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parity violation on the 2s−3s or 2s−4s transition in hydrogen
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We explore the feasibility of extracting electroweak observables from a measurement of atomic parity violation
in hydrogen. Our proposed quantum-control scheme focuses on the 2s−3s or 2s−4s transitions in hydrogen.
This work is motivated by the recently observed anomaly in the W-boson mass, which may substantially modify
the Standard Model value of the proton weak charge. We also study the accuracy of the previously employed
approximations in computing parity-violating effects in hydrogen.
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I. INTRODUCTION

Atomic parity violation (APV) is a powerful probe of the
low-energy electroweak sector of the Standard Model (SM)
of elementary particles. The APV results are both unique and
complementary to those from particle colliders, in particular
because APV probes Z-boson exchange at low momentum
transfer Q (Q ∼ h̄/rp ≈ 0.2 GeV/c for a nucleus of size
∼rp ∼ fm). The already demonstrated precision of table-top
APV experiments and theoretical interpretations places im-
portant constraints on exotic beyond-SM physics; these are
often competitive to those derived from colliders. The rich
history of APV and its implications were reviewed recently
in Refs. [1,2]. We will use APV and parity nonconservation
(PNC) interchangeably.

Microscopically, APV is caused by the weak interaction
mediated by the exchange of a Z boson. The relevant contri-
bution to the SM Hamiltonian density reads [3]

HPV = GF√
2

∑
q

[
C(1)

q ēγμγ5e q̄γ μq + C(2)
q ēγμe q̄γ μγ5q

+ C(3)
q ∂ν (ēσμνe)q̄γ μγ5q

]
, (1)

where the Fermi constant GF ≈ 2.22254 × 10−14 a.u., the
summation is over quarks, e and q are field operators for elec-
trons and quarks, respectively, and γ ’s are the conventional
Dirac matrices [4].

The coupling of the electron axial-vector currents to the
quark vector currents is parameterized by the constants C(1)

q ;
the constants C(2)

q describe the coupling of the electron vector
currents to quark axial-vector currents. The C(1)

q contributions
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lead to nuclear-spin-independent interactions and C(2)
q to the

nuclear-spin-dependent interactions. The C(3)
q contribution is

due to the “anomalous weak moment” and it also leads to
nuclear-spin-dependent effects.

The weak Hamiltonian (1) can be simplified further by
lumping quarks into nucleons (e.g., a proton is composed of
two up and one down quarks)

HPV,p = GF√
2

[
C(1)

p ēγμγ5e p̄γ μ p + C(2)
p ēγμe p̄γ μγ5 p

+ C(3)
p ∂ν (ēσμνe) p̄γ μγ5 p

]
, (2)

where we omitted couplings to neutrons because of our inter-
est in the hydrogen atom. In general, the couplings to protons
and neutrons read [5]

C(1)
p = 2C(1)

u + C(1)
d = 1

2 (1 − 4 sin2θW), (3a)

C(1)
n = C(1)

u + 2C(1)
d = − 1

2 , (3b)

C(2)
p = −C(2)

n = gAC(1)
p , (3c)

reflecting the quark composition of nucleons. Here θW is the
Weinberg angle and gA ≈ 1.28 is the scale factor account-
ing for the partially conserved axial vector current. Finally,
the anomalous weak moment contribution is suppressed by
the small value of the fine-structure constant α as C(3)

p ≈
α/(2π )C(2)

p . Notice that the more conventional parametriza-
tion of the proton spin-independent coupling C(1)

p is in terms of
the proton weak charge Qp

W. At the tree level (i.e., excluding
radiative corrections)

Qp
W = 2C(1)

p . (4)

Since sin2 θW ≈ 1/4, the neutron contribution C(1)
n domi-

nates HPV in all atoms except for the hydrogen atom. As a
consequence, hydrogen is uniquely sensitive to sin2 θW poten-
tially enabling its extraction at the low momentum transfer
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[6,7]. This is the motivation for our focus on the hydrogen
atom, as the experiments with heavy atoms, such as cesium
[8] or ytterbium [9], are predominantly sensitive to the neu-
tron coupling constant C(1)

n . In addition, compared to heavy
atoms, hydrogen offers a much cleaner theoretical interpreta-
tion, avoiding all the complexities of solving the relativistic
many-body problem.

To reiterate, hydrogen APV is uniquely sensitive to sin2 θW

due to the absence of the otherwise leading neutron contribu-
tion. This makes it an intriguing probe of the recently reported
7σ anomaly in the mass MW of the W boson [10]. The 7σ

anomaly translates into the W boson being heavier by 0.1%.
The implications of the W-boson mass for the hydrogen APV
were considered in Ref. [11]. These authors pointed out that,
ignoring the radiative corrections, sin2 θW = 1 − M2

W /M2
Z , so

that the 0.1% shift in MW is equivalent to a ∼0.5% reduction
in the sin2 θW value. This shift in the Weinberg angle is,
however, strongly amplified in the C(1)

p determination due to
sin2 θW ≈ 1/4, see Eq. (3a). With the recent determination
[10] of the W-boson mass taken at face value, the proton
spin-independent coupling C(1)

p value [or, equivalently, Qp
W,

see Eq. (4)] shifts by a sizable 3% [11] from its previously
accepted SM value.

The proton weak charge Qp
W is deduced by the Qweak

collaboration [7] from the measurements of parity-violating
asymmetry in the scattering of polarized electrons on protons
at the Jefferson Laboratory. Their reported value is

Qp
W = 0.0719(45), (5)

which we will use as the nominal value in the rest of the
paper. The Qweak collaboration result is in agreement with the
currently recommended SM value [12]

Qp
W(SM) = 0.0709(2). (6)

Notice that the fractional uncertainty in the Qweak collab-
oration result is 6% and cannot decisively resolve the 3%
W-boson mass anomaly shift [11]. Determination of the pro-
ton weak charge at a ∼1% level would be an important step in
this direction.

Now we simplify the weak interaction Hamiltonian den-
sity HPV,p, Eq. (2), by taking the nonrelativistic limit for
the proton motion. Then p̄γ μ p → ψ†

pψpδμ,0 and p̄γ μγ5 p →
ψ†

p (σp)iψpδμ,i, where ψp is the nonrelativistic proton wave
function including spin and σ p is the proton Pauli ma-
trix. The first limiting expression gives rise to the proton
spin-independent contribution, while the second to the spin-
dependent terms. Recall that the nuclear density ρp(r) =
ψ†

pψp, leading to the effective operator in the electron sector

HW = − GF√
8
γ5Qp

Wρp(r). (7)

Here the proton distribution is normalized as∫ ∞
0 4πr2ρp(r)dr = 1. A similar simplification can be carried

out for the proton spin-dependent contributions. We quote
the limiting result for the point-like proton and nonrelativistic

electron [13]

VPV = GF√
8mec

{ − C(1)
p [σ · p, δ(r)]+ + C(2)

p [σ p · p, δ(r)]+

− i
(
C(2)

p + C(3)
p

)
[(σ × σ p) · p, δ(r)]−

}
. (8)

Here p is the electron linear momentum operator and Pauli
matrices σ act on the electron spin. [A, B]+ and [A, B]− de-
note anticommutators and commutators, respectively. Notice
the addition of the C(2)

p and C(3)
p constants in the last con-

tribution to the potential. Since C(3)
p /C(2)

p ≈ α/(2π ) � 1, we
will neglect the anomalous weak moment contribution in our
analysis.

Previous efforts to measure parity violation in atomic hy-
drogen were initiated in the mid-1970s at the University of
Michigan [13–17], Yale University [18–20], and the Univer-
sity of Washington [21–23], and continued through the early
1990s. In each of these programs, the investigators attempted
to detect the microwave transition between two metastable
hyperfine components of the 2s 2S1/2 state. This transition is
nominally electric-dipole (E1) forbidden, but due to the weak
interaction, it becomes slightly E1 allowed. The group at
Yale worked at zero magnetic field, while the Michigan and
Washington groups applied a static magnetic field of ∼553
Gauss to Zeeman tune components of the 2s 2S1/2 and 2p 2P1/2

states into near degeneracy to take advantage of the expected
resonance-enhancement of the mixing. At this level cross-
ing, the measurement is primarily sensitive to the coupling
coefficient C(2)

p [13]. In each case, the investigators used an
interference between the parity nonconserving interaction and
a parity conserving interaction to amplify the first, as first
suggested by Bouchiat and Bouchiat [24,25] in 1974–75. The
Michigan group, which at its conclusion achieved a higher
sensitivity than the Yale or Washington groups, reported a
value of C(2)

p = 1.5 ± 1.5stat ± 22syst [17], where the first un-
certainty is the statistical uncertainty, and the second is due
to systematic factors. The primary source of the systematic
uncertainty resulted from the rotation of the microwave cavity,
the so-called φ reversal in their measurement scheme. Note
that this systematic uncertainty is greater than the SM value
for C(2)

p = 0.0430 by a factor of ∼500.
Recently, several papers have appeared in which the au-

thors considered the prospects for renewed measurements
in hydrogen [26–30]. The development of techniques for (i)
generating beams of hydrogen of higher density, lower mean
velocity, and decreased velocity dispersion [31–37], and (ii)
efficient optical excitation of the metastable 2s 2S1/2 state [37],
could lead to significant improvements, should they be em-
ployed in a new hydrogen PNC effort.

In this work, we reconsider the possibility of an opti-
cal APV measurement in hydrogen based on the 2s 2S1/2 →
3s 2S1/2 transition at a wavelength of 656.46 nm, or the
2s 2S1/2 → 4s 2S1/2 transition at a wavelength of 486.27 nm.
An APV measurement on the first was considered previously
by Lewis and Williams [14], and more recently by Rasor
and Yost [30]. In Sec. II, we calculate the matrix elements
of weak interaction Hamiltonian between the 3s and 3p1/2

states and between the 4s and 4p1/2 states, using relativistic
wave functions, and including the effect of the finite size of
the nucleus. This theoretical approach is more sophisticated
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compared to the earlier literature, in part, to match the accu-
racy of the SM value of the proton weak charge, Eq. (6). In
Sec. III, we use these results to determine the magnitude of
the parity violating amplitude for these two transitions, iden-
tify the Zeeman crossings that could be useful in extracting
the coupling coefficients C(1)

p and C(2)
p , and briefly outline a

possible measurement scheme based on interfering coherent
interactions, using two-photon absorption as the local oscil-
lator signal. While we do not explicitly consider deuterium
in this work, similar measurements in this system offer the
possibility of determining C(1)

n and C(2)
n as well, as has been

recognized previously [27].

II. THEORY

In the previous section, we reviewed the theory of elec-
troweak interactions as it relates to APV. Here we focus on
evaluating weak-interaction matrix elements for hydrogen and
refine the previous literature analysis by using fully relativistic
treatment and a realistic nuclear distribution.

The weak interaction of Eq. (7) is a pseudoscalar operator,
mixing atomic states of opposite parity and of the same total
angular momenta. Explicitly, the parity-mixed states |n
 jm j〉
can be expanded over the conventional parity-proper states
|n
 jm j〉 as

|ns1/2mj〉 = |ns1/2mj〉 +
∞∑

n′=2

ηnn′ |n′ p1/2mj〉, (9)

where the mixing coefficients ηnn′ can be computed perturba-
tively

ηnn′ = 〈n′ p1/2mj |HW|ns1/2mj〉
Ens − En′ p1/2 + i

2 (�n′ p1/2 − �ns)
. (10)

Here �’s are the (radiative) level widths. In hydrogen-like
systems, the dominant admixtures for the excited ns1/2 states
comes from n′ = n due to level degeneracies. We remind the
reader that for a point-like nucleus the ns1/2 and np1/2 levels
remain degenerate even in the fully relativistic treatment; only
the QED and finite nuclear size corrections lift this degener-
acy. We also assume that there are no external fields applied
and discard the nuclear-spin-dependent effects; these will be
addressed in Sec. III.

The relevant matrix element of the weak interaction (7)
reads

〈np1/2mj |HW|ns1/2mj〉

= −i
GF√

8
Qp

W

×
∫ ∞

0
drρp(r)[F ∗

np1/2
(r)Gns(r) − G∗

np1/2
(r)Fns(r)],

(11)

where F and G are the large and small radial components
of relativistic bispinors [38]. The matrix element does not
depend on the value of magnetic quantum number mj , re-
flecting the pseudoscalar nature of the interaction. It is worth
emphasizing that the expression is fully relativistic in electron
degrees of freedom and involves proton distribution ρp(r).
The same nuclear charge distribution also affects the wave

functions. Below we explore the effects of various approxi-
mations in computing weak-interaction matrix element (11).
We start by using a point-like nucleus ρp(r) ∝ δ(r) both in
the computation of wave functions and while evaluating the
matrix element. This leads to a fully relativistic result that re-
covers literature expressions in the nonrelativistic limit. Then
we proceed to computations with a more realistic nuclear
distribution.

With relativistic orbitals [39] for H-like ions and point-like
nucleus, we obtain the matrix element

〈np1/2mj |HW|ns1/2mj〉 = i

√
2

2π
GFQp

WZ4α
�(2γ + 1 + nr )

�2(2γ + 1)

×
[

n − 1

nr!N5
√

N2 − 1

]

× exp

[
(Zα)2 ln

1

ρ

]
. (12)

Here, α is the fine-structure constant, nuclear charge Z = 1
for hydrogen, γ =

√
1 − (αZ )2, the radial quantum num-

ber nr = n − 1, N = [n2 − 2nr (1 − γ )]1/2, and ρ = 2λr with
λ = Z/N . It should be emphasized that the analytical relativis-
tic wave functions used in arriving at Eq. (12) were obtained
using the point-like nucleus. In other words, the effect of the
nuclear density distribution on the wave functions has been
neglected. A direct consequence of this assumption is the
singularity in the j = 1/2 relativistic wave functions, leading
to the appearance of the factor exp[(Zα)2 ln 1

ρ
] ∝ r−(αZ )2

in
Eq. (12). For hydrogen, this is a mildly diverging factor in the
r → 0 limit. Varying r = 10−6 a.u. to r = 10−5 a.u. (≈2 fm)
modifies this factor by just ∼0.01% for Z = 1. A natural
scale for r is the proton charge radius, rp = 0.84 fm ≈ 1.59 ×
10−5 a.u.. Moreover, the divergence is easily cured using a
more realistic nuclear charge distribution while evaluating the
integral in Eq. (7), see below. Also the divergence goes away
if the wave functions are computed using realistic nuclear
charge distributions, see, e.g., Ref. [40].

The nonrelativistic limit of the PNC matrix element of
Eq. (12) reads

〈np1/2mj |HW|ns1/2mj〉 ≈ i

√
2

8π
GFQp

WZ4α

[√
n2 − 1

n4

]
,

(13)

where we took the αZ → 0 limit, so that γ ≈ 1, N ≈ n, and
exp[(αZ )2 ln 1

ρ
] ≈ 1. This limiting expression recovers the

literature results [13,41,42]. This expression implies the 1/n3

scaling for PNC matrix elements.
We calculated PNC matrix elements for the 2s1/2 − 2p1/2,

3s1/2 − 3p1/2, and 4s1/2 − 4p1/2 pairs of states in different
approximations and collected these results in Table I. The
nonrelativistic (NR) PNC matrix elements in the point-like nu-
cleus (PN) approximation, labeled as PN-NR, were obtained
with Eq. (13) and their relativistic counterparts PN-R, with
Eq. (12), where we used r = 10−6 a.u. At the next step we
explore the effect of using the finite-sized nucleus (FN) in-
stead of the point-like nucleus. The nuclear distribution ρp(r)
can modify the PNC matrix elements in two distinct ways:
(i) ρp(r) appears directly in the integral (11) and (ii) it can
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TABLE I. Weak interaction matrix elements −i〈np1/2mj |
HW|ns1/2mj〉 (in a.u.) multiplied by 1021. PN: point-like nuclear
distribution in the PNC Hamiltonian; FN: Fermi nuclear charge dis-
tribution in the PNC Hamiltonian; NR: nonrelativistic wave functions
obtained with the point-like nuclear potential; R: relativistic wave
functions obtained with the point-like nuclear potential. The column
marked “Full” includes full numerical relativistic treatment where we
used Fermi distribution in computing both the wave functions and the
PNC matrix element (11).

PN-NR FN-NR PN-R FN-R Full

2s−2p1/2 71.03 71.03 71.09 71.07 71.07
3s−3p1/2 22.91 22.91 22.93 22.92 –
4s−4p1/2 9.927 9.927 9.935 9.930 –

modify the atomic wave functions in the nuclear region. To
model finite-sized nuclear distribution we employed the Fermi
distribution

ρp(r) = ρ0

1 + exp[(r − c)/a]
, (14)

where c is the 50% falloff radius of the charge distribution, a
is related to the 90% to 10% falloff distance t as t = 4 ln 3 a,
and ρ0 is the normalization constant. For the proton we used
c = 0.4 fm and a = 0.18 fm to fit the proton root-mean-square
radius (rp ∼ 0.855 fm).

FN-NR and FN-R entries in Table I show the direct effect
of the proton charge distribution ρp(r) as in these approx-
imations we use the analytic nonrelativistic and relativistic
wavefunctions for a point-like nucleus. In the FN-NR approx-
imation, we use the Pauli approximation in Eq. (7) to arrive at
the PNC operator [43]

HNR
W = 1

2c

GF√
8
QW [(σ · p)†ρp(r) + ρp(r)(σ · p)], (15)

where the dagger form of the operator (σ · p) acts on the bra
when computing matrix elements.

Finally, in addition to the direct effect in Eq. (11), the
proton charge distribution modifies atomic wave functions,
in turn, shifting the values of the PNC matrix elements. To
account for this “indirect” effect, we solve the radial Dirac
equation numerically with the Fermi distribution (14). As can
be seen from the last column (marked Full) of Table I, the in-
fluence of the finite-size proton on the 2s−2p1/2 PNC matrix
element is negligible due to the smallness of proton. This in-
direct effect can be ignored for the 3s − 3p1/2 and 4s − 4p1/2

PNC matrix elements since the atomic wave functions with
larger principal quantum numbers are pushed further away
from the origin.

Examining numerical results in Table I, we find that the
dominant effect on the PNC matrix elements is due to using
relativistic wavefunctions, rather than the finite nuclear size
effect. The matrix element variations across different approx-
imations for nuclear distributions are just ∼0.02%, which is
well below the current 0.3% uncertainty in the SM proton
weak charge value (6). This statement must be contrasted with
APV in 133Cs, where the uncertainty in the nuclear distribution
is anticipated to become a limiting factor in extracting the
precise value of the nuclear weak charge [44,45].

With the PNC matrix elements computed, now we com-
pile the mixing coefficients −iηnn, Eq. (10), see Table II.
We use accurate energies of the ns1/2 and np1/2 states from
Refs. [46–50]. We estimate radiative widths � by summing
spontaneous emission rates [51] over all the possible E1 decay
channels. The relevant atomic data are collected in Table III.

We find that all the tabulated PNC mixing coefficients are
comparable, even though the PNC matrix elements scale as
1/n3. This is attributed to the decreasing energy splittings with
increasing principal quantum number. It is worth reemphasiz-
ing that our calculations in this section assume the absence
of magnetic fields; Zeeman level crossings are discussed in
Sec. III.

The PNC amplitude for the n′s − ns transition [53] can be
simplified to

EPNC = 〈ns1/2mj |Dz|n′s1/2mj〉

= 1

3

⎡
⎣∑

μ

η∗
nμ(μp1/2||r||n′s) +

∑
ν

ηn′ν (ns||r||νp1/2)

⎤
⎦,

(16)

where (μp1/2||r||n′s) and (ns||r||νp1/2) are the radial integrals
of the electric dipole operator. Notice that the overall phase of
the PNC amplitude is not fixed as it depends on the relative
phases of the two s1/2 states.

PNC amplitudes in hydrogen are dominated by the mixing
between the near-degenerate energy levels. Then the 2s−3s
and 2s−4s PNC amplitudes evaluate to

EPNC(2s−3s) = 1
3 [η∗

33(3p1/2||r||2s) + η22(3s||r||2p1/2)]

= 3.504i × 10−13 a.u.,

EPNC(2s−4s) = 1
3 [η∗

44(4p1/2||r||2s) + η22(4s||r||2p1/2)]

= 1.531i × 10−13 a.u., (17)

where we use the FN-R mixing coefficients from Table II.
In addition, the dipole matrix elements were obtained with
the relativistic analytic wave functions. Note that the 2s−3s
PNC amplitude is three times larger than the 2s−4s one,
mainly because of its larger dipole matrix element. The latter
is just a little smaller than that for the 1s−2s transition, i.e.,
EPNC(1s−2s) = 1.897i × 10−13 a.u..

III. POSSIBLE EXPERIMENTAL REALIZATION

We turn now to consider how this PNC moment
might be measured in a laboratory. For this we suggest a
two-color coherent-control process, as was demonstrated
in Refs. [54,55]. Rasor and Yost [30] considered a similar
scheme. This all-optical approach is similar in some regards
to the microwave measurements of the Michigan [13–17],
Yale [18–20], and Washington [21–23] hydrogen PNC
experiments. To measure the 〈3p1/2mj |HW |3s1/2mj〉 matrix
elements, we suggest generating a slow, high-density atomic
hydrogen beam, exciting the ground-state atoms to the
metastable 2s 2S1/2, α0 state via two-photon excitation with
243.1-nm light, and driving the 2s 2S1/2, α0 → 3s 2S1/2, β0

transition using three distinct interfering interactions
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TABLE II. PNC mixing coefficients −iηnn, Eq. (10), multiplied by a factor of 1013. �En = Ens − Enp1/2 is the energy splitting, and �� =
�np1/2 − �ns is the effective energy width.

�En (MHz) �� (MHz) PN-NR FN-NR PN-R FN-R Others

2s−2p1/2 1057.847 99.709 4.408 4.408 4.412 4.410 4.3a; 3.6b

3s−3p1/2 314.818 29.187 4.779 4.778 4.782 4.780 –
4s−4p1/2 133.2 12.231 4.893 4.893 4.897 4.895 –

aMoskalev [52]; Lewis and Williams [14].
bDunford et al. [13].

(α0 and β0 are two hyperfine components of the ns 2S1/2 state,
using the notation introduced by Lamb and Retherford
[56].) This transition is electric dipole (E1) forbidden, but
is active through Stark mixing when a static electric field
is applied, as well as through the weak-interaction mixing.
The wavelength of the laser beam that is resonant with this
transition is 656.5 nm. See Fig. 1(a) for a partial energy
level diagram of hydrogen. The transition is also active as
a two-photon transition, driven by a field at a wavelength
of λ = 1313 nm. (The two-photon interaction can also
be driven with two unequal-frequency beams, providing
flexibility of the selection rules for the transition, but also
introducing experimental challenges. We will consider only
the simpler form for now.) When the three interactions are
driven concurrently, the net transition rate scales as the square
of the sum of the individual amplitudes

R = |A2γ + ASt + APNC|2, (18)

where A2γ , ASt, and APNC are the amplitudes for the
two-photon, Stark-induced, and PNC-induced interactions, re-
spectively. In the coherent control technique, only modest
electric fields are required, such that the maximum Stark
amplitude |ASt| is less than ∼5 × APNC, and since APNC is very
weak, a two-photon amplitude that is much greater than ASt or
APNC is easily achieved. In this limit,

R ≈ |A2γ |2 + A∗
2γ (ASt + APNC) + c.c., (19)

where we omitted the small |ASt + APNC|2 term. In this ex-
pression, |A2γ |2 represents the two-photon absorption rate
by itself, while the cross term arises from the interference
between the weak amplitudes (ASt and APNC) and the strong
two-photon amplitude. Coherence between the 1313-nm field
and the 656-nm field is assured when the second is generated
from the first through a second-harmonic generation process,

TABLE III. Properties of the hydrogen atom used in our nu-
merical evaluations. �ELamb is the energy difference (Lamb shift)
between the ns and np1/2 states and � are radiative level widths at
zero magnetic and electric fields.

State �ELamb (MHz) � (MHz)

2s1/2 1057.847 0
3s1/2 314.82 1.0050
4s1/2 133.2 0.70251
2p1/2 – 99.709
3p1/2 – 30.192
4p1/2 – 12.934

which is inherently coherent. We illustrate a layout of laser
sources in Fig. 1(b). A laser beam of wavelength 243 nm,
generated through two stages of frequency doubling of the
output of a 972.54-nm high-power laser diode, can be used to
excite the F = 1 (α0) component of the metastable 2s 2S1/2

state. A second laser source, of wavelength 1313 nm, can
be used to excite the 2s 2S1/2 → 3s 2S1/2 transition via two-
photon absorption, or, after frequency doubling to generate a
656-nm beam, through a linear interaction. The 2s 2S1/2 state
is long lived, so loss of population as the atoms travel from
the preparation region to the region where they interact with
the two-color field (656 nm plus 1313 nm) is minimal. Upon
phase shifting the 1313-nm beam, the interference between
the linear excitation and the two-photon excitation of the
3s2S1/2 state can be modulated, and the amplitude of this
modulation, normalized by the two-photon rate alone, is

2

{
ASt + APNC

A2γ

}
. (20)

Since the amplitudes ASt and APNC are 90◦ out of phase with
one another, the amplitude of the interference term scales as

2

{√
|ASt|2 + |APNC|2

A2γ

}
(21)

and measurement of this amplitude as a function of the ap-
plied static electric field can be used to determine the ratio
APNC/ASt.

By applying a magnetic field to the atoms in the inter-
action region, the energy levels of the 3s and 3p1/2 states,
and similarly the 4s and 4p1/2 states, can be made to cross.
We illustrate the level crossings of the 3s and 3p1/2 states in
Fig. 1(c). By bringing the levels into degeneracy, the admix-
ture of states caused by the weak interaction can be enhanced
by a factor of �/�E , where � is radiative width of the state,
and �E is the energy splitting at zero magnetic field. This
enhancement factor is ∼21 for the 3s–3p1/2 and the 4s–4p1/2

manifolds, very similar to that of the 2s–2p1/2 states. Bringing
levels into degeneracy also allows for selection of specific
combinations of coupling constants. We evaluated the Zeeman
mixing of states, and the weak force interaction elements,
and find very similar results for the 3s–3p1/2 and 4s–4p1/2

level crossings as were previously reported in the 2s–2p1/2

system. We compile these in Table IV. In this table, we include
the magnetic field and the dependence of the weak interac-
tion term on the coupling constants C(1)

p and C(2)
p , which we
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FIG. 1. (a) An energy level diagram showing the relevant levels of atomic hydrogen. (b) Experimental geometry for a coherent control
measurement of EPNC on the 2s 2S1/2 → 3s 2S1/2 transition. (c) An energy level diagram showing the level crossings induced by the Zeeman
shift. Three level crossings between the 3s 2S1/2 and 3p 2P1/2 are of interest in this work: β0 − e0 at B = 163 G, β0 − f0 at B = 327 G, and
β−1 − f−1 at B = 348 G. The optical transition from the 2s 2S1/2, α0 level will be driven by the two-color coherent laser field at 1313 nm and
656 nm simultaneously.

determine by evaluating the matrix elements of Eq. (8) [13]

〈ns, m′
Jm′

I |VPV|np1/2, mJmI〉
= +iV 〈m′

Jm′
I |
[−C(1)

p + 2C(2)
p σ · I

]|mJmI〉. (22)

(We omitted the third coupling constant C(3)
p , which is ex-

pected to be much smaller than C(2)
p per the discussion in

Sec. I.) In this expression, mJ and m′
J are the electronic and

TABLE IV. The coefficients ζ1 and ζ2 of Eq. (23) yielding the
relative contribution of C (1)

p and C (2)
p to 〈ns, m′

J m′
I |VPV|np1/2, mJ mI〉

at the different level crossings. Results for the different states n = 2,
3, and 4 are quite similar to one another. In the fourth column, we list
the magnetic field of the level crossings.

Matrix element ζ1 ζ2 B (G)

2s–2p1/2

〈β0|VPV|e0〉 0.0002 −1.9858 552.14
〈β0|VPV| f0〉 −0.9974 −0.8889 1157.39
〈β−1|VPV| f−1〉 0.9970 −0.9970 1230.53

3s–3p1/2

〈β0|VPV|e0〉 0.0006 −1.9854 164.39
〈β0|VPV| f0〉 −0.9973 −0.8894 344.66
〈β−1|VPV| f−1〉 0.9969 −0.9969 366.34

4s–4p1/2

〈β0|VPV|e0〉 0.0013 −1.9846 69.48
〈β0|VPV| f0〉 −0.9973 −0.8896 145.69
〈β−1|VPV| f−1〉 0.9969 −0.9969 154.84

mI and m′
I are the nuclear magnetic quantum numbers. σ is

the Pauli spin operator for the electronic angular momentum,
and I is the nuclear spin operator. The scaling factor V =
(3GF/8π

√
2)Rn0(0)R′

n1(0)(h̄/mec) is as defined in Eq. (26)
of Ref. [13], where Rn
(0) is the radial nonrelativistic wave
function at the origin and the prime denotes a derivative with
respect to r. Evaluation of these terms with wave functions
tabulated, e.g., in Ref. [40] leads to

〈ns, m′
Jm′

I |VPV|np1/2, mJmI〉 = +iV
{
ζ1C

(1)
p + ζ2C

(2)
p

}
. (23)

Since, in this section, we focus on the experimental feasibil-
ity, we use the approximation with a point-like nucleus and
nonrelativistic electronic wave functions, which are sufficient
for this goal, unless the experimental uncertainties reach the
<0.1% level. We list the coefficients ζ1 and ζ2 for each level
crossing in Table IV.The values of ζ1 and ζ2 for the 2s–2p1/2

level crossings are close to, but not quite the same as, those
reported by Dunford, Lewis, and Williams [13]. Notice that
the weak matrix element near the β0–e0 level crossing is
relatively insensitive to the C(1)

p coupling constant for n = 2,
3, and 4, and this level crossing provides a hopeful avenue for
a precision determination of C(2)

p . In the absence of a magnetic
field, a similar analysis leads to the matrix element

〈nsβ0|VPV|np1/2〉 = +iV
{−C(1)

p + C(2)
p

}
. (24)

Systematic errors are known to play a critical role in PNC
measurements, and careful attention to these effects is re-
quired to reduce their impact. Stray electric fields, which can
strongly mix the ns1/2 and np j states, are expected to be more
critical for n = 3 or 4 in the optical measurement than for
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n = 2 in the rf measurements due to the larger electric dipole
matrix elements 〈ns1/2||r||np j〉 for n = 3 or 4, and the smaller
Lamb shift. However, the optical coherent control method
eliminates the rf cavity and requires only modest static electric
fields, allowing large spacing of the parallel field plates used
to control the electric field. The larger distance between the
hydrogen atoms and these conductors reduces the effect of
surface contaminants and patch effects, which could introduce
uncontrollable electric fields in the interaction region [57].
Still, control of the electric field is expected to be a challenge
in this measurement. Using a perturbative analysis, we esti-
mate that, for a dc electric field of magnitude E0 ∼ 5 µV/cm,
the Stark-induced amplitude ASt matches the PNC amplitude
APNC. While this critical E0 is ∼100 times greater than that for
the 2s β0 → 3s β0 transition suggested in Ref. [30], achieving
this level of control will require development of new labora-
tory techniques.

Reduction of systematic contributions to the PNC mea-
surement, relative to the single-field rf measurement, are also
expected from the method used for phase control. In the coher-
ent control, optical measurement, shifting the laser field takes
place external to the interaction region. In addition, the uni-
formity and tight control of linear polarization of laser beams,
and the state selectivity of the two-photon interaction (that
is, only transitions coupling the same initial and final states
can interfere with the two-photon interaction) serve to further
reduce systematic effects. Tight control of laser polarization
also serves to reduce magnetic dipole (M1) contributions to
the signal. While we are not aware of any calculations of the
M1 amplitude for these transitions, it is expected to be small
since the radial wave functions of the 2s, 3s, and 4s states
are orthogonal to one another. If the relativistic effects are
large enough to allow a weak M1 amplitude, this effect can
be reduced by use of counterpropagating waves in a standing
wave optical cavity. Use of standing wave field for this pur-
pose, as well as for enhancement of the PNC amplitude, were
used in Refs. [8,9]. Reduction of systematic effects for the
general coherent control process are discussed in more detail
in Ref. [55].

There are a couple of options available for detection of
atoms that have transitioned to the 3s state. Note that, in
addition to its sensitivity to 3s atoms, the detection method
must be highly insensitive to atoms that are excited to the
3p1/2 state. The primary spontaneous decay paths for 3s atoms
is to the 2p1/2 and 2p3/2 levels, followed by rapid decay to the
1s ground state. Detection of the Lyman alpha radiation of the
2p j → 1s line, therefore, seems a promising detection method
for this measurement. Detection of the fluorescence at 656 nm
from the first leg of this decay does not seem feasible, as it suf-
fers from the likely copious presence of scattered laser light,
and also from the spontaneous fluorescence resulting from the
decay of 3p1/2 atoms to the 2s state, both of which would
be at similar wavelengths, and therefore, difficult to separate.
The 3p1/2 state can decay directly to the 1s ground state or to
the 2s state. The 102.6-nm fluorescence due to the previous
state must, therefore, be blocked, but the second state is not
expected to interfere with the Lyman alpha detection, as the
2s state is long lived (lifetime ∼100 ms). A second detection
option would be to apply a weak probe beam tuned to the
3s → 2p3/2 line to the interaction region, and observe the gain

in this probe beam. We choose this line as it is distinct from the
interfering transitions used to populate the 3s level, in contrast
to the detection method proposed in Ref. [30]. The frequency
of this line differs from that of the excitation wavelength by
∼10 GHz. This probe laser intensity should be maintained at
a level much less than the saturation intensity of the transition
so as to not affect the 3s state population significantly. We
note that the frequency of the 656-nm excitation beam is
sufficient to photoionize the 3s state through a one-photon
interaction. A detection scheme based on photoionization,
however, is not feasible, as photoions generated from the
3p1/2 state would mask the 3s signal. In fact, this photoion-
ization rate should be minimized to the extent possible to
avoid space-charge effects that might otherwise obscure the
signal.

Two-pathway coherent control allows for the measurement
of very weak transition moments such as EPNC, refer-
enced against the Stark transition polarizability. The limiting
systematic effect encountered in the previous microwave ap-
proach resulting from the mechanical rotation of a microwave
cavity would not contribute to this optical measurement. As
shown in this section, this all-optical approach can provide a
precise measurement of C(1)

p and C(2)
p . Given that these con-

stants can be extracted simultaneously, we remind the reader
that the axial charge gA, determined by the C(2)

p /C(1)
p ratio, is

an important quantity in understanding the spin structure of
the nucleon, and it also plays a role in certain astrophysical
processes. It can be measured in the β decay of the neutron.
Its currently recommended value [12] is gA = 1.2756(13).
This value can provide a consistency check for the C(2)

p /C(1)
p

ratio.

IV. CONCLUSION

A long-standing goal in atomic parity violation has been
a measurement in hydrogen. The attraction of hydrogen is
two-fold. First, the electronic structure of hydrogen is much
better known than that of any other atom, greatly facilitat-
ing interpretation of the results. Second, since the hydrogen
nucleus contains only a single proton, measurement of the nu-
clear spin-independent coupling coefficient C(1)

p leads directly
to sin2θW. Prior measurements based on microwave transi-
tions between hyperfine components of the 2s1/2 state were
ultimately not successful. In the present work, we outlined
how similar measurements carried out on the 2s1/2 → 3s1/2

or 2s1/2 → 4s1/2 transition might prove fruitful, and described
an experimental technique for such an investigation.
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[7] D. Androić, D. S. Armstrong, A. Asaturyan, T. Averett, J.
Balewski, K. Bartlett, J. Beaufait, R. S. Beminiwattha, J. Be-
nesch, F. Benmokhtar et al., Precision measurement of the weak
charge of the proton, Nature (London) 557, 207 (2018).

[8] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L.
Roberts, C. E. Tanner, and C. E. Wieman, Measurement of par-
ity nonconservation and an anapole moment in cesium, Science
275, 1759 (1997).

[9] D. Antypas, A. Fabricant, J. E. Stalnaker, K. Tsigutkin, V. V.
Flambaum, and D. Budker, Isotopic variation of parity violation
in atomic ytterbium, Nat. Phys. 15, 120 (2019).

[10] T. Aaltonen, S. Amerio, D. Amidei, A. Anastassov, A. Annovi,
J. Antos, G. Apollinari, J. A. Appel, T. Arisawa, A. Artikov
et al. (CDF Collaboration), High-precision measurement of the
W boson mass with the CDF II detector, Science 376, 170
(2022).

[11] H. B. Tran Tan and A. Derevianko, Implications of W-Boson
mass anomaly for atomic parity violation, Atoms 10, 149
(2022).

[12] R. L. Workman, V. D. Burkert, V. Crede, E. Klempt, U. Thoma,
L. Tiator, K. Agashe, G. Aielli, B. C. Allanach, C. Amsler et al.
(Particle Data Group), Review of particle physics, Prog. Theor.
Exp. Phys. 2022, 083C01 (2022).

[13] R. W. Dunford, R. R. Lewis, and W. L. Williams, Parity non-
conservation in the hydrogen atom. II, Phys. Rev. A 18, 2421
(1978).

[14] R. R. Lewis and W. L. Williams, Parity nonconservation in the
hydrogen atom, Phys. Lett. B 59, 70 (1975).

[15] R. W. Dunford, Parity violating neutral current interactions and
2S12 → 2S′

12 transitions in hydrogenic ions, Phys. Lett. B 99,
58 (1981).

[16] L. P. Lévy and W. L. Williams, Role of damping and T Invari-
ance in induced transition in H(2S), Phys. Rev. Lett. 48, 1011
(1982).

[17] C. C. W. Fehrenbach, An experimental limit on parity mixing in
atomic hydrogen, Ph.D. thesis, University of Michigan, 1993.

[18] E. Hinds and V. Hughes, Parity nonconservation in hydrogen
involving magnetic/electric resonance, Phys. Lett. B 67, 487
(1977).

[19] E. Hinds, Sensitivity and the role of level crossings in measure-
ments of parity nonconservation using metastable atoms, Phys.
Rev. Lett. 44, 374 (1980).

[20] E. Hinds and V. Hughes, Parity nonconservation in hydrogen
involving magnetic/electric resonance, in A Festschrift In Honor

Of Vernon W Hughes (World Scientific, Singapore, 1992),
pp. 178–179.

[21] E. Adelberger, T. Trainor, E. Fortson, T. Chupp, D. Holm-
gren, M. Iqbal, and H. Swanson, A technique for measuring
parity non-conservation in hydrogenic atomis, Nucl. Instrum.
Methods 179, 181 (1981).

[22] E. N. Fortson and L. Lewis, Atomic parity nonconservation
experiments, Phys. Rep. 113, 289 (1984).

[23] P. W. Wong, The Search for Parity Nonconservation in Hydrogen
(University of Washington, Seattle, 1990).

[24] M. Bouchiat and C. Bouchiat, I. Parity violation induced by
weak neutral currents in atomic physics, J. Phys. 35, 899
(1974).

[25] M. Bouchiat and C. Bouchiat, Parity violation induced by weak
neutral currents in atomic physics. part II, J. Phys. 36, 493
(1975).

[26] R. Dunford, PNC in hydrogen. Different prospects using heli-
umlike ions, Technical Report ANL/PHY/CP-97343 (Argonne
National Laboratory, Argonne, IL, 1998).

[27] R. W. Dunford and R. J. Holt, Parity violation in hydrogen
revisited, J. Phys. G: Nucl. Part. Phys. 34, 2099 (2007).

[28] R. W. Dunford and R. J. Holt, Parity nonconservation in hydro-
gen, Hyperfine Interact. 200, 45 (2011).

[29] M. DeKieviet, T. Gasenzer, O. Nachtmann, and M.-I. Trappe,
Longitudinal atomic beam spin echo experiments: a possible
way to study parity violation in hydrogen, Hyperfine Interact.
200, 35 (2011).

[30] C. Rasor and D. C. Yost, Laser-based measurement of parity
violation in hydrogen, Phys. Rev. A 102, 032801 (2020).

[31] N. Koch and E. Steffens, High intensity source for cold atomic
hydrogen and deuterium beams, Rev. Sci. Instrum. 70, 1631
(1999).

[32] A. Huber, B. Gross, M. Weitz, and T. W. Hänsch, High-
resolution spectroscopy of the 1S-2S transition in atomic
hydrogen, Phys. Rev. A 59, 1844 (1999).

[33] D. Szczerba, L. van Buuren, J. van den Brand, H. Bulten, M.
Ferro-Luzzi, S. Klous, H. Kolster, J. Lang, F. Mul, H. Poolman
et al., A polarized hydrogen/deuterium atomic beam source for
internal target experiments, Nucl. Instrum. Methods Phys. Res.,
Sect. A 455, 769 (2000).

[34] N. Kolachevsky, M. Fischer, S. G. Karshenboim, and T. W.
Hänsch, High-precision optical measurement of the 2S hyper-
fine interval in atomic hydrogen, Phys. Rev. Lett. 92, 033003
(2004).

[35] S. D. Hogan, A. W. Wiederkehr, M. Andrist, H. Schmutz, and
F. Merkt, Slow beams of atomic hydrogen by multistage zee-
man deceleration, J. Phys. B: At., Mol. Opt. Phys. 41, 081005
(2008).

[36] M. Mikirtychyants, R. Engels, K. Grigoryev, H. Kleines, P.
Kravtsov, S. Lorenz, M. Nekipelov, V. Nelyubin, F. Rathmann,
J. Sarkadi et al., The polarized H and D atomic beam source
for ANKE at COSY-Jülich, Nucl. Instrum. Methods Phys. Res.,
Sect. A 721, 83 (2013).

[37] S. F. Cooper, Z. Burkley, A. D. Brandt, C. Rasor, and D. C. Yost,
Cavity-enhanced deep ultraviolet laser for two-photon cooling
of atomic hydrogen, Opt. Lett. 43, 1375 (2018).

[38] W. R. Johnson, Atomic Structure Theory: Lectures on Atomic
Physics (Springer-Verlag, Berlin, 2007).

[39] W. Greiner, Relativistic Quantum Mechanics, 3rd ed. (Springer-
Verlag, Berlin, 2000).

012808-8

https://doi.org/10.1103/RevModPhys.90.025008
https://arxiv.org/abs/1904.00281
https://doi.org/10.1103/PhysRevD.17.3055
https://doi.org/10.1103/PhysRevD.68.016006
https://doi.org/10.1038/s41586-018-0096-0
https://doi.org/10.1126/science.275.5307.1759
https://doi.org/10.1038/s41567-018-0312-8
https://doi.org/10.1126/science.abk1781
https://doi.org/10.3390/atoms10040149
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevA.18.2421
https://doi.org/10.1016/0370-2693(75)90159-8
https://doi.org/10.1016/0370-2693(81)90803-0
https://doi.org/10.1103/PhysRevLett.48.1011
https://doi.org/10.1016/0370-2693(77)90451-8
https://doi.org/10.1103/PhysRevLett.44.374
https://doi.org/10.1016/0029-554X(81)91179-4
https://doi.org/10.1016/0370-1573(84)90005-X
https://doi.org/10.1051/jphys:019740035012089900
https://doi.org/10.1051/jphys:01975003606049300
https://doi.org/10.1088/0954-3899/34/10/001
https://doi.org/10.1007/s10751-011-0278-8
https://doi.org/10.1007/s10751-011-0276-x
https://doi.org/10.1103/PhysRevA.102.032801
https://doi.org/10.1063/1.1149644
https://doi.org/10.1103/PhysRevA.59.1844
https://doi.org/10.1016/S0168-9002(00)00548-9
https://doi.org/10.1103/PhysRevLett.92.033003
https://doi.org/10.1088/0953-4075/41/8/081005
https://doi.org/10.1016/j.nima.2013.03.043
https://doi.org/10.1364/OL.43.001375


FEASIBILITY OF EXTRACTING THE PROTON WEAK … PHYSICAL REVIEW A 109, 012808 (2024)

[40] Springer Handbook of Atomic, Molecular, and Optical Physics,
2nd ed., edited by G. W. F. Drake (Springer, New York,
2005).

[41] G. Feinberg and M. Chen, 2S1/2 → 1S1/2+ one-photon decay of
muonic atoms and parity-violating neutral-current interactions,
Phys. Rev. D 10, 190 (1974).

[42] G. W. F. Drake, Theory of transitions, and the electroweak
interaction, in The Spectrum of Atomic Hydrogen: Advances,
edited by G. Series (World Scientific, Singapore, 1988),
Chap. 3, pp. 137–241.

[43] I. B. Khriplovich, Parity Nonconservation in Atomic Phenom-
ena (Gordon and Breach, Philadelphia, 1991), p. 319.

[44] B. A. Brown, A. Derevianko, and V. V. Flambaum, Calculations
of the neutron skin and its effect in atomic parity violation,
Phys. Rev. C 79, 035501 (2009).

[45] A. Derevianko, Correlated many-body treatment of the Breit
interaction with application to cesium atomic properties and
parity violation, Phys. Rev. A 65, 012106 (2001).

[46] A. Kramida, A critical compilation of experimental data on
spectral lines and energy levels of hydrogen, deuterium, and
tritium, At. Data Nucl. Data Tables 96, 586 (2010).

[47] M. Horbatsch and E. A. Hessels, Tabulation of the bound-
state energies of atomic hydrogen, Phys. Rev. A 93, 022513
(2016).

[48] N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A. C.
Vutha, and E. A. Hessels, A measurement of the atomic hy-
drogen Lamb shift and the proton charge radius, Science 365,
1007 (2019).

[49] C. W. Fabjan, F. M. Pipkin, and M. Silverman, Radiofrequency
spectroscopy of hydrogen fine structure in n = 3, 4, 5, Phys.
Rev. Lett. 26, 347 (1971).

[50] H. Fleurbaey, S. Galtier, S. Thomas, M. Bonnaud, L. Julien, F.
Biraben, F. Nez, M. Abgrall, and J. Guéna, New measurement
of the 1S−3S transition frequency of hydrogen: contribution to
the proton charge radius puzzle, Phys. Rev. Lett. 120, 183001
(2018).

[51] A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD TEAM,
NIST Atomic Spectra Database (version 5.7) [Online] (2019),
doi: 10.18434/T4W30F.

[52] A. Moskalev, Weak neutral currents in atoms and μ-mesic
atoms, JEPT Lett. 19, 141 (1974).

[53] S. G. Porsev, K. Beloy, and A. Derevianko, Precision determi-
nation of electroweak coupling from atomic parity violation and
implications for particle physics, Phys. Rev. Lett. 102, 181601
(2009).

[54] D. Antypas and D. S. Elliott, Measurement of a weak transition
moment using two-pathway coherent control, Phys. Rev. A 87,
042505 (2013).

[55] D. Antypas and D. Elliott, Measurement of weak optical tran-
sition moments through two-pathway coherent control, Can. J.
Chem. 92, 144 (2014).

[56] W. E. Lamb, Jr. and R. C. Retherford, Fine structure of the
hydrogen atom. Part I, Phys. Rev. 79, 549 (1950).

[57] C. Speake, Forces and force gradients due to patch fields and
contact-potential differences, Class. Quantum Grav. 13, A291
(1996).

012808-9

https://doi.org/10.1103/PhysRevD.10.190
https://doi.org/10.1103/PhysRevC.79.035501
https://doi.org/10.1103/PhysRevA.65.012106
https://doi.org/10.1016/j.adt.2010.05.001
https://doi.org/10.1103/PhysRevA.93.022513
https://doi.org/10.1126/science.aau7807
https://doi.org/10.1103/PhysRevLett.26.347
https://doi.org/10.1103/PhysRevLett.120.183001
https://doi.org/10.18434/T4W30F
http://jetpletters.ru/ps/1776/article_27042.shtml
https://doi.org/10.1103/PhysRevLett.102.181601
https://doi.org/10.1103/PhysRevA.87.042505
https://doi.org/10.1139/cjc-2013-0318
https://doi.org/10.1103/PhysRev.79.549
https://doi.org/10.1088/0264-9381/13/11A/039

