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Thermodynamic entropy production in the dynamical Casimir effect
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This paper addresses the question of thermodynamic entropy production in the context of the dynamical
Casimir effect. Specifically, we study a scalar quantum field confined within a one-dimensional ideal cavity
subject to time-varying boundary conditions dictated by an externally prescribed trajectory of one of the cavity
mirrors. The central question is how the thermodynamic entropy of the field evolves over time. Utilizing an
effective Hamiltonian approach, we compute the entropy production and reveal that it exhibits scaling behavior
concerning the number of particles created in the short-time limit. Furthermore, this approach elucidates the
direct connection between this entropy and the emergence of quantum coherence within the mode basis of the
field. In addition, by considering a distinct approach based on the time evolution of Gaussian states we examine
the long-time limit of entropy production within a single mode of the field. This approach results in establishing
a connection between the thermodynamic entropy production in a single field mode and the entanglement
between that particular mode and all other modes. Consequently, by employing two distinct approaches, we
comprehensively address both the short-term and long-term dynamics of the system. Our results thus link the
irreversible dynamics of the field, as measured by entropy production and induced by the dynamical Casimir
effect, to two fundamental aspects of quantum mechanics: coherence and entanglement.
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I. INTRODUCTION

While the fundamental laws of physics exhibit time-
reverse symmetry, we encounter irreversible phenomena in
our surroundings when dealing with complex systems. In
classical physics, irreversibility is primarily characterized by
the second law of thermodynamics, which asserts that the
thermodynamic entropy of a closed system cannot decrease
over time [1]. When fluctuations come into play, stronger
principles known as fluctuation theorems emerge [2,3], and
irreversible processes are those in which entropy tends to
increase on average.

When considering quantum systems, various approaches
have emerged in the pursuit of comprehending thermodynam-
ics from a microscopic perspective. Some of these develop-
ments include information theory [4], statistical physics [5],
and axiomatic theories [6]. For a comprehensive exploration
of entropy production in both classical and quantum systems,
we recommend Ref. [7] and its associated references.

We are focusing on the thermodynamics of closed quantum
systems, where the time evolution follows a unitary pro-
cess. This implies that the von Neumann entropy remains
constant over time. As a result, this measure is inadequate
for quantum thermodynamic entropy because it contradicts
the well-established experimental observation that, in general,
spontaneous processes tend to increase entropy. Furthermore,
it fails to respect the fundamental thermodynamic relation. To
tackle this fundamental issue, we turn to the diagonal entropy,
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as defined in Ref. [8] as

Sd (ρ̂) = −
∑

n

pn ln pn, (1)

with pn representing the diagonal elements of the system’s
density matrix ρ̂ in the energy eigenbasis. This quantity has
been proposed as the thermodynamic entropy for closed quan-
tum systems since it exhibits several interesting properties,
including extensivity, positivity, and the property of vanishing
as the temperature approaches zero [8]. Furthermore, it pos-
sesses a crucial characteristic: it increases for every process,
whether unitary or not, that induces transitions in the en-
ergy eigenbasis. Only when the system’s Hamiltonian changes
slowly enough will the diagonal entropy remain unchanged.
This aligns with our intuition based on the classical definition
of thermodynamic entropy, which does not increase for qua-
sistatic processes [9,10].

It is worth noting that a closely related quantity known
as the observational entropy is defined as a coarse-grained
version of the diagonal entropy [11]. Therefore, the findings
presented here also apply within the context of observational
entropy.

Information theory has also given rise to a novel approach
to thermodynamics, as elucidated by a recent work [12]. In
this approach, physical quantities are defined as those in-
variant under the action of a gauge group, and the emerging
concept of entropy precisely aligns with the diagonal entropy
discussed above. This alignment resonates with the fact that
the gauge-invariant definition of heat is intricately tied to
transitions within the energy eigenbasis [12]. This observa-
tion also establishes a connection between our findings and
another cornerstone of physics, the gauge principle.
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We can think about this entropy as a measure of the ran-
domness within the energy eigenbasis. Imagine that we only
have access to energy measurements of a quantum system,
a common limitation when dealing with systems of a suf-
ficiently large dimension where quantum state tomography
becomes impractical [13]. In a general process, whether uni-
tary or not, transitions between energy levels are induced,
leading to the development of quantum coherence and po-
tentially entanglement among different parts of the system.
The diagonal entropy quantifies the information loss resulting
from our limited set of measurements. We refer the reader to
Ref. [8] for more details regarding such quantity, including its
relation to thermodynamics. The aim of the present paper is to
apply this concept to a quantum field within the context of the
dynamical Casimir effect (DCE), and explore the relationship
between entropy production and quantum properties such as
coherence and entanglement.

Specifically, we consider a quantum scalar field confined
within a one-dimensional cavity with mirrors in relative mo-
tion, a scenario commonly examined in the context of the
dynamical Casimir effect [14–17]. Under specific conditions,
this effect predicts the creation of particles from the vac-
uum due to the dynamic changes of the boundary conditions
imposed by the mirror motion. Over the past five decades,
numerous developments have appeared in this field, encom-
passing the impact of imperfect mirrors [18–21], distinct
geometries [22–26], gravitational field effects [27,28], nonlin-
ear interactions [29–31], and entanglement dynamics [32,33].
For a comprehensive overview, interested readers are directed
to a recent review [34].

However, despite these extensive developments, the irre-
versible dynamics of the quantum field in this scenario have
not been explored, to the best of our knowledge. This paper
aims to begin addressing this gap by focusing on irreversibil-
ity, as measured by the increase in quantum thermodynamic
entropy—the diagonal entropy—associated with the field’s
dynamics. In other words, how much entropy is generated
in the field due to the nonstationary boundary conditions
imposed by the motion of the cavity mirrors? We provide
answers to this question through two distinct approaches.
First, we employ an effective Hamiltonian theory based on
Ref. [35] to calculate the entropy of the total field within the
short-time regime. We demonstrate that the entropy increase
is intrinsically tied to the generation of quantum coherence
within the system’s energy eigenbasis, aligning with the gauge
theory developed in Ref. [12]. In the second part of the paper,
we adopt a different approach to investigate the long-term
field dynamics, allowing us to compute the diagonal entropy
for a single mode. Interestingly, this entropy is governed by
the entanglement between the selected mode and all other
modes. These two distinct approaches enable us to connect
the irreversibility of field dynamics with two fundamental
quantum features: coherence and entanglement.

II. THE DYNAMICAL CASIMIR EFFECT

Let us consider a one-dimensional ideal cavity whose mir-
rors are located at positions x = 0 and L(t ), with L(t ) being
an externally prescribed trajectory. Confined in this cavity, we
have a massless real scalar field φ(x, t ) satisfying the wave

equation (
∂2

t − ∂2
x

)
φ(x, t ) = 0. (2)

Given the ideal nature of the mirrors (perfect reflectors), the
boundary conditions imposed on the field take the Dirichlet
form

φ(0, t ) = φ(L(t ), t ) = 0. (3)

The set of complex value solutions {φi} to Eq. (2) under the
restrictions imposed by the nonstationary boundary conditions
(3) spans a linear vector space S with an invariant bilinear
form

(φ1, φ2) = i
∫ L(t )

0
dx [φ∗

1∂tφ2 − φ2∂tφ
∗
1 ] (4)

satisfying all the properties of an inner product except for
positive definiteness. This last obstacle hinders the use of
Eq. (4) for the field’s decomposition into orthonormal solu-
tions on S . Nevertheless, we can always choose any subspace
S + ⊂ S , as long as it satisfies the following properties.

(i) The product (4) is positive definite on S +.
(ii) S = S + ⊕ S + (with the bar designating the complex

conjugate of the space).
(iii) For all f + ∈ S + and f − ∈ S +, we have ( f +, f −) =

0 [36].
From the last considerations, if we assume the cavity at

the interval t � 0 to be in a static configuration [with constant
mirror position L(t � 0) = L0], the classical field can be writ-
ten as

φ(x, t � 0) =
∑

k

[
bk f in

k (x, t ) + b∗
k f in∗

k (x, t )
]
, (5)

where the set { f in
k (x, t )} is an orthonormal basis on S + while

{bk} is a set of complex coefficients. Since the mirrors are at
rest, one can use the time translation symmetry of the wave
equation as a natural criterion to select S + as the space of
solutions that oscillates with purely positive frequencies

f in
k (x, t ) = 1√

πk
sin
(
ωin

k x
)
e−iωin

k t , for t � 0, (6)

where ωin
k = kπ/L0 with k = {1, 2, . . . }.

The quantum description of the field is then obtained
by means of the usual field quantization prescription. The
coefficients bk and b∗

k are promoted to annihilation and cre-
ation operators b̂k and b̂†

k satisfying the standard commutation
relations

[b̂k, b̂†
j] = δk j and [b̂k, b̂ j] = [b̂†

k, b̂†
j] = 0. (7)

The initial vacuum state |0; in〉 is defined as the state an-
nihilated by all b̂k , whereas a general particle state can be
constructed by the application of the creation operator b̂†

k on
this vacuum state:

|n; in〉 = |nk1 , nk2 , . . . ; in〉 =
∏

i

1√
nki !

(
b̂†

ki

)nki |0; in〉,

with nki representing the number of particles in the kith mode.
For t > 0, when the mirror starts to move, the quantum

field can still be decomposed in terms of the initial operators
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b̂k and b̂†
k in the form

φ̂(x, t > 0) =
∑

k

[b̂k fk (x, t ) + b̂†
k f ∗

k (x, t )], (8)

as long as the new set of mode functions { fk (x, t )} satisfies
the following conditions: (i) the wave equation (2), (ii) the
time-dependent boundary condition (3), and (iii) the initial
condition fk (x, 0) = f in

k (x, 0). In this regard, we proceed by
expanding the mode function in a series with respect to an
instantaneous basis {ϕk (x, t )} as

fk (x, t ) = 1√
2ωin

k

∑
j

Q(k)
j (t )ϕ j (x, t ), (9)

where

ϕ j (x, t ) :=
√

2

L(t )
sin[ω j (t )x] with ω j (t ) = jπ

L(t )
. (10)

Moreover the Fourier coefficients Q(k)
j (t ) introduced in Eq. (9)

must satisfy the differential equation1

Q̈(k)
j + ω2

j (t )Q(k)
j

=
∑

l

[
2λ(t )gkl Q̇

(k)
l + λ̇(t )gklQ

(k)
l − λ2(t )hklQ

(k)
l

]
, (11)

together with the initial conditions

Q(k)
j (0) = δ jk, Q̇(k)

j (0) = −iωin
k δk j, (12)

where the upper dot indicates the total time derivative, λ(t ) =
L̇(t )/L(t ), and the antisymmetric coefficients gk j and hk j are
defined for j �= k as

gjk = (−1) j−k 2k j

j2 − k2
, and h jk =

∑
l

g jlgkl . (13)

The first noticeable aspect of the provided description is
that the mode expansion (9) fundamentally depends on the
choice of the basis functions ϕk (x, t ). This occurs because
when the time dependence of the boundary condition (3) is
taken into account, the natural criterion of selecting solutions
with purely positive frequency is no longer available and there
is no unambiguous choice for S +. Consequently, during the
cavity motion, the expansion of the field in terms of creation
and annihilation operators becomes arbitrary, implying the
nonexistence of a preferred choice for a vacuum state. Thus,
unless we can specify a measurement process, the usual notion
of particle loses its well-defined meaning, and only when
the cavity comes to rest we can associate a definite particle
interpretation to the quanta described by these operators [35].

If the cavity returns to a static configuration after some
interval of time T [with a final constant mirror position L(t �
T ) = LT ], one can reintroduce a preferred choice for the mode
functions as

f out
k (x, t ) = 1√

πk
sin
(
ωout

k x
)
e−iωout

k t for t � T (14)

1The set of differential equations (11) can be obtained by substitut-
ing Eq. (9) into the wave equation (2) and integrating the resulting
expression from zero to L(t ).

with purely positive frequencies ωout
k = kπ/LT . Conse-

quently, the initial operators b̂k and b̂†
k cease to have a physical

significance and the field is now decomposed as

φ̂(x, t � T ) =
∑

k

[
âk f out

k (x, t ) + â†
k f out∗

k (x, t )
]
, (15)

with the set operators âk and â†
k satisfying analogous commu-

tation relations as in Eq. (7) and defining a new vacuum state
|0; out〉 as the state annihilated by all âk .

As pointed out in Ref. [32], although both sets { f in
k , f in∗

k }
and { f out

k , f out∗
k } form a basis for the space of solutions S ,

they represent different decompositions into the subspaces
S + and S +. The two sets of mode functions (6) and (14)
should then be related by a linear transformation

f in
k =

∑
j

[
α jk f out

j + β jk f out∗
j

]
, (16)

where α jk and β jk are complex numbers called Bogoliubov
coefficients. Inserting Eq. (16) into the field decomposition
(5), and comparing with Eq. (15), we obtain the set of Bogoli-
ubov transformations

â j =
∑

k

[
αk j b̂k + β∗

k j b̂
†
k

]
. (17)

Observe that the vacuums defined by âk and b̂k are not
equivalent in general. As a consequence, when computing the
number of particles defined by the final operators âk and â†

k
with respect to the initial vacuum |0; in〉, the result is

N = 〈0; in|
∑

j

â†
j â j |0; in〉 =

∑
k j

|β jk|2. (18)

In general, β jk is nonzero when time-dependent boundary
conditions are imposed on the field. This last equation charac-
terizes the DCE as the quantum field phenomenon of particle
creation from the vacuum due to the time-dependent nature of
the imposed boundary conditions.

Our aim here is to study the entropy generated in the
field due to this effect. To start, the next section introduces
an effective Hamiltonian approach [21,35,37,38] to describe
the field dynamics. This will be important for us to compute
the evolved state and, consequently, the entropy generated by
the particle creation process. A limitation of this technique
is that it only allows us to study the short-time dynamics of
the system as it relies on perturbation theory. Nonetheless, it
grants us access to the entire state, enabling the exploration of
the relationship between irreversibility and the emergence of
quantum coherence.

III. EFFECTIVE HAMILTONIAN APPROACH

In this section, we introduce an effective Hamiltonian for
the DCE following the developments presented in Ref. [35].
To accomplish this, we begin by expanding the field opera-
tor φ̂ and its conjugate momentum π̂ = ∂t φ̂ in terms of the
instantaneous basis defined in Eq. (10):

φ̂(x, t ) =
∑

k

q̂k (t )ϕk (x, t ), (19a)

π̂ (x, t ) =
∑

k

p̂k (t )ϕk (x, t ), (19b)
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where the operators q̂k (t ) and p̂k (t ) are defined as

q̂k (t ) :=
∫ L(t )

0
dx φ̂(x, t )ϕk (x, t ), (20a)

p̂k (t ) :=
∫ L(t )

0
dx π̂ (x, t )ϕk (x, t ). (20b)

Comparing Eqs. (19) with the field operator (5) and its
time derivative, the expressions for q̂k (t ) and p̂k (t ) can be
computed:

q̂k (t � 0) = 1√
2ωin

k

[
b̂ke−iωin

k t + b̂†
keiωin

k t
]
, (21a)

p̂k (t � 0) = i

√
ωin

k

2

[
b̂†

keiωin
k t − b̂ke−iωin

k t
]
. (21b)

For t > 0 the cavity is in motion and an effective descrip-
tion of the field dynamics can be obtained by introducing the
decomposition [35]

q̂k (t ) = 1√
2ωk (t )

[âk (t )e−i�k (t ) + â†
k (t )ei�k (t )], (22a)

p̂k (t ) = i

√
ωk (t )

2
[â†

k (t )ei�k (t ) − âk (t )e−i�k (t )], (22b)

where �k (t ) = ∫ t
0 dt ′ωk (t ′) and the instantaneous annihila-

tion and creation operators âk (t ) and â†
k (t ) satisfy the standard

equal times commutation relations

[âk (t ), â†
k (t )] = δk j, [âk (t ), âk (t )] = [â†

k (t ), â†
k (t )] = 0.

Here, the name “instantaneous” refers to the physical in-
terpretation that if we freeze the system at some instant t0, the
operators âk (t0) and â†

k (t0) must describe the particle notion
for the field as if the cavity mirror had stopped at position
L(t0). One can recognize the initial and final operators to be
b̂k := âk (t = 0) and âk := âk (t = T ).

Taking the time derivative of Eqs. (19) along with Eqs. (22)
and, after some algebra (see the Appendix for details), we
obtain the following set of differential equations for the an-
nihilation operator:

˙̂a j (t ) =
∑

k

[Ak j (t )âk (t ) + B∗
k j (t )â†

k (t )]. (23)

The equation for the creation operator is obtained by simply
taking the transpose complex conjugate of this last equation.
In this equation, we defined the coefficients

Ak j (t )
Bk j (t )

}
= 1

2
[μk j (t ) ∓ μ jk (t )]e−i[�k (t )∓� j (t )] (24)

with

μk j (t ) := −
(√

j

k
g jk + 1

2
δ jk

)
L̇(t )

L(t )
. (25)

Identifying Eq. (23) as the Heisenberg equation of motion
for the annihilation operator, it is straightforward to write

down the effective Hamiltonian in the Schrödinger picture as2

Ĥeff(t ) = i

2

∑
jk

[Ak j (t )b̂†
j b̂k + B∗

k j (t )b̂†
j b̂

†
k − H.c.], (26)

where “H.c.” stands for the Hermitian conjugate.
Here, we can clearly see the existence of two different

contributions. The terms containing the coefficients B∗
k j and

Bk j govern the process of creation and annihilation of pairs
of particles, while the ones proportional to A∗

k j and Ak j are
responsible for scattering of particles between distinct modes.

From this Hamiltonian we can compute the time evolution
of any initial density matrix and, therefore, the thermody-
namic entropy given in Eq. (1). This will be done in the
sequence.

A. Density operator

To investigate the entropy production within the proposed
scheme, one first needs to obtain an explicit expression for
the system’s density operator ρ̂ after the cavity returns to
its stationary configuration. This can be achieved by finding
solutions to the dynamical equation

˙̂ρ(t ) = −i[Ĥeff(t ), ρ̂(t )]. (27)

Conversely, the complex structure of the effective Hamil-
tonian poses inherent challenges in solving Eq. (27). To
overcome this issue, we narrow our focus to a specific cate-
gory of problems where the equation of motion for the cavity
mirror assumes the following form:

L(t ) = L0[1 + εl (t )], (28)

where l (t ) is a smooth function of order unity—as well as its
first time derivative—while ε � 1 is a small amplitude.

Since the coefficients in Eq. (25) are proportional to
L̇(t )/L(t ), it is straightforward to see that the Hamiltonian
coefficients given in Eqs. (24) are proportional to ε. As a
result, the formal solution to Eq. (27) up to second order in
ε reads

ρ̂(T ) = ρ̂(0) − i
∫ T

0
dt ′[Ĥeff(t

′), ρ̂(0)]

−
∫ T

0
dt ′
∫ t ′

0
dt ′′[Ĥeff(t

′), [Ĥeff(t
′′), ρ̂(0)]]. (29)

We are interested in the particular case of the initial vac-
uum state ρ̂(0) = |0; in〉〈in; 0|, since we want to study the
thermodynamics of the particle creation process. It is conve-
nient to write the evolved state in terms of the initial operators
b̂k and b̂†

k , which are related to the operators âk (t ) and â†
k (t )

by the instantaneous version of the Bogoliubov coefficients
αk j (t ) and βk j (t ).

By substituting the transformations (17) into the set of
differential equations (23), we obtain a recursive relation for

2Although Hamiltonian (26) differs from that in Ref. [35] due to
the absence of a term proportional to ωk (t ), both descriptions are
equivalent, since this contribution is contained in the exponential
terms in Eq. (22).
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the Bogoliubov coefficients in terms of powers of ε. Up to first
order, the resulting coefficients are given by

αk j (t ) = δk j +
∫ t

0
dt ′Ak j (t

′), (30a)

βk j (t ) =
∫ t

0
dt ′ Bk j (t

′), (30b)

which implies

âk (t ) = b̂k +
∑

j

[α̃ jk (t )b̂ j + β∗
jk (t )b̂†

j],

where α̃k j (t ) = ∫ t
0 dt ′Ak j (t ′). A direct calculation from

Eq. (29) leads us to the following expression for the system’s
density operator up to second order in ε:

ρ̂(T ) = ρ̂(0) − 1

2

∑
k j

{
β∗

k j[b̂
†
kb̂†

j ρ̂(0)] − 1

4

∑
nm

{βmnβ
∗
k j[b̂

†
kb̂†

j ρ̂(0)b̂mb̂n] − βmnβ
∗
k j[b̂mb̂nb̂†

kb̂†
j ρ̂(0)]

+ β∗
mnβ

∗
k j[b̂

†
mb̂†

nb̂†
kb̂†

j ρ̂(0)] + 2α̃∗
mnβ

∗
k j[b̂

†
mb̂nb̂†

kb̂†
j ρ̂(0)]} + H.c.

}
. (31)

Considering the initial vacuum state, the number of parti-
cles created inside the cavity due to the DCE takes the form

N (T ) = Tr

{∑
k

ρ̂(T )b̂†
kb̂k

}
=
∑

k j

|βk j |2, (32)

in agreement with Eq. (18), thus showing the consistency of
our calculations.

We are now ready to discuss the entropy production due to
the particle creation process.

B. Entropy production

As discussed earlier, we consider the diagonal entropy [8]

Sd (ρ̂ ) = −
∑

n

ρ
(n)
diag ln ρ

(n)
diag, (33)

as the main figure of merit for characterizing irreversibility.
In this equation, ρ

(n)
diag = 〈in; n|ρ̂|n; in〉 represent the diagonal

elements of the system’s density operator in the initial energy
eigenbasis.

From the expression of the density operator shown in
Eq. (31), the diagonal entropy can be directly computed, re-
sulting in

Sd (T ) = −
[

1 − 1

2
N (T )

]
ln

[
1 − 1

2
N (T )

]

−
∑

k j

1

2
|βk j (T )|2 ln

1

2
|βk j (T )|2. (34)

We first observe that the entropy production depends on
the number of particles created inside the cavity. Secondly,
we note that this entropy production is exactly equal to the
creation of quantum coherence in the energy eigenbasis of
the field. To see this, let us consider the relative entropy of
coherence [39]:

C(ρ̂) = S(ρ̂d ) − S(ρ̂),

which is a measure of the amount of quantum coherence
in a given basis. Here S(ρ̂ ) = −Trρ̂ ln ρ̂ designates the von
Neumann entropy of ρ̂ while ρ̂d is the diagonal operator built
from the diagonal elements of ρ̂ in the selected basis. Since we
are interested in the amount of entropy produced during time

evolution, we pick up the initial energy eigenbasis to mea-
sure coherence. This is fully justified since we are interested
in thermodynamics. Under this choice, we directly see that
S(ρ̂d ) = Sd (ρ̂). Since our evolution is unitary and the initial
state is pure, we have S(ρ̂ ) = 0, thus implying that

C(ρ̂) = Sd (T ). (35)

Note that, differently from Eq. (34), such a result is a general
one, independent of the perturbation theory used here.

This result implies that we will observe irreversibility
(positive entropy production) for every process that creates
quantum coherence in the energy eigenbasis of the system.
Therefore, reversible processes must be those that are per-
formed slowly enough in order to not induce transitions
among the energy eigenstates. This result is in agreement
with the discussions presented in Refs. [8–10,12], where both
entropy production and heat are associated with processes that
generate coherence.

In order to illustrate our results, let us consider that the
moving mirror performs harmonic oscillations of the form

l (t ) = sin
(
pωin

1 t
)
, (36)

where p is an integer, while ωin
1 is the first unperturbed field

frequency.
For simplicity, we define the small dimensionless time τ =

εωin
1 T/2 and assume the case in which the mirror returns to its

initial position at time t = T after performing a certain num-
ber of complete cycles (pωin

1 T = 2πm with m = 1, 2, . . . ).
Using Eqs. (13) and (36), we directly obtain

|βk j (τ )| =
{√

k j τ if p = k + j,
2
√

k jεp
p2−(k+ j)2 sin

[ 2(k+ j)τ
ε

]
if p �= k + j.

(37)

By dropping the rapid oscillating terms, the number of
particles created takes the form

N (τ ) = 1
6 p(p2 − 1)τ 2, (38)

in agreement with Ref. [40]. Note that the above expression is
valid under perturbation theory involving time, and, therefore,
it is a good approximation only when τ � 1.
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FIG. 1. Entropy production. Entropy is shown as a function of τ

for distinct values of the mirror oscillating frequency.

In this case, the diagonal entropy, our focus of interest here,
reduces to

Sd (τ ) = 1

2
N (τ )

[
1 − ln

1

2
N (τ )+ ln

p(p2 − 1)

6
− 6v(p)

p(p2 − 1)

]
,

(39)

with

v(p) =
p−1∑
k=1

(p − k)k ln(p − k)k.

Figure 1 shows the diagonal entropy for this particular
case. As it is clear from the figure, entropy will be produced
in the field for every value of the mirror frequency p, except
for p = 1, where the number of created particles vanishes.

The technique employed in this section, based on the effec-
tive Hamiltonian, enabled us to calculate the system’s entropy
production through the time evolution of the density operator.
This establishes a direct link between entropy production and
the emergence of quantum coherence in the field. Neverthe-
less, our current analysis is confined to the short-time limit. In
the subsequent section, we shift to the Heisenberg picture and
quantify entropy production in relation to the time evolution of
Gaussian states. This approach permits an exploration of the
contribution to entropy production arising from the generation
of entanglement between a single mode and the remainder
of the field. Therefore, we see that these two approaches are
complementary to each other.

IV. GAUSSIAN STATE APPROACH

The last section presented an analysis of the entropy pro-
duction constrained to the short-time regime of the entire
system. Now, we introduce a different approach that enables
us to analyze entropy production in a specific mode across
all time intervals. Additionally, this method facilitates the ex-
ploration of the entropy dynamics and its connection with the
entanglement between the selected mode and all other modes
in the system.

To achieve this goal we follow the techniques outlined
in Ref. [40] where the dynamics of the system during the
cavity motion is described in the Heisenberg picture. In this
approach, the field is decomposed in terms of the Fourier

coefficients Q(k)
j (t ) through Eq. (8) along with the mode

function (9). Consequently, the dynamics of the system is
determined by solving the infinite set of coupled differen-
tial equations (11) for the Fourier coefficients, with each
equation encompassing an infinite number of time-dependent
terms.

The problem can be simplified if we consider the special
case of parametric resonance, i.e., when one of the mirrors un-
dergoes small oscillations at twice the fundamental frequency
of the unperturbed field. Therefore, we impose the following
form for the mirror trajectory:

L(t ) = L0
[
1 + ε sin

(
2ωin

1 t
)]

. (40)

If the mirror returns to its initial position L0 after some
interval of time T , then ωin

k = ωout
k = ωk and the right-hand

side of Eq. (11) vanishes. Under these considerations, it is
possible to write

Q(k)
j (t � T ) =

√
ωk

ω j
(αk je

−iω j t + βk je
iω j t ), (41)

where αk j and βk j are the Bogoliubov coefficients defined in
Eq. (17).

Since we impose the field to be weakly perturbed by the
mirror oscillations (40), it is natural to search for solutions to
Q(k)

j (t ) by allowing the Bogoliubov coefficients in Eq. (41)
to be functions that vary slowly in time, i.e., α̇k j, β̇k j ∼ ε.
Then, by substituting Eq. (41) into Eq. (11), ignoring terms
proportional to ε2 (like α̈k j, β̈k j , and λ2) and employing the
method of slowly varying amplitudes [41], it is possible to
obtain a set of coupled first-order differential equations with
time-independent coefficients in terms of αk j and βk j . For
k = 1, this set takes the form [42]

dα1 j

dτ
= −

√
3α3 j − β1 j, (42a)

dβ1 j

dτ
= −α1 j −

√
3β3 j, (42b)

whereas for k > 2 we obtain

dαk j

dτ
=
√

k(k − 2)α(k−2), j −
√

k(k + 2)α(k+2), j, (43a)

dβk j

dτ
=
√

k(k − 2)β(k−2), j −
√

k(k + 2)β(k+2), j . (43b)

Because of the initial conditions αk j (0) = δk j and βk j (0) = 0,
all the coefficients with at least one even index vanish.

Complete solutions to the set of equations (42) and (43)
were obtained in Ref. [40] in terms of the hypergeometric
function. Nonetheless, in this section we will be interested in
computing the diagonal entropy generated in particular modes
of the field in the regime of parametric resonance (40). As
a result, for reasons that will become clear later, it will be
sufficient to pay attention only to the asymptotic behavior of
the Bogoliubov coefficients with the first index equal to 1.

For τ � 1, their expressions read

α1(2μ+1) = (μ + 1)KμJμ τμ + O(τμ+2), (44a)

β1(2μ+1) = −KμJμ τμ+1 + O(τμ+3), (44b)
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with Jμ = (2μ)!/2μ(μ!)2 and Kμ = (−1)μ
√

2μ + 1/(μ +
1), whereas for τ � 1

α1(2μ+1) ≈ 2

π

(−1)μ√
2μ + 1

, (45a)

β1(2μ+1) ≈ − 2

π

(−1)μ√
2μ + 1

, (45b)

with μ = 0, 1, 2, . . . .
Now we are ready to write down the reduced density op-

erator for the considered mode and to address the question
of the dynamics of the entropy production and its relation to
entanglement.

A. Reduced density operator

The reduced density operator of mode m is given by

ρ̂m = Tr{k}/m ρ̂, (46)

where Tr{k}/m denotes the trace of the total density operator ρ̂

over all the modes except the mth one.
Now, from the previous section, we can see that the

time evolution of the field can be described by an effective
quadratic time-dependent Hamiltonian. We know that the time
evolution governed by quadratic Hamiltonians transforms any
Gaussian state into another Gaussian state, which are com-
pletely characterized by the covariance matrix.

As the vacuum state belongs to the class of Gaussian states,
it is in fact possible to describe our initial state in terms of the
Wigner function for the mth mode, which reads

Wm(r) = 1√
det �m

exp −1

2
(r − 〈r̂〉)T �−1

m (r − 〈r̂〉),

where r = (qm, pm) is the eigenvalue of the quadrature opera-
tor r̂ = (q̂m, p̂m), whose components are described by

q̂m = 1√
2

(â†
m + âm), (47a)

p̂m = i√
2

(â†
m − âm). (47b)

�m stands for the covariance matrix

�m ≡
(

σ
q
m σ

qp
m

σ
qp
m σ

p
m

)
, (48)

with

σ q
m = 〈

q̂2
m

〉− 〈
q̂m
〉2
, (49a)

σ p
m = 〈

p̂2
m

〉− 〈p̂m〉2, (49b)

σ qp
m = 1

2 〈p̂mq̂m + q̂m p̂m〉 − 〈q̂m〉〈p̂m〉. (49c)

Since we are interested in the diagonal entropy, we focus
on the diagonal components of the density operator in the
energy eigenbasis. For the special case of an initially vacuum
state |0; in〉, these diagonal terms can be written as functions

of the covariance matrix elements [40]

ρ (n)
m = 2

[(
2σ

q
m − 1

)(
2σ

p
m − 1

)]n/2[(
2σ

q
m + 1

)(
2σ

p
m + 1

)](n+1)/2

× Pn

⎛
⎜⎝ 4σ

q
mσ

p
m − 1√[

4
(
σ

q
m
)2 − 1

][
4
(
σ

p
m
)2 − 1

]
⎞
⎟⎠, (50)

where Pn is the Legendre polynomial of order n and ρ (n)
m =

〈in; n|ρ̂m|n; in〉 is the nth diagonal element of the reduced
density operator in the initial energy eigenbasis.

By expressing the quadrature operators (47) in terms of the
initial operators b̂k and b̂†

k defined in Eq. (17), the variances
can be directly computed, resulting in

σ q
m = 1

2

∑
k

|αkm + βkm|2, (51a)

σ p
m = 1

2

∑
k

|αkm − βkm|2, (51b)

where m is an odd integer and the cross term σ
qp
m is identically

zero for our choice of the initial state.
By taking the time derivatives of these last equations and

inserting the recursive relations (42) and (43), one can show
that

dσ
q
m

dτ
= −[α1m + β1m]2, (52a)

dσ
p

m

dτ
= +[α1m − β1m]2, (52b)

which depends only on the Bogoliubov coefficients, with the
first index equal to 1 (as we have pointed out in the beginning
of the section). Moreover, because of the definitions (47), the
differential equations (52) need to satisfy the initial conditions
σ

q
m(0) = σ

p
m(0) = 1/2.

We now analyze the solutions to these equations in two
distinct regimes, the short-time and the long-time regimes.

B. Short-time regime

The short-time limit is defined by τ � 1. Inserting
Eqs. (44) into Eqs. (52) and integrating over τ , we obtain

σ
q
2μ+1

σ
p

2μ+1

}
= 1

2
∓ τ 2μ+1J2

μ

[
1 ∓ K2

μτ + O(τ 2)
]
,

with Jμ and Kμ defined in Eq. (44).
Plugging Eqs. (53) into Eq. (50) leads to the following

expression for the diagonal components of the reduced density
operator:

ρ
(n)
2μ+1 = (−1)ninJn

μτ n(2μ+1)
(
1 − K4

μτ 2
)n/2

×
[

1 − (n + 1)J2
μτ 2μ+2

(
K2

μ − 1

2
J2
μτ 2μ

)]

× Pn
[
iτ
(
K2

μ − J2
μτ 2μ

)]+ O(τ 2μ+3). (53)

This expression is what we need to compute the diagonal
entropy the (2μ + 1)th mode. Up to the second order in τ we
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obtain, for μ = 0, the following result:

S1
d (τ � 1) = 1

2
N1(τ )

[
1 − ln

1

2
N1(τ )

]
,

while for any other value of μ, we have

S2μ+1
d (τ � 1) = N2μ+1(τ )[1 − ln N2μ+1(τ )] + O(τ 2μ+3),

where N2μ+1(τ ) = K2
μJ2

μτ 2μ+2 + O(τ 2μ+3) is the number of
particles created in the corresponding mode.

Hence, at short times, the entropy for each mode increases
with the number of created particles, aligning completely with
the findings outlined in the preceding section. As expected, the
current methodology enables an exploration of the long-time
dynamics of the entropy production, and we delve into such
an analysis in the subsequent discussion.

C. Long-time regime

The long-time limit is defined by τ � 1. In this case,
by substituting Eqs. (45) into Eqs. (52), we obtain the time
derivatives of the system’s quadrature variances as

d

dτ
σ

q
2μ+1 ≈ 0, (54a)

d

dτ
σ

p
2μ+1 ≈ 16

π2(2μ + 1)
. (54b)

The specific integration constant for Eqs. (54a) varies for each
mode and depends on the complete form of the Bogoliubov
coefficients [40], but the general behavior is the same: both
quadrature variances start with the same value 1/2 at t = 0
and end up assuming distinct asymptotic behavior at τ � 1,
with σ

q
m decreasing to a constant value, whereas σ

p
m increases

almost linearly in time.
It is now straightforward to compute the single-mode re-

duced density matrix as

ρ (n)
m (τ � 1) = C(n)

m [det �m(τ )]−1/2 + O(1/τ ) (55)

where

C(n)
m = 1√

1 + Tm

(
1 − Tm√
1 − T 2

m

)n

Pn

(
1√

1 − T 2
m

)
(56)

is a positive real coefficient with Tm = 1/2σ
q
m.

From the above expressions, we can compute the diagonal
entropy associated with the mth field mode as

Sm
d (τ � 1) ≈ Sm

R (τ ) + [det �m(τ )]−1/2Sm, (57)

where Sm = −∑
n C(n)

m ln C(n)
m and Sm

R (τ ) = 1
2 ln det �m(τ ) is

the Rényi-2 entropy of the mth mode [43]. It can be shown
that the second term in Eq. (57) diverges logarithmically with
the system dimension N . This last fact is expected since
we are considering a field theory and the number of degrees
of freedom of the system is infinite. Moreover, we must re-
member that entropy is defined up to a multiplicative and an
additive constant. So, this last term is not fundamental for the
dynamical behavior of entropy.

For the resonant mode m = 1, we obtain σ
q
1 → 2/π2 [40]

and σ
p

1 → 16τ/π2, leading to the Rényi-2 entropy

S1
R(τ ) ≈ 1

2
ln

32

π4
τ,

which is in agreement with Ref. [32].3 In the case of the subse-
quent mode m = 3, now σ

q
3 → 38/9π2 and σ

p
3 → 16τ/3π2,

so we obtain

S3
R(τ ) ≈ 1

2
ln

608

27π4
τ.

Now, since the global state of the field is pure—initial pure
state under unitary evolution—Sm

R (τ ) quantifies the amount of
entanglement between the mth mode and all the remaining
ones. Therefore, what Eq. (57) is saying to us is that the
asymptotic behavior of the diagonal entropy is fundamentally
determined by the generation of entanglement between the
considered mode and all the others.

V. CONCLUSIONS

This paper considers the problem of thermodynamic en-
tropy production within the framework of the dynamical
Casimir effect, exploring two distinct approaches. The initial
approach, employing an effective Hamiltonian description of
field dynamics, provides a connection between entropy pro-
duction and the generation of quantum coherence in the field’s
mode basis in the short-time limit. The second approach,
which relies on the reduced density operator of an individual
mode and is valid for all times, establishes a connection be-
tween entropy growth and entanglement generation between
the selected mode and all the others.

Although both approaches can only be compared in the
short-time regime, where both predict that entropy increases
with the number of created particles, they provide different
but complementary information about the dynamics of the
entropy production due to the dynamical Casimir effect.

In summary, the production of thermodynamic entropy in
the field due to the dynamical Casimir effect is governed by
the generation of quantum coherence in the field’s mode basis
and entanglement between the modes. Since our initial state
is stationary (vacuum), the diagonal entropy cannot decrease
[8] and, therefore, neither can coherence or entanglement.

These results can be understood as follows. A coupling
between all the field modes arises due to the nontrivial bound-
ary conditions imposed on the field by the motion of the
mirror. Such interaction induces transitions among the modes,
which lies at the root of the generation of quantum coher-
ence and quantum entanglement. Although the evolution is
unitary, irreversibility, which is characterized by entropy pro-
duction, also arises due to these transitions, as discussed in
Refs. [8–10,12]. Reversible processes are defined in the limit
where the motion is so slow that there is no particle creation,
no scattering, and, thus, no entropy production. Note that in
the considered context, in which we have a resonant cavity
trapping the field, there are motions for which no particles
will be created and, thus, no entropy will be produced. This is
a point that deserves a deeper investigation.

Our research enhances the comprehension of the ther-
modynamics of quantum fields within nontrivial boundary

3Here, the argument in the Rényi-2 entropy differs from Ref. [32]
by a factor of 4. This occurs because the variances defined in the last
reference are twice as large as the ones in Eq. (49).
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conditions and exploring the impact of quantum coherence
and entanglement on such phenomena. Despite this, numerous
questions remain unanswered.

An interesting question that directly emerges concerns the
split of the energy into work and heat, where the latter is
associated with the irreversible aspect of the process, while
the former should be related to the energy that can be extracted
from the field after the process [44,45]. Another related issue
involves the statistical description of the field in terms of
stochastic entropy production and the fluctuation theorems
[46]. Furthermore, what role do multiple quantum coherence
and multipartite entanglement play in entropy production?
How do the thermalization properties of field dynamics fit into
this? Lastly, a question arises regarding whether heat and work
adhere appropriately to the equivalence principle [47]. These
are some of the pertinent questions that will be the focus of
future investigations.
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APPENDIX: DERIVATION OF THE
EFFECTIVE HAMILTONIAN

1. Dynamical equations for the instantaneous creation
and annihilation operators

From Eq. (2), the dynamical equation of motion for a
quantum scalar field and its conjugated momentum can be
written as

∂t φ̂(x, t ) = π̂ (x, t ) (A1a)

∂t π̂ (x, t ) = ∂2
x φ̂(x, t ). (A1b)

By combining Eqs. (19) and (22), one can express the fields φ̂

and π̂ and their correspondent time derivatives as

φ̂ =
∑

k

1√
2ωk

(âke−i�k + â†
kei�k )ϕk, (A2a)

π̂ = i
∑

k

√
ωk

2
(â†

kei�k − âke−i�k )ϕk, (A2b)

∂t φ̂ =
∑

k

1√
2ωk

(âke−i�k + â†
kei�k )

(
∂tϕk − ω̇k

2ωk
ϕk

)

+
∑

k

1√
2ωk

( ˙̂ake−i�k + ˙̂a†
kei�k )ϕk + π̂ , (A2c)

∂t π̂ = i
∑

k

√
ωk

2
(â†

kei�k − âke−i�k )

(
∂tϕk + ω̇k

2ωk
ϕk

)

+ i
∑

k

√
ωk

2
( ˙̂a†

kei�k − ˙̂ake−i�k )ϕk + ∂2
x φ̂, (A2d)

where, for conciseness, we have suppressed the notation of
time and spatial dependence in all terms in (A2). Comparing

(A1) with (A2c) and (A2d), we can isolate the time derivative
of the operators âk and â†

k by computing∫ L

0
dxϕ j (∂t φ̂ − π̂ ) =

∑
k

1√
2ωk

( ˙̂ake−i�k + ˙̂a†
kei�k )δk j

−
∑

k

1√
2ωk

(âke−i�k + â†
kei�k )

(
Gk j + ω̇k

2ωk
δk j

)
= 0

(A3)

and∫ L

0
dxϕ j

(
∂t π̂ − ∂2

x φ̂
)

= i
∑

k

√
ωk

2
( ˙̂a†

kei�k − ˙̂ake−i�k )δk j

+ i
∑

k

√
ωk

2
(â†

kei�k − âke−i�k )

(
Gjk + ω̇ j

2ω j
δk j

)
= 0,

(A4)

where we used
∫ L

0 dxϕkϕ j = δk j and Gk j := ∫ L
0 ϕk∂tϕ j . By

defining μk j =
√

ω j

ωk
(Gk j + ω̇k

2ωk
δk j ) we obtain from (A3) and

(A4) the following equations:

˙̂a je
−i� j + ˙̂a†

j e
i� j =

∑
k

μk j (â je
−i� j + â†

j e
i� j ), (A5a)

˙̂a je
−i� j − ˙̂a†

j e
i� j =

∑
k

μ jk (â†
kei�k − âke−i�k ). (A5b)

From the last system, it is easy to isolate ˙̂a j (t ) and ˙̂a†
j (t ) as

˙̂aj (t ) =
∑

k

[Ak j (t )ak (t ) + B∗
k j (t )a†

k (t )], (A6a)

˙̂a†
j (t ) =

∑
k

[A∗
k j (t )a†

k (t ) + Bk j (t )ak (t )], (A6b)

with

Ak j (t ) = 1
2 [μk j (t ) − μ jk (t )]e−i[�k (t )−� j (t )], (A7a)

Bk j (t ) = 1
2 [μk j (t ) + μ jk (t )]e−i[�k (t )+� j (t )]. (A7b)

Since ωk (t ) = kπ/L(t ) and using the definition (10) we can
calculate

Gk j (t ) = gk j
L̇(t )

L(t )
, (A8)

ω̇k (t )

ωk (t )
= − L̇(t )

L(t )
, (A9)

where gk j has the same form as expressed in (13). So we

obtain μk j (t ) = −(
√

j
k g jk + 1

2δk j )
L̇(t )
L(t ) as in Eq. (25).

2. Effective Hamiltonian

To find the effective Hamiltonian that generates the dynam-
ical equations (A7) we begin by considering the most general
quadratic operator:

Ĥ (t ) =
∑

kl

[Akl (t )â†
k (t )â†

l (t ) + Bkl (t )â†
k (t )âl (t )

+ Ckl (t )â†
l (t )âk (t ) + Dkl (t )âk (t )âl (t )], (A10)
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which is (i) Hermitian, by satisfying the conditions Akl (t ) =
D∗

kl (t ) and Bkl (t ) = C∗
kl (t ), and (ii) invariant over an index

change, with the conditions Akl (t ) = Alk (t ), Dkl (t ) = Dlk (t ),
Bkl (t ) = Clk (t ), and Blk (t ) = Ckl (t ).

Suppressing the notation for time dependence, the corre-
spondent Heisenberg equation of motion for the annihilation
and creation operators is therefore

˙̂a j = i[Ĥ, â j] = i
∑

kl

(Akl [â
†
k â†

l , â j] + Bkl [â
†
k âl , â j]

+ Ckl [â
†
l âk, â j] + Dkl [âk âl , â j])

= −i
∑

k

[(Ak j + A jk )â†
k + (B jk + Ck j )âk] (A11)

and
˙̂a†

j = i[Ĥ, â†
j ] = i

∑
kl

(Akl [â
†
k â†

l , â†
j ]

+ Bkl [â
†
k âl , â†

j ] + Ckl [â
†
l âk, â†

j ] + Dkl [âk âl , â†
j ])

= i
∑

k

[(Dk j + D jk )âk + (Bk j + C jk )â†
k]. (A12)

Comparing (A6a) with (A11) and (A6b) with (A12), we
obtain the following system:

−i[Ak j (t ) + A jk (t )] = −2iAk j (t ) = B∗
k j (t ),

−i[Ck j (t ) + B jk (t )] = −2iCk j (t ) = Ak j (t ),

i[Dk j (t ) + D jk (t )] = 2iDk j (t ) = Bk j (t ),

i[Bk j (t ) + C jk (t )] = 2iBk j (t ) = A∗
k j (t ).

Inserting the last coefficients into Eq. (A10), one obtains the
following expression for the effective Hamiltonian:

ĤH (t ) = i

2

∑
jk

[Ak j (t )â†
j (t )âk (t ) + B∗

k j (t )â†
j (t )â†

k (t ) − H.c.],

(A13)

where the subscript H conveys that the operator is represented
in the Heisenberg picture of quantum mechanics.

Moving to the Schrödinger picture, the last Hamiltonian
takes the form

ĤS (t ) = i

2

∑
jk

[Ak j (t )b̂†
j b̂k + B∗

k j (t )b̂†
j b̂

†
k − H.c.], (A14)

where the Heisenberg annihilation (and creation) op-
erator is defined as âk (t ) = Û †

S (t )b̂kÛS (t ), with ÛS (t )
being the time evolution operator generated by the
Hamiltonian (A14).
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