrational wave packet
with a combination of microwave and IR pulses can be de-
duced directly from scenario (c) in Sec. III B. With the two
components of the permanent dipole moment, μ(00)

a and μ
(00)
b ,

the condition (17) is fulfilled with two microwave pulses, one
resonant to a b-type transition, e.g., from level JKa,Kb = 00,0

to 11,1, and the second one resonant to an a-type transition,
e.g., 11,1 → 11,0 within the vibrational ground state |0〉. The
condition (18) is fulfilled since the transition dipole moment
has the nonvanishing component μ(01)

c which drives the tran-
sition from |0〉 → |1〉 and 00,0 → 11,0. Moreover, as shown
in scenario (c) in Sec. III B, three orthogonal polarization
directions are required, e.g., a z-polarized IR pulse and x- and
y-polarized microwave pulses.
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FIG. 2. Graph with asymmetric top eigenstates as nodes (horizontal lines) and transition matrix elements as edges (green, red, and
blue arrows). (a) Interaction with a z-polarized IR pulse (green arrows). (b) Interaction with x-, y-, and z-polarized microwave pulses. Red
arrows indicate transition matrix elements 〈φ′

j |μ(00)
a |φ j〉 and blue arrows correspond to transition matrix elements 〈φ′

j |μ(00)
b |φ j〉. (c) Graphical

commutator between the transitions indicated by the green and red arrows, allowing the two coupled transitions indicated by the red arrows to
decouple.

B. Controllability analysis

We now demonstrate that the Schrödinger equation (2)
with an interaction Hamiltonian of the form (20) is control-
lable, implying that maximal elongation can be obtained for
an arbitrary initial state. We first consider a subspace of the
asymmetric top eigenstates consisting of all rotational states
with quantum numbers J = 0 and 1. The corresponding graph
is shown in Fig. 2, where the nodes of the graph, i.e., the
rovibrational eigenstates |ν〉|φ j〉, are indicated by horizontal
black lines. The green lines in Fig. 2(a) show the transition
matrix elements (edges) induced by the control Hamiltonian
Ĥ IR. It can be seen that the graph is not connected, i.e., it
is not possible to reach, from an arbitrary initial state, all
other states of the system by following the edges. Thus, the
system is not controllable with a single IR pulse. The edges
corresponding to the microwave pulses [Eq. (22)] are shown in
Fig. 2(b), where all three polarization directions x, y, and z are
considered. The red and blue lines correspond to transitions
driven by μ(00)

a and μ
(00)
b , respectively. A finite-dimensional

subsystem including the eigenstates of at least two consec-
utive values of J of a single quantum asymmetric top is
controllable with x-, y-, and z-polarized fields via electric
dipole interaction if the rotor exhibits two orthogonal compo-
nents of the permanent dipole moment [42]. Since COFCl has
two orthogonal dipole moment components in the molecular
plane, the rotational part of the Hamiltonian, i.e., the lower
graph in Fig. 2(b), is controllable. This means that each of
the edges (red and blue lines) corresponds to a decoupled
transition. The graph of the rovibrational system consists of
two identical rotational subsystems, shifted by the vibrational
energy. By interaction with microwave fields alone, this sys-

tem is not controllable since the graph is not connected [see
Fig. 2(b)]. Moreover, each transition in the lower rotational
subsystem is coupled to the corresponding transition in the
upper rotational subsystem. Note that this is strictly true only
if rovibrational coupling is neglected, as we assume here.

In order to show that the rovibrational system is control-
lable with a combination of a (z-polarized) IR pulse and
x-, y-, and z-polarized microwave pulses, we have to show
that the combined graph containing all transitions shown in
Figs. 2(a) and 2(b) is connected and contains only uncoupled
or decoupled transitions. It is easy to see that the graph is
connected if one of the edges in Fig. 2(a) is added to the
graph shown in Fig. 2(b), e.g., the transition between the states
|0〉|000, 0〉 and |1〉|110, 0〉 [green line in Fig. 2(c)]. The corre-
sponding transition is uncoupled because there exists no other
transition with the same energy gap. What remains is to show
that the pairs of coupled transitions [identical transitions in
the upper and lower parts of Fig. 2(b)] can be decoupled.
This can be proven by using graphical commutators [41,46].
Note that the commutator between an N × N matrix with a
single pair of nonzero elements (n, m) and (m, n) with an
N × N matrix with nonzero elements (n, k) and (k, n) with
n �= m �= k is a matrix with nonzero elements (m, k) and
(k, m). If the nonzero matrix elements present edges of a
graph, the edge (m, k) between the nodes m and k is called the
graphical commutator of (n, m) and (n, k) [46]. Figure 2(c)
shows the graphical commutator between the (decoupled)
transition |0〉|000, 0〉 ↔ |1〉|110, 0〉 (green line) and the pair
of coupled transitions |ν〉|000, 0〉 ↔ |ν〉|101, 0〉, ν = 0, 1 (red
lines). The resulting commutator is indicated by the pur-
ple line. The graphical commutator between the green and
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purple edges then results in the lower red line, corresponding
to the transition |0〉|000, 0〉 ↔ |0〉|101, 0〉. By this procedure,
we have shown that the transition |0〉|000, 0〉 ↔ |0〉|101, 0〉 is
decoupled from |1〉|000, 0〉 ↔ |1〉|101, 0〉. Having decoupled
one pair of coupled transitions, all other pairs can also become
decoupled by again taking (graphical) commutators between
a decoupled transition and a pair of coupled transitions. This
allows us to conclude that the Schrödinger equation for the
rovibrational interaction with a combination of an IR pulse
with three microwave fields is controllable. Note that in Fig. 2
we only show the rotational states with J = 0 and 1. However,
since every finite-dimensional rotational subsystem including
the eigenstates of at least two consecutive values of J of an
asymmetric top is controllable [42], the result is also valid
for larger rotational subsystems. We have thus shown that
the time-dependent Schrödinger equation with the interaction
Hamiltonian (20) is controllable for the out-of-plane vibration
of COFCl with a combination of a z-polarized IR pulse and
three orthogonally polarized microwave pulses, implying that
maximal elongation 〈ξ̂〉max can be obtained with such a set of
pulses for an arbitrary initial state.

According to Secs. III B and IV A, two microwave pulses,
polarized in the x and y directions in combination with a
z-polarized IR pulse, are already sufficient to obtain a chiral
signal, although not necessarily the maximal possible, if the
initial state is the rovibrational ground state. In Sec. IV C we
make use of this simpler condition to numerically demonstrate
the excitation of a chiral wave packet with a combination of
microwave and IR pulses.

C. Chiral rovibrational dynamics

To demonstrate the excitation of a chiral wave packet
with a combination of microwave and IR pulses numeri-
cally, we consider the simplest initial condition describing
randomly oriented rotors, i.e., we assume that the molecules
are initially in their ground vibrational and rotational state
|ψ (0)〉 = |0〉|000, 0〉. As an example, we consider COFCl
molecules [26] with rotational constants A = 11781.84 MHz,
B = 5246.37 MHz, and C = 3627.49 MHz and dipole mo-
ments μ(00)

a = −1.1 D and μ
(00)
b = 0.8 D.

As shown in Sec. IV A, the excitation of a chiral wave
packet requires two microwave pulses polarized in the x and
y directions, respectively. The population dynamics in the
vibrational ground state during the interaction with microwave
pulses, obtained by numerically solving the time-dependent
Schrödinger equation (2) with interaction Hamiltonian (20),
is shown in Fig. 3. The duration of the first microwave
pulse is chosen such that 50% of the population remains in
the ground state |0〉|000, 0〉 while 25% is transferred to each
of the states |0〉|111,±1〉. The second pulse then completely
transfers the population of the states |0〉|111,±1〉 to |0〉|110, 0〉
so that the wave function after excitation with the microwave
pulses reads

|ψ (t )〉 = 1√
2

(|000, 0〉 + exp[iφ(t )]|110, 0〉)|0〉, (27)

with the dynamical phase φ(t ) = −(E110 − E000 )t/h̄ + φ̃,
where EJKa ,Kc

are the energies of the asymmetric top eigen-
states and φ̃ = φ2 − φ1 is the relative phase between the

FIG. 3. Excitation of a rotational wave packet in ν = 0 with two
microwave pulses. The population dynamics is shown for the rota-
tional states |000, 0〉 (blue solid line), |111, ±1〉 (magenta solid line),
and |110, 0〉 (red dashed line). The envelope of the two microwave
pulses is indicated by the gray shapes; they are x and y polarized as
indicated in the figure. Time is given in units of t0 = h̄/B ≈ 30 ps.
The amplitude of the microwave fields is Ei = 2 × 104 V/m for the
three fields i = 1, 2, 3.

microwave fields. The vibrational state |1〉 is excited by a
z-polarized IR pulse. Figure 4 displays the excitation with a
narrowband IR pulse with

u(t ) = exp

(
− (t − t0)2

2�t2

)
cos(ωLt + φ), (28)

ωL = ω + E110/h̄, and a bandwidth �ω = 1/�t small enough
to excite only the transition from |000, 0〉|0〉 to |110, 0〉|1〉. The
resulting population dynamics is shown in Figs. 4(a) and 4(b).
Figure 4(c) shows the envelope of the elongation 〈ξ̂〉(t ) which
emerges during the interaction with the IR pulse and oscillates
with the vibrational frequency ω. For COFCl, ω ≈ 607 B [26]
and the vibrational period is thus T ≈ 0.01t0. The elongation
becomes maximal if the population is equally distributed be-
tween pairs of rovibrational states |0〉|φ j〉 and |1〉|φ j〉 [see
Eq. (9)]. Therefore, the pulse length and field strength are
chosen such that after the excitation |b0 j |2 = |b1 j |2 = 1

2 for
j = 110, 0 [red dotted lines in Fig. 4(a)] and all other coeffi-
cients are zero. This results in a chiral vibrational wave packet
with maximal elongation 〈ξ̂ 〉max/ξ0 = 1

2 with ξ0 = √
h̄/2mω

as shown in Fig. 4(c). The phase of the oscillation depends on
the relative phase between the electric fields. The excitation
process thus requires a stable constant phase between the
microwave and IR pulses.

To induce a chiral wave packet, it is however not necessary
to selectively excite a single rovibrational state. As shown in
Fig. 5, a chiral wave packet can also be excited by a short
broadband IR pulse. As before, we assume that the rotational
wave function (27) has been created by microwave excitation.
According to the rovibrational selection rules, the IR pulse
drives transitions between |0〉|000, 0〉 and |1〉|110, 0〉 as well as
between |0〉|110, 0〉 and |1〉|000, 0〉 [see Figs. 5(a) and 5(b)].
Choosing the pulse duration and intensity of the IR pulse
such that there is population in all four states after the end
of pulse leads to nonvanishing terms in Eq. (9). The corre-
sponding expectation value 〈ξ 〉/ξ0 is shown in Fig. 5(c). The
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FIG. 4. Population dynamics after excitation with a long z-
polarized IR pulse. Population is shown in the (a) ground and
(b) excited vibrational states. The blue solid and red dashed lines
correspond to the rotational states |000, 0〉 and |110, 0〉, respectively.
(c) Envelope of elongation 〈ξ̂〉(t )/ξ0 during the excitation with the IR
pulse. [The oscillation of 〈ξ̂〉(t ) with T = 0.01t0 is too fast compared
to the timescale of the plot to be resolved.] The maximal elongation
±〈ξ̂〉max/ξ0 is indicated by the horizontal dashed lines. In all panels,
the envelope of the IR pulse is indicated by the gray shapes; the
maximal amplitude is EIR = 5 × 105 V/m.

average elongation of the out-of-plane coordinate depends on
the dynamical phase φ. For φ = 0, the average elongation is
close to zero, since the contributions to 〈ξ 〉 from the rotational
states |000, 0〉 and |110, 0〉 cancel each other. For φ = ±π/2,
the contributions from the rotational states |000, 0〉 and |110, 0〉
add constructively, and 〈ξ 〉 changes its phase if one switches
from φ = π/2 to φ = −π/2. Thus the relative phases be-
tween the microwave and IR pulses must be constant during
the interaction.

It should be noted that the IR pulse also drives transi-
tions between the initial state |0〉|110, 0〉 and the rovibrational
states |1〉|211, 0〉 and |1〉|202, 0〉 [see yellow and green lines
in Fig. 4(b)]. Since the corresponding states |0〉|211, 0〉 and
|0〉|202, 0〉 are not populated, these states do not contribute to
the average elongation of the out-of-plane coordinate and, as
a result, the maximal elongation of the chiral wave packet is
smaller than 1

2 .
We have numerically demonstrated the excitation of a

chiral vibrational wave packet with two microwave pulses,
polarized in the x and y directions and one z-polarized IR

FIG. 5. Population dynamics after excitation with a short z-
polarized IR pulse for the (a) ground and (b) excited vibrational
states. The blue solid and red dashed lines correspond to the ro-
tational states |000, 0〉 and |110, 0〉, respectively, and the yellow
dash-dotted and green dotted lines correspond to |211, 0〉 and |202, 0〉,
respectively. (c) Elongation 〈ξ̂〉(t )/ξ0 due to the excitation with the
IR pulse. The solid, dashed, and dash-dotted lines correspond to
φ = π/2, −π/2, and 0, respectively. The envelope of the IR pulse
is indicated by the gray shapes; the maximal amplitude is EIR =
7.5 × 107 V/m.

pulse for a molecule that is initially in its ground rotational and
vibrational state. In an experiment, the initial condition will
typically contain a (thermal) distribution of rotational states.
In this case, the pulse sequences shown here will induce some
chiral signal, but it might be small depending on the initial
rotational temperature. However, the controllability analysis
in Sec. IV B shows that it is always possible to induce a chi-
ral wave packet with maximal elongation. In this case, three
microwave fields polarized in the x, y, and z directions might
be necessary to induce maximal elongation as well as more
complicated pulse shapes of the microwave and IR pulses.

Another experimental challenge for the creation of a chiral
wave packet with microwave and IR pulses is that the phase
between the microwave fields and the IR fields must be stable,
which can be realized, e.g., by using a frequency comb. To
avoid phase locking between microwave and infrared pulses,
a chiral wave packet can also be excited without involving
microwave pulses. In Sec. V we demonstrate how to create a
chiral vibrational wave packet with a static electric field and a
sequence of IR pulses.
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V. EXCITATION WITH IR PULSES IN THE PRESENCE
OF A STATIC ELECTRIC FIELD

In this example, we consider planar molecules evolving un-
der the influence of the time-dependent Schrödinger equation

ih̄
∂

∂t
|ψ (t )〉 = [H0 + εHstat + Hint(t )]|ψ (t )〉, (29)

where

Hstat = −E0μ
(00) · R(γR) · ez (30)

describes the interaction with a static electric field in the z
direction. Here the field strength is defined as E = εE0, where
E0 is a unit field strength and ε a small dimensionless number
indicating that the interaction with the static field is small
compared to the molecular Hamiltonian H0. The transforma-
tion between the space-fixed and molecule-fixed coordinate
systems is given by Eq. (23). The interaction with the IR
pulses can be written as

Hint(t ) =
∑

i

ui(t )H IR
i , (31)

with

H IR
i = − Ei

∑
j, j′

|0〉|φ j′ 〉〈φ j′ |μ(01) · R(γR)·

× ei|φ j〉〈φ j |〈1| + c.c., (32)

where E = eiEiui(t ) is the electric field of the IR pulse with
polarization ei, amplitude Ei, and time dependence ui(t ) =
si(t ) cos(ωit + φi ). In Sec. V A we show that the Schrödinger
equation (29) fulfills the conditions necessary to induce a
chiral vibrational wave packet, as discussed in Sec. III B. In
Sec. V B we analyze the controllability of the Schrödinger
equation (29) and in Sec. V C we numerically demonstrate the
excitation of a chiral wave packet with a sequence of three IR
pulses in the presence of a static electric field.

A. Conditions for creating a chiral wave packet

As demonstrated in scenario (c) in Sec. III B, a vibrational
wave packet can be excited by three IR pulses with x, y,
and z polarization under the condition that the excitation
path contains transition matrix elements with 〈1|Hint,α|0〉 �= 0
for α = a, b, and c, respectively. Since the transition dipole
moment for the out-of-plane vibration of a planar molecule
is perpendicular to the molecular plane, only the component
μ(01)

c is nonzero. Thus, IR pulses only induce transition matrix
elements of the form 〈1|Hint,c|0〉 and excitation of a chiral
wave packet with only IR pulses is not possible without ad-
ditional external fields. However, in the presence of a static
field, additional rovibrational transitions occur, which are for-
bidden under field-free conditions. In order to determine the
nonvanishing transition matrix elements in the presence of a
static electric field, we consider the interaction with the static
field as a perturbation and describe the field-dressed rotational
states |φFD

j 〉, i.e., the eigenstates of H0 + εHstat. Using the
selection rules associated with Hstat, one obtains by first-order
perturbation theory that∣∣φFD

j

〉 = |φ j〉 + ε|φ′
j〉 + O(ε), (33)

with

|φ′
j〉 =

∑
k �= j

〈φ j |Hstat|φk〉
E rot

j − E rot
k

|φk〉, (34)

where only those values of k are considered for which E rot
j �=

E rot
k . Note that Eqs. (33) and (34) hold even if the eigenvalue

corresponding to |φ j〉 is degenerate: Indeed, the total Hilbert
space splits into the direct sum of Hstat-invariant subspaces
(each of them identified by the quantum number M), to which
the eigenstates |φ j〉 belong, and in each of these subspaces
H0 has a simple spectrum. The transition matrix elements
between the field-dressed rotational states in first-order per-
turbation theory then read〈

φFD
k

∣∣〈1|H IR
i |0〉∣∣φFD

j

〉
= 〈

φk

∣∣〈1|H IR
i |0〉∣∣φ j

〉
+ ε

(〈φ′
k|〈1|H IR

i |0〉|φ j〉 + 〈φk|〈1|H IR
i |0〉|φ′

j〉
)

+ O(ε). (35)

Since the permanent dipole moment of COFCl has com-
ponents μ(00)

a �= 0 and μ
(00)
b �= 0, the interaction with the

static field can be decomposed into Hstat = Hstat,a + Hstat,b,
and H IR

i = H IR
i,c . Inserting Eq. (34), we obtain

〈φk|〈1|H IR
i |0〉|φ′

j〉 =
∑
l �= j

1

E rot
j − E rot

l

〈φk|〈1|H IR
i,c |0〉|φl〉

× 〈φl |〈0|Hstat,a|0〉|φ j〉

+
∑
l �= j

1

E rot
j − E rot

l

〈φk|〈1|H IR
i,c |0〉|φl〉

× 〈φl |〈0|Hstat,b|0〉|φ j〉. (36)

The direct products of the irreducible representations of D2

are Bc × Ba = Bb and Bc × Bb = Ba (see Table I). Therefore,
transitions between the field-dressed states driven by IR pulses
are governed in first-order perturbation by matrix elements
that transform according to Ba and Bb while transition matrix
elements between the unperturbed rotational states transform
according to Bc. Thus, the conditions for creating a vibrational
wave packet with nonvanishing elongation 〈ξ̂〉 are fulfilled if
the molecules interact with three IR pulses polarized orthogo-
nally to each other in the presence of a static electric field.

B. Controllability analysis

In order to ensure that a maximal chiral signal can be
obtained from an arbitrary initial condition, we also study
the controllability of the Schrödinger equation (29) using
first-order perturbation theory in combination with graphical
methods. We therefore introduce a graph G whose nodes
are the eigenstates |φ j〉|ν〉 (see horizontal lines in Fig. 6).
The edges of the graph are defined by the transition matrix
elements between the field-dressed eigenstates [Eq. (35)],
i.e., by the zeroth-order couplings 〈φk|〈1|H IR

i |0〉|φ j〉 and the
first-order couplings 〈φ′

k|〈1|H IR
i |0〉|φ j〉 + 〈φk|〈1|H IR

i |0〉|φ′
j〉.

To analyze the controllability, it is convenient to choose the
polarizations i = σ+, σ−, where σ+ = x + iy and σ− = x − iy
instead of i = x, y. The Schrödinger equation (29) is con-
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FIG. 6. Graph with rovibrational states |Jka,Kc , M〉|ν〉, ν = 0, 1,
as nodes and zeroth-order (solid lines) and first-order (dashed lines)
transition matrix elements as edges. The red, green, and blue arrows
correspond to transitions induced by control fields with i = z, σ+,
and σ−, respectively. For convenience, the nodes are numbered from
1 to 20. (a) All nonvanishing transitions connecting node 1. (b) An
additional set of nonvanishing transitions that is necessary to connect
node 1 to all nodes greater than or equal to 11.

trollable if the graph G has a subgraph containing all nodes
and only uncoupled or decoupled transitions. It should be
noted that if the system is controllable with control fields with
i = z, σ+, σ− it is controllable as well with a set of fields with
linear polarizations i = x, y, z.

A way to prove controllability is to draw all edges, i.e.,
all nonzero zeroth- and first-order transition matrix elements,
and analyze if the graph G is connected by uncoupled or
decoupled transitions. It is however more convenient to start
with a smaller subgraph and subsequently add as many edges
as are necessary to prove that the graph is connected. There-
fore, we first analyze all transitions with the ground state
|0〉|φ0〉 = |0〉|00,0, 0〉, as indicated in Fig. 6. To simplify the
notation, we number the nodes of the graph, starting from 1
for the ground state |0〉|00,0, 0〉 to 20 for the state |1〉|10,1, 1〉
(see Fig. 6). A z-polarized IR pulse induces the zeroth-order
transition 1 ↔ 19, indicated by the red solid line in Fig. 6(a).
Fields with i = σ+ induce transitions with �M = +1, i.e., the
zeroth-order transition 1 ↔ 20 and the first-order transitions
1 ↔ 14 and 1 ↔ 17, which are determined by Eq. (36). Like-
wise, fields with i = σ− induce transitions with �M = −1,
i.e., the transitions 1 ↔ 18, 1 ↔ 15, and 1 ↔ 12. All those
transitions are decoupled since those transitions correspond-
ing to the same control Hamiltonian (same polarization) have
different energy gaps.

Next we show that node 1 is also connected with nodes
11, 13, and 16. Note that there are no zeroth- or first-order
transitions matrix elements that directly connect vortex 1
with any of these states. We add the edges 9 ↔ 11, 9 ↔ 13,
9 ↔ 16, 2 ↔ 15, 4 ↔ 17, and 4 ↔ 16, which are shown in
Fig. 6(b), to the subgraph. All edges represented by red arrows
are induced by a z-polarized control field, with 9 ↔ 11, 2 ↔
15, and 4 ↔ 17 being zeroth-order transitions while 9 ↔ 13

and 9 ↔ 16 are first-order transitions, as it can be verified
with help of Eq. (36). The zeroth-order transition 4 ↔ 16 is
induced by a control field with polarization i = σ−. Since
the subgraph contains the edge 1 ↔ 17 [see Fig. 6(a)], the
additional edges couple vortex 1 with 16, 13, and 11. Note
that the transitions 2 ↔ 15 and 4 ↔ 17 are induced by the
same control field (i = z) and have the same energy gap.
They are thus coupled. By taking the graphical commutator
between the transitions 1 ↔ 17 and 4 ↔ 17, one can however
decouple the transitions 2 ↔ 15 and 4 ↔ 17 [46]. The sub-
graph consisting of all edges shown in Figs. 6(a) and 6(b) thus
contains only decoupled transitions. Node 1 is thus connected
to all nodes in the upper part of the graph, i.e., for all states
in the excited vibrational states |ν = 1〉. Finally, we show that
node 11 is connected with all nodes smaller than or equal to
10; it suffices to do it symmetrically, that is, replace 1 with
11 and any state n � 11 with n − 10. The subgraph we have
described satisfies the desired properties: It is a connected
graph consisting of only uncoupled or decoupled transitions.
This proves that the corresponding Schrödinger equation (29)
is controllable. Controllability of Eq. (29) implies that with a
combination of a static field and a set of x, y, and z or σ+, σ−,
and z polarized IR pulses, a chiral wave packet with maximal
elongation can be created.

The interaction between the molecule and a static field
is typically much smaller than the rotational energies, that
is, we consider the regime ε 
 1. We therefore treat the
resulting transition matrix elements in first-order perturba-
tion theory. However, since eigenvalues and eigenvectors of
H0 + εHstat are analytic functions of the parameter ε and
analytic functions have at worst isolated zeros (when they are
not identically zero), the controllability result holds for almost
every value of the parameter ε.

C. Chiral rovibrational dynamics in a static field

In order to simulate the rovibrational dynamics in the pres-
ence of a static electric field, we first numerically determine
the field-dressed eigenstates |φFD

j 〉|ν〉, i.e., the eigenstates of
H0 + εHstat for ε = 0.3, which corresponds to a field strength
of E = 106 V/m. Similar to Sec. IV C, we assume that the
molecule is initially in the field-dressed rovibrational ground
state |ψ (0)〉 = |0〉|φFD

0 〉 and simulate the population dynam-
ics during the interaction with three orthogonally polarized
IR pulses by numerically integrating the Schrödinger equa-
tion (29). Figures 7(a) and 7(b) display the population in
the ground and excited vibrational states, respectively. The
corresponding excitation mechanism is sketched in Fig. 8. The
first pulse is x polarized and has a Gaussian shape with central
frequency ω1 = ω + (E rot

110
− E rot

000
)/h̄. The allowed transitions

are indicated by the solid and dashed arrows in Fig. 8(a). The
green solid arrow represents the transitions matrix elements
between the field-free rotational states and the dashed arrows
show the much weaker transitions resulting from couplings
between rotational states in the presence of the static field.
The strength and width of the pulse are chosen such that
only the transition resonant to ω1 is driven and 50% of the
population remains in the ground rovibrational state (blue line
in Fig. 7) and 25% is transferred to the states |1〉|110,±1〉
each. Note that this is a pure c-type transition. To fulfill the
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FIG. 7. Population dynamics for excitation with a sequence of
three IR pulses in the presence of a static electric field. Population
is shown in the (a) ground and (b) excited vibrational states. The
blue, red, and green lines correspond to the rotational states |000, 0〉,
|110, ±1〉, and |101, ±1〉, respectively. (c) Envelope of the elonga-
tion 〈ξ〉(t )/ξ0. The dashed lines indicate the maximal elongation
〈ξ〉/ξ0 = ±1/2. In all panels, the envelopes of the pulses are indi-
cated by the gray shapes; the maximal amplitude is Ei = 1.5 × 105,
6.5 × 105, and 5 × 105 V/m for i = 1, 2, and 3, respectively. The
polarization of the pulses is denoted by x, y, and z. Note that the
population dynamics is shown in the field-free basis.

conditions for the creation of a chiral wave packet, the other
two pulses have to drive a- and b-type transitions, which
arise only due to the couplings induced by the static field and
are thus much weaker. The integrated field intensity of these
pulses is therefore much larger (see gray shapes in Fig. 7). The
second pulse is z polarized, has a central frequency ω2 = ω +
(E rot

110
− E rot

101
)/h̄, and drives the transitions from |1〉|110,±1〉

to |0〉|101,±1〉, which is a b-type transition [see red dashed
arrow in Fig. 8(b)]. Finally, the third, y-polarized pulse trans-
fers the remaining ground state population to |1〉|101,±1〉 by
an a-type transition [blue dashed arrows in Fig. 8(c)] and thus
creates the chiral wave packet.

The envelope of the elongation 〈ξ̂〉(t )/ξ0 is shown in
Fig. 7(c). The elongation oscillates with frequency ω (with
T = 2π/ω ≈ 0.01t0 the oscillation is too fast to be resolved
on the timescale shown in Fig. 7). Since this pulse sequence
transfers almost the complete population to the two pairs of
states |0〉|101,±1〉 and |1〉|101,±1〉, the elongation reaches
almost its maximal value 〈ξ̂〉/ξ0 = ± 1

2 . Note that in the third

step, the transition between |0〉|000, 0〉 and |1〉|101,±1〉 can
also be induced by a second x-polarized pulse. However, in
that case the vibrational wave packet created by the pair of
states |0〉|101,+1〉 and |1〉|101,+1〉 oscillates out of phase
with the wave packet consisting of the states |0〉|101,−1〉 and
|1〉|101,−1〉 and thus the net elongation becomes zero.

We have thus demonstrated numerically that a chiral wave
packet can be excited with a combination of three IR pulses
polarized orthogonally to each other if a static electric field
induces transitions between rovibrational states which are for-
bidden under field-free conditions. In this case, the relative
phases between the three IR pulses have to be constant, which
is easier to realize experimentally than phase locking between
microwave and IR pulses.

VI. CONCLUSION

With the help of symmetry considerations and controlla-
bility analysis, we have derived requirements for electromag-
netic fields interacting in an electric dipole approximation
with randomly oriented molecules that allow for the excitation
of coherent vibrational motion. For the controllability analy-
sis, we extended graph-theoretic methods derived for quantum
asymmetric tops [40,41] to rovibrational systems. Perturba-
tion theory for controllability in the presence of a static field is
usually considered to lift spectral degeneracies; see, e.g., [39]
for such an analysis in rotating symmetric top molecules. Here
we pursued a different approach, where perturbation theory
for controllability in the presence of a static field is considered
to create additional couplings in the matrix elements, which
graphically represent additional edges of the quantum spectral
graph.

We applied this methodology to determine conditions for
the creation of chiral vibrational wave packets in achiral
molecules. In order to measure the chirality of the excited
molecule, i.e., to measure the time-dependent elongation
along the out-of-plane mode, all excitation processes de-
scribed here could be combined with vibrationally resolved
photoelectron circular dichroism, as proposed in [26]. The
conditions for creating chiral vibrational wave packets had
been derived earlier by taking a classical rotational average
of an ensemble of randomly oriented molecules, where the
rotation is assumed to be frozen during the excitation pro-
cess [26]. The quantum-mechanical derivation shown here
extends this treatment to cases where molecules rotate during
the excitation process. This allows us to compare conditions
for creating (temporal) chirality in regimes where molecular
rotations behave classically and quantum mechanically. The
excitation schemes proposed here rely on coherent excitation
of individual rotational or rovibrational states, i.e., they re-
quire interaction times long enough to resolve the rotational
spectrum of molecules. Such transitions can only be described
by a quantum-mechanical treatment of molecular rotation.

While the excitation scheme proposed in [26] requires
Raman excitation to an excited electronic state, exciting indi-
vidual rotational states for the creation of a chiral vibrational
wave packet occurs only in the electronic ground state of the
COFCl molecules. This has the advantage that the dipole and
transition dipole moments within the electronic ground states
are larger than electronic transition dipole moments.
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FIG. 8. Transition matrix elements and populated states for the excitation process shown in Fig. 7. The transition matrix elements are
shown for the excitation with the IR pulses (a) 1, (b) 2, and (c) 3 of Fig. 7. The solid arrows indicate transition matrix elements between
field-free rotational states and dashed arrows correspond to transitions allowed only in the presence of a static electric field. The colors (green,
blue, and red) indicate the type of transitions (a, b, and c type). The gray circles show which states are populated at the end of the (a) first,
(b) second, and (c) third pulses.

As a proof of principle, we simulated the excitation of chi-
ral wave packets assuming that the molecules are initially in
their ground rotational and vibrational state. A more realistic
description of experimental conditions is an initial thermal
distribution of rotational states, whereas for typical temper-
atures in molecular beams or buffer gas cooled samples the
molecules are predominantly in their vibrational ground state.
With the help of controllability analysis, we demonstrated that
also for such an initial condition a chiral signal with maximal
amplitude can be achieved with the proposed excitation mech-
anisms. However, in this case the microwave and IR pulses
are expected to have more complicated shapes and can be
obtained, for example, making use of optimal control theory.

When considering higher temperatures, where rotational
states with larger J are involved in the excitation process, rovi-
brational coupling, neglected in the present study, becomes
more relevant. On the one hand, this might lead to dephasing
of the rovibrational wave packets and thus to a decrease of the
pump-probe signal. On the other hand, rovibrational coupling
lifts the symmetry restrictions of the transition matrix ele-
ments. This might give rise to additional excitation schemes
which are forbidden by symmetry in the regime where rovi-
brational coupling is negligible. In this case, optimization of
the pulse shapes is likely to be even more important in order to
ensure the proper synchronization between different quantum
pathways.
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APPENDIX: TRANSFORMATION PROPERTIES
OF THE ROTATION MATRIX

In this Appendix we verify Eq. (14), i.e., we show that the
elements of the rotation matrix Rα,p(γR) with molecule-fixed
coordinates α = a, b, c, space-fixed coordinates p = x, y, z,
and Euler angles γR = θ, ψ, ϕ transform according to the
irreducible representations of the rotation group D2. The ele-
ments of the rotation group can be written in terms of Wigner
D-matrix elements, namely [47–49],

Ra,x = − 1√
2

(
D1

10 − D1
−10

)
,

Ra,y = − i√
2

(
D1

10 + D1
−10

)
, Ra,z = D1

00, (A1)

as well as

Rb,x = 1

2

[(
D1

11 − D1
1−1

) − (
D1

−11 − D1
−1−1

)]
,

Rb,y = i

2

[(
D1

11 − D1
1−1

) + (
D1

−11 − D1
−1−1

)]
,

Rb,z = − 1√
2

(
D1

01 − D1
0−1

)
(A2)
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TABLE II. Effect of the rotations Rπ
α , α = a, b, c, on the Euler

angles according to [33].

Rπ
α θ ϕ ψ

Rπ
a θ ϕ ψ + π

Rπ
b π − θ ϕ + π 2π − ψ

Rπ
c π − θ ϕ + π π − ψ

and

Rc,x = − i

2

[(
D1

11 + D1
1−1

) − (
D1

−11 + D1
−1−1

)]
,

Rc,y = 1

2

[(
D1

11 + D1
1−1

) + (
D1

−11 + D1
−1−1

)]
,

Rc,z = i√
2

(
D1

01 + D1
0−1

)
, (A3)

with

DJ
MK = exp(−iMϕ)dJ

MK (θ ) exp(−iKψ ). (A4)

The elements of Wigner’s (small) d matrix for J = 1 are given
by d1

00 = cos θ , d1
10 = − 1√

2
sin θ , and d1

1±1 = 1
2 (1 ± cos θ )

and obey the relation

dJ
M ′M = (−1)M−M ′

dJ
MM ′ = dJ

−M−M ′ . (A5)

The rotation group of an asymmetric top D2 =
{E , Rπ

a , Rπ
b , Rπ

c } contains, besides the identity E , the elements
Rπ

α which describe the rotation about the molecular axes
α = a, b, c by an angle of π [33]. The effect of these rotations

on the Euler angles is shown in Table II. Using Table II, one
can show that

ED1
00 = +D1

00,

Rπ
a D1

00 = +D1
00,

Rπ
b D1

00 = −D1
00,

Rπ
c D1

00 = −D1
00. (A6)

Comparing with the character table (Table I), one can
conclude that D1

00 transforms according to the irreducible pre-
sentation Ba. Likewise, one can show that also D1

±10 transform
according to Ba. Together with Eq. (A1), we can thus con-
clude that the elements of the rotational matrix Ra,p transform
according to Ba for p = x, y, z. Moreover,

ED1
0±1 = +D1

0±1,

Rπ
a D1

0±1 = −D1
0±1,

Rπ
b D1

0±1 = −D1
0∓1,

Rπ
c D1

0±1 = +D1
0∓1, (A7)

i.e., neither D1
01 nor D1

0−1 transforms according to an irre-
ducible representation of D2, but the linear combination D1

01 −
D1

0−1 transforms according to Bb and D1
01 + D1

0−1 transforms
according to Bc. Similarly, one can show that D1

±11 − D1
±1−1

transforms according to Bb and D1
±11 + D1

±1−1 transforms
according to Bc. Comparing with Eqs. (A2) and (A3), we
can conclude that the rotation matrix elements Rb,p transform
according to Bb and Rc,p transform according to Bc for all
p = x, y, z. In summary, we have demonstrated that Ra,p ∼
Ba, Rb,p ∼ Bb, and Rc,p ∼ Bc, verifying Eq. (14).
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