
PHYSICAL REVIEW A 109, 012803 (2024)

Nonlocal vibrational and dissociative-attachment dynamics
in e−+HNCO beyond a one-dimensional model
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We extend our previous calculations of the vibrational excitation and the dissociative electron attachment in
the low-energy electron collisions with the HNCO molecule to include both stretching and bending modes
in the motion of the hydrogen atom. These calculations confirm the assumption, made in our previous work, that
the bending motion does not significantly alter the cross sections for the excitation of hydrogen stretching and
dissociation. On the other hand, the extension of the model gives additional insight into the vibrational dynamics
of the intermediate collision complex. We calculate the cross sections for the excitation of the hydrogen bending
motion and we compare them with the recent experiments. The excitation curves for higher bending overtones
show signs of interaction with the stretching motion. We also calculate the two-dimensional electron energy-loss
spectrum within the model.
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I. INTRODUCTION

The main purpose of this paper is to extend our previous
calculations of vibrational excitation (VE) and dissociative
attachment (DA) processes in the electron collisions with the
HNCO molecule [1,2]

e− + HNCO(νi ) → e− + HNCO(ν f ) (VE)

→ H + NCO− (DA)

by including more nuclear degrees of freedom and getting a
better understanding of the dynamics.

The interest in electron scattering from HNCO molecules
stems primarily from the fact that this molecule is abundant in
interstellar space [3] and it has also been observed in cometary
atmospheres [4]. It is also the smallest molecule containing
the four most important elements forming biomolecules and
could therefore be involved in the prebiotic chemistry [5,6]
in space leading to the formation of important constituents of
life, including amino acids. The studied processes may also
serve as prototypes for understanding of similar reactions in
larger molecules [7,8].

Cross sections for both dissociative electron attachment
and the vibrational excitation of HNCO by collisions with
electrons have been measured recently [1,2]. The DA cross
section is characterized by sharp onset on the threshold at the
electron energy of 1.16 eV followed by broad resonance with
a maximum above 2 eV. The oscillatory structure between
these two energies has been attributed to the opening of
the vibrational excitation channels for the HN stretch. We
have shown that all these features could be explained by
the discrete-state-in-continuum model based on a resonance
of mixed π∗ and σ ∗ character [1]. The dynamics has been
calculated within a one-dimensional model containing only
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the NH stretch coordinate as a dynamical variable. The same
model was used also in Ref. [2] to calculate the VE cross
sections for one or two quanta of the NH stretch. The results of
the one-dimensional calculation are in very good agreement
with experiments, featuring sharp threshold peaks and
Wigner cusps.

The success of these calculations to predict the experi-
mental data suggests that the dynamics of the DA process
proceeds basically in the direction of NH bond (see the ge-
ometry of the molecule schematically drawn in Fig. 1). On
the other hand, the electron energy-loss spectra also show an
excitation of other vibrational modes [2]. It is very difficult to
treat the multimode dissociative attachment dynamics, but the
successful one-dimensional (1D) model of the NH stretching
dynamics may be a good starting point in the construction
and testing of the multidimensional model of VE and DA
processes that can be verified on the measurement of the ex-
citation of other modes. This development is highly desirable
for the understanding of systems where the coupling among
several degrees of freedom may be even more important (see,
for example, Refs. [7,9,10]).

The treatment of the vibrational dynamics in electron-
molecule collisions in more vibrational degrees of freedom
is highly nontrivial [11–14]. The calculations usually re-
sort to the local complex potential (LCP) approximation
that simplifies the numerical treatment significantly, but it
is still very difficult even in the case of small polyatomic
molecules [15–18]. On the other hand the LCP approxima-
tion is unable to describe the features originating from the
interchannel coupling like the threshold peaks or Wigner
cusps. The dynamics of the DA and VE processes in HNCO
is exactly of this nature. The Wigner cusps and threshold
peaks are prominent features in the observed cross sec-
tions [1,2]. It is known that the proper description of these
phenomena involves the energy dependence of the effective
potential, which is also inherently nonlocal [19,20]. In our
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FIG. 1. Illustrative picture of the equilibrium molecular geom-
etry and the neutral potential dependence on the hydrogen-atom
position.

previous work, we built on the pioneering work of Dom-
cke, Cederbaum, and collaborators [21,22] and developed a
computationally tractable ab initio approach to treat such
phenomena in diatomic molecules [23–27]. We also used the
same approach to treat the one-dimensional stretching motion
of the hydrogen atom in electron collisions with the HNCO
molecule [1,2].

To our best knowledge, the only attempts to treat poly-
atomic nonlocal dynamics include a model proposed by
Estrada et al. [28] and more recently Ambalampitiya and
Fabrikant [29] derived a two-dimensional nonlocal model to
calculate the internal energy of polyatomic fragments in DA.
We have recently also treated the nonlocal dynamics of three
vibronically coupled discrete states in the continuum and we
have also included their vibronic coupling through the elec-
tronic continuum to describe the experiments for energy-loss
spectra of electrons colliding with CO2 molecules [30–32].
The treatment contained four vibrational degrees of freedom
but was limited only to geometries close to the equilibrium
geometry of the neutral molecule. The wave functions could
therefore be expanded in the harmonic-oscillator basis. Here,
for the HNCO molecule, the dissociation motion is crucial
and we have to treat the dynamics in a much wider range
of the dissociative coordinates. Since both construction of
the model and the numerical treatment of the dynamics is
time-consuming in the nonlocal framework, we decided to
keep the position of the N, C, and O atoms fixed and treated
just the motion of the hydrogen atom. We thus extended the
one-dimensional model from Ref. [1,2] including the HNC
bending angle as the dynamical degree of freedom. As com-
pared with the model of Ambalampitiya and Fabrikant [29]
where one coordinate was describing the internal excitation of
the fragment, both coordinates participate in the dissociative
motion in our case.

The paper is organized as follows: First, we discuss the
theory in Sec. II. Section III is devoted to the construction
of the model based on the fixed-nuclei electron-molecule
scattering calculation using the R-matrix method. Finally, we
discuss the calculated cross sections for various processes
and their interpretation in Sec. IV. The conclusions are
summarized in Sec. V. The technical details of the calculation
and the description of the model parameters are deferred to
Appendixes A–C.

II. THEORY

The theoretical treatment described below follows the
treatment of diatomic molecules [19,24]. Here we explain the
necessary generalizations and notation.

We start by describing the vibrational motion in the tar-
get HNCO molecule. To simplify the model we neglect the
slight deviation of the OCN bond angle from a straight line
(∠OCN � 175◦ [33]), which makes the motion of the hydro-
gen atom axially symmetric. We parametrize its position q
in spherical coordinates q = (R, θ, ϕ). The vibrational mo-
tion of the hydrogen atom in the neutral HNCO molecule
is therefore described by the potential energy V0 = V0(R, θ )
independent of angle ϕ. The motion of the hydrogen relative
to the OCN radical conserves the angular-momentum pro-
jection to the OCN axis. In our calculation, we assume the
molecule at sufficiently low temperature, i.e., this projection
is assumed to be zero. All the nuclear wave functions are
therefore also independent of the angle ϕ. The vibrational
states |ν〉 are found by solving the stationary Schrödinger
equation

H0|ν〉 = (TN + V0)|ν〉 = Eν |ν〉, (1)

where TN is the kinetic-energy operator for the motion of the
hydrogen nucleus, Eν the energy of the vibrational state and
the symbol ν stands for the collection of quantum numbers
necessary to identify the vibrational state. This equation is
solved in spherical coordinates by expanding the vibrational
states into spherical harmonics (see Appendix A).

The theoretical description of the electron collision with
the molecule is based on the projector operator formalism.
The interaction of the electron with the molecule at fixed
molecular geometry is described as an interaction of a discrete
state |φd〉 with the continuum |φε〉 [19]. We follow closely the
approach used in previous calculations [1,2] which treated the
dynamics of hydrogen motion as one-dimensional motion in
the radial direction R and generalize it to the present axially
symmetric case.

The vibrational dynamics of the anion collision complex
formed by the electron collision with the molecule is
described by the projection |ψ〉 = 〈φd |
〉 (scalar product
over electronic degrees of freedom only) of the full wave
function |
〉 on the discrete state. This way we project out
the electronic degrees of freedom and the function |ψ〉 is the
solution of the equation

[E − TN − Vd − F (E )]|ψ〉 = Vdεi |νi〉, (2)

where Vd (q) = 〈φd |Hel |φd〉 is the potential energy of the
discrete state and F (E ) is called the nonlocal potential or
the level-shift operator. It describes the modification of the
potential energy Vd (q) due to the presence of the electron con-
tinuum and it is a nonlocal operator in coordinate q depending
on the collision energy E . Thanks to this dependence the
dynamics is sensitive to the spectrum of the neutral molecule
and the nonlocal approach can describe correctly the behavior
of the dynamics close to the VE thresholds [34,35]. The
quantity Vdεi (q) = 〈φd |Hel |φεi〉 is the coupling matrix element
of the discrete state to the electron continuum. It describes the
formation of the collision anion complex by attachment of the
incident electron with the energy εi to the initial vibrational
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state |νi〉 with energy Eνi . The discrete state-continuum
coupling Vdεi (q) = 〈φd |Hel |φεi〉 also enters the expression for
the nonlocal potential F (E ) (see Appendix C). To avoid en-
forcement of the outgoing boundary condition in Schrödinger
equation (4) we solve the Lippmann-Schwinger equation

|ψ〉 = |φi〉 + Gd (E )F (E )|ψ〉 (3)

instead. Here the vector |φi〉 characterizes the initial state and
for the e− + AB channel it has the form

|φi〉 = Gd (E )Vdεi |νi〉. (4)

The outgoing boundary condition is taken into account
automatically by taking the Green’s operator Gd (E )

Gd (E ) = (E − TN − Vd + iε)−1 (5)

in the retarded form which is ensured by imaginary positive
infinitesimal iε in the expression above. The details on the
evaluation of the Green’s operator Gd (E ) and the nonlocal
potential F (E ) and also on the procedure for the solution of
the equation (5) for |ψ〉 are given in Appendix C. The whole
procedure is based on the expansion of the axially symmetric
dynamics in the spherical harmonics and on solving the
coupled integrodifferential equations for the wave function.

The T -matrix element relevant to the vibrational excitation
into the final vibrational state |ν f 〉 reads

TV E = 〈ν f |V ∗
dε f

|ψ〉 (6)

where ε f is the energy of the outgoing electron determined
from energy conservation during the collision

E = Eνi + εi = Eν f + ε f .

The T -matrix element (8) is numerically evaluated from the
scattering solution |ψ〉 expressed in spherical harmonics as
explained in detail in Appendix C. Assuming energy normal-
ization of scattering states, the differential cross section is
given by

dσV E

d�
= (2π )4

k2
i

|TV E |2, (7)

where ki is the momentum associated with the energy εi =
1
2 k2

i of the incident electron. The integral cross section is
obtained by integrating over electron-scattering angles and
averaging over the orientation of the molecule, resulting in

σV E = 4π3

k2
i

|TV E |2. (8)

The T matrix of the DA process can be extracted from the
wave function in the asymptotic region as the wave function
has the form of the outgoing spherical wave with amplitude
given by the T matrix

lim
R→∞

ψ (R, θ ) = 1

R
TDA(E , θ )eiKR, (9)

where K = √
2ME is the momentum of the dissociative mo-

tion calculated from the energy conservation with the mass of
dissociating hydrogen M. Elements of the T matrix contain
dependence on the direction θ of the outgoing hydrogen. To

obtain the integral cross section we average over the orienta-
tion of the molecule and, assuming the partial wave expansion
of ψ (see Appendix C), we get the expression for the DA
integral cross section:

σDA = (2π )2

k2
i

K

M
lim

R→∞

∑
l

|ψl (R)|2. (10)

III. MODEL

The equilibrium geometry of the HNCO molecule can be
approximated by the axially symmetric model because the
NCO part of the molecule is nearly linear. Our model is
constructed by fixing the positions of N, C, and O atoms in an
equilibrium geometry and moving the position q = (R, θ, ϕ)
of the hydrogen atom in the molecular plane. The final model
is obtained by assuming axial symmetry, i.e., all model param-
eters are independent of ϕ. We skip the ϕ dependence in the
rest of this paragraph. The two remaining degrees of freedom
q = (R, θ ) have the meaning of the length R of the NH bond
and HNC bending angle θ .

The nonlocal resonance model is fully described by three
functions V0(q), Vd (q), Vdε (q). The potential surface of the
neutral molecule V0(q) was obtained by fitting energies com-
puted using the coupled-cluster approach CCSD-T [36,37]
with the augmented correlation-consistent basis set aug-cc-
pVTZ [38] as implemented in MOLPRO package of quantum
chemistry programs [39]. Computed energies were fitted us-
ing two-dimensional splines. To obtain correct asymptotic
behavior the spline was smoothly joined on the edge of the
calculated area with a term proportional to R−6.

The discrete-state potential-energy surface Vd (q) and the
coupling element Vdε (q) were obtained by fitting eigenphase
sums obtained from the R-matrix scattering calculations. We
performed fixed-nuclei R-matrix calculations using the UK
molecular R-matrix suite of codes [40]. We employed the
static-exchange plus polarization model [41] in which the
target molecule is described on the Hartree-Fock level using
the cc-pVDZ basis. Eigenphase sums were calculated for the
geometries spanning θ = 70◦–180◦ and R = 1.3–3.0 a.u. The
resulting eigenphase sums were parametrized by the general-
ized Breit-Wigner formula

δ(q, ε) = δBG(q, ε) + tan−1 �(q, ε)/2

ε − Vd (q) − �(q, ε)
, (11)

with

�(q, ε) = 2π |Vdε (q)|2, (12)

�(q, ε) = P
∫ |Vdη(q)|2

ε − η
dη, (13)

where P denotes the Cauchy principal value of the integral.
The details on the functional form of the model parame-

ters and the coefficients obtained by the fitting procedure are
summarized in Appendix B. Here we give just some general
remarks. The discrete state potential Vd (q) is composed of
two parts. The short-range part is expanded in the spherical
harmonics Ylm(θ ) with m = 0 and the expansion coefficients
exponentially decreasing with the radial distance R. The long-
range part has a polarization form R−4 for R → ∞. Similarly
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FIG. 2. Calculated R-matrix eigenphase sums and corresponding
fits for three selected angles and R = 1.3–3.0 bohr.

the discrete-state-continuum coupling Vdε (q) is expanded in
spherical harmonics to capture the dependence on the angle θ

and the expansion coefficients have a similar form as in the

previous 1D model [1] separable in R and ε to facilitate the
analytic calculation of the integral Hilbert transform formula
for �(q, ε). The background phase shift δBG(q, ε) is fitted as a
smooth function with as few parameters as possible capturing
the threshold behavior ε → 0.

The resulting fit compared with the eigenphase sums ob-
tained by the R-matrix calculations is shown in Fig. 2. The
quality of the fit in the equilibrium geometry is comparable
with the previously used one-dimensional model [1].
The quality for the higher values of the angle is similar to the
equilibrium geometry but gets progressively worse for smaller
angles. Since the wave function in the dynamics does not
probe this region significantly we do not consider it as a major
flaw of the model. The data show the narrow resonance at
2.5–3.0 eV that gets broader and shifts towards lower energies
until it disappears in the threshold behavior. This behavior,
known from a previous study [1], is not much altered by
changing the angle θ . The fit could be improved by adding
more terms in the analytic form of the model functions defined
in Appendix B. We decided not to increase the complexity of
the model further and to keep it relatively simple, since the im-
provement of the fit would not make a significant step toward
a more realistic model considering the other approximations
inherent to the R-matrix approach generating the scattering
data and the approximations in the subsequent treatment of
the dynamics.

Figure 3 shows the potential surfaces obtained by the fitting
procedure for three selected geometries. Note that the local
complex potential approximation Vloc(q) − i

2�(q) shown in
the figure is defined as the position of the K-matrix pole and
the imaginary part of F (E ) at this energy [27]. The energy
and the width of the resonance increase for higher angles
(approaching linear geometry). Otherwise, the potentials are
qualitatively similar to the equilibrium angle. This is a strong
indication that the dynamics is essentially one-dimensional
and the stretching will be weak as we already noted in Ref. [1].
On the other hand, the present model will enable us to test
the quality of the 1D approximation and predict the motion in
the bending direction and its coupling with the stretching and
dissociation of the anion.

IV. RESULTS

Before discussing the scattering calculations and the cross
sections we first look at the vibrational states of the target
neutral HNCO molecule.

A. Final vibrational states of the neutral molecule

We use the ab initio calculated potential-energy surface
V0(R, θ ) to find the vibrational states from Eq. (3) solved in
spherical coordinates by expansion of the states |ν〉 in spher-
ical harmonics. The resulting wave functions of the lowest
32 states are shown in Fig. 4. The potential is, in principle,
anharmonic, but as the we see from Fig. 1 its shape is approx-
imately separable in spherical coordinates. This is reflected in
the character of the wave functions, the majority of which can
be classified with number nb of excitations in bending mode
and number ns of stretch excitations. The leading feature is
the nodal structure of the wave functions. The number of
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FIG. 3. Potential-energy surfaces of the model for three selected
angles. Shaded area shows the width of the resonance.

horizontal nodal lines thus determines the number of bending
excitations nb and the number of vertical lines corresponds
to number of excitations ns of the stretching mode. We show

FIG. 4. Wave functions of vibrational states of the neutral
molecule. Numbers in the top-left corner show numbering of the state
with respect to increasing energy; pairs in brackets in the top right
corner denote the number of stretching and bending excitations.

this classification of the states in Fig. 4 by printing (ns, nb) in
the top-right corner. The number in the top-left corner gives
the ordinal number for each state with respect to increasing
energy Eν . The figure contains several states where the classi-
fication by (ns, nb) starts to break. This happens when energy
of two or more states is close enough that they become mixed.
Weak signatures of the mixed character can be seen, for ex-
ample, in states number 6 and 7, where a maximum close
to θ = 0 is observed in state number 6. The vertical nodal
plane does not reach this maximum and the nodal planes of
the state 7 are not completely horizontal. The mixing becomes
even more apparent at higher energies. For example, the states
28 and 29 are rather strongly mixed, but still their character
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is predominantly (ns, nb) = (0, 13) and (3,0), respectively. In
the rest of the section we use the quantum numbers nb and ns

determined from Fig. 4 to classify the states.

B. Details of the numerical calculation

We start our discussion by giving the details of the numer-
ical procedure used to calculate the cross sections. We have
calculated the cross section of the using theoretical framework
from Sec. II and the model of HNCO molecule described
in Sec. III with the details given in Appendixes. Note that
the spherical harmonics used in the expansions effectively
reduce to the corresponding Legendre polynomials due to
the axial symmetry and are real. The Lippmann-Schwinger
equation (5) was solved using Schwinger-Lanczos algorithm
[42]. The calculations were performed using 18 partial waves
(l = 0, 1, . . . , 17 with axial symmetry m = 0) for the expan-
sion of the wave function and radial grid of approximately
1000 points spanning from 1a0 to 15a0. Values of the param-
eters were chosen to ensure that errors of T -matrix elements
are below 1% across the investigated range of energies with
respect to the change of these parameters. Errors of elements
for higher excited vibrational states rise as the number of
partial waves needed for a good description of the states also
rises. For the expansion of the nonlocal potential, we used
states up to the energy of 7 eV, i.e., approximately 1800 states.
In general, the number of states needed for a good description
of the nonlocal potential is the main overall factor for the time
cost of the calculation because it grows exponentially with the
number of included degrees of freedom.

The convergence of the Schwinger-Lanczos algorithm de-
pends heavily on the total energy of the system. The number
of iterations needed to converge in double precision is 15–25
for energies well below the threshold energy for DA. Near the
threshold energy (1.1 eV), the number of iterations rises up to
approximately 200 and then it decreases again to around 50
further away from the threshold.

C. Dissociative attachment cross section

The original 1D model of the dissociative electron attach-
ment to the HNCO molecule [1] was rather successful in the
interpretation of the observed cross section. To see the effect
of the additional nuclear degree of freedom on the DA cross
section, we used the two-dimensional (2D) model with the an-
gular coordinate restricted to the equilibrium value θ = 123◦
to construct a 1D model and solved the dynamics with the
same procedure that was used in Ref. [1].

Figure 5 shows the DA cross section calculated with both
one- and two-dimensional models. We observe that the main
features of the cross-section curves remain the same. A high
threshold peak is followed by Wigner cusps at energies corre-
sponding to the channel opening of stretch excitations (ns, 0).
The energy positions of the cusps are shifted because the
vibrational energies differ between the 1D and 2D models.
The 2D-model cross section is comparable to the one obtained
within the 1D model, yet larger by 0%–50%. In the results
for the 2D model, the bending motion is manifested in the
appearance of additional smaller cusps at energies approxi-
mately 0.1 eV higher than the dominant Wigner cusps due to
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FIG. 5. Integral cross section for dissociative attachment. Com-
parison of the full 2D calculation with 1D model restricted to
NH-stretching motion.

the opening of the higher stretch excitation channels. These
cusps are caused by channel opening of the first bending
excitations (ns, 1). The magnitude of the additional cusps due
to the excitation of even higher bending channels is very small
and these cusps are barely distinguishable in the figure.

Additional information available from the 2D calculation
is the angular distribution of DA products in the molecular
frame. The distribution is obtained from the values of the
wave function (11) in the asymptotic region. In our case, the
outgoing wave is centered in a peak of the width of 40◦ around
the equilibrium angle θ = 123◦. This remains true for the
entire range of investigated energies and reflects the spreading
of the vibrational ground state. This feature is another illus-
tration of the dominantly radial character of the dissociative
motion.

Agreement with experimental results is similar to the pre-
viously published 1D model. The magnitude of the cross
section and relative height of the threshold peak is sensitive
to the choice of certain parameters of the model and could
be fine tuned to better reproduce the experimental data, but
this procedure does not provide any additional insight. More
interesting would be the inclusion of additional degrees of
freedom, but this goes beyond the scope of current work.

D. Vibrational excitation—comparison with experiment

We have already studied the vibrational excitation of the
stretch vibration and its first overtone in Ref. [2]. Similarly, for
the dissociative detachment, the results were in good agree-
ment with the experiments. Here we compare the new 2D
calculation with the 1D restricted model in Fig. 6 (top) for
excitation to state (1,0) (one quantum of stretching vibration).
The shapes of the two curves are very similar. A notable
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shown in the inset.

difference is in the magnitude of the second peak correspond-
ing to the opening of (2,0) channel which is reduced by almost
50%, which makes the results closer to experimental data in
Ref. [2]. The cross section of the 2D model is about 10%
higher for energies above the DA threshold. The 1D model
also exhibits boomerang oscillations near the threshold of DA
similar to Ref. [43]. We were curious if these oscillations
survive the inclusion of the second degree of freedom. Indeed
they are also present in the 2D model but with reduced mag-
nitude and the emergence of smaller secondary oscillations
(see the inset in Fig. 6). The explanation of this effect remains
similar to the 1D case and is easier to describe in the time-
dependent picture. Given a sufficiently shallow potential, the
wave packet with energy near the threshold can travel a long
distance to the turning point where it is reflected back. The
electron detachment from the reflected wave then interferes
with the direct detachment in the central region. This inter-
ference causes oscillatory behavior in the cross section. With
the addition of angular motion, the shape of the 2D potential
surface allows the wave packet to spread also in the angular
direction. This creates secondary smaller oscillations in the
cross section. This mechanism can be seen from the anion
wave functions shown in Fig. 8 which we discuss in detail
below.

The previously unavailable result, the excitation cross-
section curve of the bending mode (0,1), is shown in Fig. 6
(bottom). It exhibits a high and narrow threshold peak and
broader resonance centered around 2.6 eV. The position of
the resonance is shifted by 0.2 eV towards higher energies

(relative to the peak in the stretch vibration). This is consistent
with the experimental cross section (measured in Ref. [2])
which shows a similar shift. Above the resonance, the the-
oretical cross section quickly decreases while experimental
results show different behavior. This is caused by a presence
of A′′ resonance around 4 eV (as discussed in Ref. [2]) which
is not included in our model. There are a number of smaller
cusps and peaks caused by the opening of higher vibrational
channels in the theoretical curve. These are too narrow to
be resolved in the experiment. There is also a broader peak
around 0.8 eV, its origin is discussed further below. The peak,
which is present in the theoretical curve just at the threshold,
is shifted by approximately 0.1 eV to higher energies in the
experiment. The origin of this shift is unknown. We can only
speculate that this may be an effect of the other vibrational
degrees of freedom that are not present in the model. Indeed
the frequency of the bending vibrations is low and close to the
other modes. The reduced dimensionality of our model can
also be responsible for the narrowing of the main resonance
peak at 2.6 eV with respect to the experiment. Apart from
these two differences, the theoretical curve is in qualitative
agreement with the experiment. Considering the comparison
with the experimental cross sections, we also have to keep
in mind that the experiment measures the differential cross
section at the scattering angle of 135◦ while we calculated
the integral cross section. We usually did the same type of
comparison also in the case of diatomic molecules [24,34].
We do not expect a big difference in the shape of the cross-
section curves, since the resonance is dominated by the s-wave
contribution. Although higher partial waves may contribute to
some distortion of the cross-section curves, we do not expect
modification of the sharp structures.

Figure 7 shows higher excitation cross sections for selected
vibrational modes sorted into three categories, overtones of
pure bending excitation (0, nb) and combined excitations
(1, nb) and (2, nb) as compared with the elastic cross section.
There are several interesting common features observed in
all excitation curves. The cross-section curves have many
peaks in the region below threshold energy for the dissociative
attachment and a broad resonance between 2 and 3 eV. The
cross sections also exhibit changes of up to two orders of
magnitude in the region starting at 0.7 eV. Most of the peaks
originate from the opening of higher vibrational channels be-
cause they are positioned at their corresponding energies. The
boomerang oscillations are suppressed in this plot because of
the logarithmic scale used to fit all curves in one plot. We also
see that the stretching vibration is much more efficient than
bending, consistently with the essentially radial picture of the
dynamics.

E. Wave functions and interpretation of the structures

To get a deeper insight into the dynamics and origin
of the structures in the cross sections we plot in Fig. 8
(left) the wave function projected on discrete electronic state,
i.e., the quantity ψ (R, θ ) obtained by solving (5). This wave
function reflects the dynamics of the collision complex within
the time-independent picture of the collision. Figure 8 (right)
also shows elastic and vibrational excitation cross sections for
the fundamental excitation (0,1) and (1,0) with six energies
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FIG. 7. Overview of excitation curves. Panel (a) shows pure bending excitations (0, n), (b) shows single stretching excitations (1, n), and
(c) shows double stretching excitation (2, n). Each curve is labeled by its respective number of bending excitations n.

marked by dashed vertical lines. These are the energies for
which the wave function in the left panel is calculated.

In the case of (1,0) excitation, the effect of the channel
opening is evident from anion wave functions shown in Fig. 8.
The wave function closely reproduces the (1,0) vibrational
state of the neutral molecule [note that the wave function is
over-saturated in the Fig. 8(b) due to too large magnitude
resulting from the vibrational Feshbach resonance].

The same effect cannot be easily seen for bending channel
openings because the magnitude of change is several orders of
magnitude smaller. The wave function in Figs. 8(e) and 8(f)
is calculated for the energies in the region of the boomerang
oscillations. We can see the interference of the outgoing and
back-reflected waves in the vertical nodal structure but also
undulations in the bending direction.

The overall shape of the wave functions confirms that the
dynamics is mostly happening close to the equilibrium angle

θ = 123◦. This is violated in the region of boomerang oscil-
lations as seen in the last two wave functions. The amplitude
close to angle θ = 0 (corresponding to the value π on the y
axis) is larger than one may expect because it corresponds to
the hydrogen atom close to the carbon and the oxygen. This
is an artifact of our model since we extrapolated the poten-
tial Vd in this region from the scattering data in the angular
range θ = 90◦–180◦ which underestimated the potential in
this region. This feature of our model should not influence the
conclusions drawn from our calculations except for the details
of the shape of the cross sections in the boomerang oscillation
region.

F. Two-dimensional electron energy-loss spectrum

Finally, Fig. 9 shows cross-section curves as the two-
dimensional electron energy-loss spectrum, i.e., the cross
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FIG. 8. Absolute value of wave functions (left) at energies marked as vertical lines in the cross sections (right). The figure on the right also
shows the positions of the opening of individual vibrational excitation channels that are relevant for structures appearing in the cross sections.

section marked in color scale is plotted as a function of the
incident electron energy (vertical axis) and the electron energy
loss (horizontal axis). The picture is dominated by vertical
lines, marking the positions of the individual electron energy
losses associated with the respective final states of the neu-
tral molecule. The excitation of pure stretching vibration and
its overtones (ns, 0) dominate the spectrum. The individual
electron energy-loss lines exhibit a maximum near the reso-
nance electron energy Ei � 2.5 eV. The cross section is also
enhanced near the threshold line, as expected for the molecule
with a strong dipole moment. In addition to this expected be-
havior, we see a progression of structures for incident energies
Ei � 0.6–1.1 eV. From the previous discussion, we see that
this behavior is related to the expanded freedom of motion
of the anion close to the crossing with the potential-energy
surface of the neutral molecule and is associated with the ap-
pearance of the boomerang oscillations. This behavior is also
limited from above by the dissociative attachment threshold.

V. CONCLUSIONS

The main achievement of the presented work is the general-
ization of our nonlocal discrete-state-in-continuum approach,
which we used previously in diatomic molecules, to include

two degrees of freedom that can both participate in dissocia-
tive attachment. We developed new numerical methods to treat
the dynamics by expanding the angular degrees of freedom in
spherical harmonics and by calculating the Green’s function
in the dissociative attachment channel on the grid by nu-
merically solving the coupled-channel Schrödinger equation.
The final nonlocal dynamics is treated by the Schwinger-
Lanczos iteration scheme. The current work can be viewed
as complementary to our recent work [30–32] where we also
included more degrees of freedom in the nonlocal calculation,
but the dynamics was limited in space, allowing thus only
treatment of vibrational excitation. The currently developed
approach can be used for future calculations of other poly-
atomic molecules of interest in the description of various
processes of both technological and fundamental processes
that require inclusion of the dissociative attachment channel
(see, for example, Refs. [7,44]).

We also constructed a two-dimensional model for the dy-
namics of the HNCO− collision complex created in e− +
HNCO collision. The model parameters were extracted from
ab initio data for fixed-nuclei electron-molecule calculation
obtained with the R-matrix approach. We also applied the
methods developed here for the treatment of the dynamics of
this system. The results show that the inclusion of the bending
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FIG. 9. Two-dimensional electron energy-loss spectrum. The
color codes the cross section in the logarithmic scale. The discrete
energy loss spectrum is broadened by assuming a Gaussian
profile of 30meV FWHM in the horizontal direction. No broadening
in the incident energy (vertical direction) is applied to enhance the
structure due to the channel coupling and boomerang oscillations.

motion of the hydrogen atom does not significantly change
the outcome of the calculation for previously treated cross
sections of dissociative attachment and vibrational excitation
of the NH stretching motion. The uncertainty due to the choice
of parametrization made during the fitting procedure intro-
duces bigger error in the calculation than the restriction to 1D.
This validates previously published calculations treating the
collision using a 1D model and confirms that the dynamics is
essentially radial in the NH direction.

On the other hand, the current generalization of the model
allows for studying the coupling of the stretching and bending
vibration motion. We also show that the boomerang oscilla-
tions are not completely destroyed by the inclusion of the
bending motion. The 2D electron energy-loss spectrum was
also calculated for the model.
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APPENDIX A: CALCULATIONS OF THE VIBRATIONAL
STATES OF THE NEUTRAL MOLECULE

To find the vibrational states of the neutral molecule, we
have to solve Eq. (3). First, we expand the potential energy of
the neutral molecule in spherical harmonics:

V 0
JJ ′ (R) =

∫
YJ (θ )∗V0(R, θ )YJ ′ (θ )d�, (A1)

where J = (l, m) and d� means integration over the unit
sphere. Note that, since the potential V0 is axially symmetric
with respect to the z axis, we need only the spherical harmon-
ics with J = (l, m = 0), i.e.,

Yl (θ ) =
√

2l + 1

2π
Pl (cos θ ).

We now substitute the expansion of the vibrational wave func-
tion

|ν〉 =
∑

l

1

R
χνl (R)Yl (θ ) (A2)

into Eq. (3) to get the coupled set of equations

1

2M

(
− d2

dR2
+ l (l + 1)

R2

)
χνl (R)

+
N∑

l ′=0

V 0
ll ′χνl (R) = Eνχνl ′ (R), (A3)

where we introduced the cutoff N for the expansion into the
spherical functions. We represent this set in the Fourier basis
in the box R ∈ 〈0, Rmax〉, where Rmax is the cutoff radius and
find the eigenenergies Eν and eigenvectors in the matrix rep-
resentation. We ensured that both N and Rmax are sufficiently
large to achieve convergence.

APPENDIX B: PARAMETERS OF THE MODEL

In this Appendix (and Table I), we describe the de-
tails of the parametrization of the model functions Vd (R, θ ),
Vdε (R, θ ), and δBG(R, θ, ε). The angular dependence of these
terms is expanded in spherical harmonics. Since our model
is axially symmetric we only use functions with m = 0. The
energy dependence of the background phase shifts is given by
the low-energy behavior for molecules with the supercritical
dipole

Vdε (R, θ ) =
∑

n

fn(ε)gn(R, θ ) =
∑
n,l

fn(ε)gnl (R)Yl0(θ ).

(B1)

Two energy terms fn(ε) were used in the expansion

f1(ε) = e−βε,

f2(ε) = √
εe−βε.

We set β = 0.074 eV−1. Our numerical experiments with the
model indicate that the DA cross section is sensitive to value
of β. The chosen value is obtained from fitting the model in
the equilibrium geometry. The spatial part was described by
functions

g1l (R) = g11l e
−g12l (R−g13l )2

,

g2l (R) = g1l (R)[g21l − g22l e
−g23l (R−g24l )].

The anion potential surface has the form

Vd (R, θ ) =
∑

l

vl (R)Yl0(θ )

+ α

(R − 3)4 + (R − 3)2 + 408.2
,
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TABLE I. The values of model parameters used for the calculations. All values are in atomic units.

l = 0 1 2 3 4

v1l 227.9 18.39 18.35 18.39 18.4
v2l 2.714 4.415 3 2.806 2.646
v3l 0.02765 −0.03433 −0.05135 0.01049 −0.1082
v4l 1.024 1.256 2.46 1.068 1.652
g11l 0.1124 0.05198 −0.01995 0.03797 −0.1181
g12l −0.0108 1.206 0.07052 0.5527 1.63
g13l 1.814 1.55 0.7734 0.2933 0.4837
g21l 14.87 −7.779 6.183 7.89 −1.82
g22l 16.26 20.28 −0.7494 −0.2993 15.91
g23l 1.654 1.645 0.6362 1.203 0.873
g24l 1.92 0.3619 −0.2197 0.2445 −1.553
a1l 2.259 0.201 0.2004 −0.2364 −0.05685
a2l −0.9516 −0.0154 −0.1294 0.1032 0.04811
b1l −0.0901 −0.0121 0.05554 −0.1631 −0.02803
b2l 0.03377 −0.00968 −0.03879 0.08382 0.01215
c1l −0.2406 −0.8114 0.06296 −0.01097 −0.00642
c2l 0.07504 0.2472 −0.01836 0.004487 0.002301

where

vl (R) = v1l e
−v2l R + v3l e

−v4l R,

and the asymptotic behavior is given by the term proportional
to R−4, where α = 2.25 is the polarizability of the hydrogen
atom.

We have also included the asymptotic shift of the Vd to
obtain the correct threshold energy and threshold peak. The
input data for the construction of the model do not take
into account the change of equilibrium geometry of fragment
NCO as the hydrogen atom leaves the molecule. This re-
laxation of the geometry decreases the threshold energy. To
include the relaxation into the model we include an additional
term for Vd :

Ṽd = Vd − �E

1 + e−3(R−3)
,

where �E = 0.25 eV. The value of 0.25 eV gives lower
threshold energy (difference of 0.1 eV) but qualitatively better
threshold behavior of the DA cross section. The impact of
this change was previously investigated for the 1D model in
Ref. [1]. As a result of this change, the amplitude of the cross
section is higher by approximately 20% but the shape of the
cross-section curve remains unchanged.

The background eigenphase term was parametrized as

δBG(R, θ, ε) =
∑

l

δl (R, ε)Yl0(θ ).

The energy dependence of the background phase shifts δl

is chosen to be consistent with the low-energy behavior of
scattering on molecules with the supercritical dipole moment.
We assume a linear dependence on the radial coordinate:

δl (R, ε) = a1l + a2l R + (b1l + b2lR)
√

ε

+ (cl1 + cl2R)lnε.

For our final model, spherical harmonics up to l = 5
were used. We restricted the geometries used for the fitting
procedure in the range θ = 90◦–160◦ (centered around the

equilibrium angle of 123◦). We also modified the term in
electron-molecule coupling g1l

g̃1l (R) = g1l (R)

1 + e−2(R−3.1)
. (B2)

As the fitting procedure is limited only to radial distances up to
3 a.u., this modification is needed to ensure that the coupling
decreases sufficiently fast with radial distance.

APPENDIX C: NONLOCAL DISSOCIATIVE ATTACHMENT
DYNAMICS IN TWO DIMENSIONS

In this Appendix, we explain the numerical procedure to
solve the central equation of the nonlocal formalism

|ψ〉 = |φi〉 + Gd (E )F (E )|ψ〉, (C1)

with

|φi〉 = Gd (E )Vdεi |νi〉, (C2)

where εi is the energy of the incident electron and |νi〉 is the
initial vibrational state of the molecule (we assume that this is
the ground vibrational state). Nonlocal operator Gd (E ) is the
Green’s operator defined as

Gd (E ) = (E − TN − Vd + iε)−1, (C3)

and F (E ) is the nonlocal potential defined as

F (E ) =
∫

dεVdε (q)G0(E − ε, q, q′)Vdε (q′). (C4)

The energy E is the total energy of the system E = εi + Eνi .
Since the resonance is predominantly of the s-wave character
we assume that the discrete-state-continuum coupling is in-
dependent of the direction from which the incident electron
comes

Vdε (q) = 1√
4π

Vdε (R, θ ), (C5)

and the electron does not bring any angular momentum.
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Using the expansion of the neutral vibrational states (A2)
and expanding also the wave function |ψ〉,

ψ (R, θ ) =
∑

l

1

R
ψl (R)Yl (θ ), (C6)

in the spherical harmonics, we transform the main equa-
tion (C1) in the form

ψl (R) =
∑
l1l2

∫
dR′Gdll1 (E , R, R′)

×
{

Wl1l2 (R′)χνi l2 (R′)

+
∫

dR′′Fl1l2 (E , R′, R′′)ψl2 (R′′)

}
, (C7)

where we introduced the spherical harmonic expansion of the
discrete-state-continuum coupling element (B1),

Wll ′ (R) =
∑

n

W (n)
ll ′ (R) fn(εi ), (C8)

W (n)
ll ′ (R) =

∫
Yl (θ )gn(R, θ )Yl ′ (θ )d�, (C9)

and we also expanded the Green’s operator Gd (E ) and nonlo-
cal potential F (E ) in the spherical harmonics,

Gd (E ) =
∑
l1l2

Yl1 (θ )
1

R
Gdl1l2 (E , R, R′)

1

R′Yl2 (θ ′), (C10)

F (E ) =
∑
l1l2

Yl1 (θ )
1

R
Fl1l2 (E , R, R′)

1

R′Yl2 (θ ′). (C11)

The equation (C7) is solved for ψl (R) on the grid using the
Schwinger-Lanczos iteration algorithm [42] which is equiva-
lent to resummation of (in general divergent) Born series [45].
The generalization of the algorithm for the present case is
straightforward and we can use basically the same method as
for diatomic molecules. What remains is to derive formulae
to evaluate the expansion coefficients Fl1l2 for the nonlocal
potential and Gdl1l2 for the Green’s function in the local
potential Vd .

1. Evaluation of nonlocal potential F(E )

To proceed with the evaluation of the nonlocal potential ex-
pansion Fl1l2 we must project the definition (C4) on spherical
harmonics. In doing this we use the expansion coefficients of
the discrete-state-continuum coupling W (n)

l1l2
introduced above

in formula (B1)

Vdε =
∑

n

∑
l1l2

Yl1 (θ )W (n)
l1l2

(R) fn(ε)Yl2 (θ ′), (C12)

and we also expand the Green’s function G0(E ) into bound
states of the neutral molecule

G0(E ) =
∑

ν

|ν〉〈ν|
E − Eν + iε

(C13)

=
∑
νl1l2

Yl1 (θ )
1

R

χνl1 (R)χνl2 (R′)
E − Eν

1

R
Yl2 (θ ′). (C14)

When these expansions are substituted into the definition (C4)
we also have to perform the integral transformation

Fmn(E ) =
∫

dε
fm(E ) fn(E )

E − ε + iε
. (C15)

This has the same form as the integrals which we used already
for the 1D model in Ref. [1,2] and can be expressed in terms
of the incomplete gamma function [46]. We therefore assume
that the functions Fmn(E ) are known. We have now all the
ingredient to conclude that

Fll ′ (E , R, R′) =
∑

ν

∑
mn

∑
l1l2

W (m)
ll1

(R)χνl1 (R)Fmn

× (E − Eν )χνl2 (R)W (n)
l2l ′ (R). (C16)

This expression can further be simplified by precalculating the
sum

U (n)
νl (R) =

∑
l1

W (n)
ll1

(R)χνl1 (R), (C17)

so that

Fll ′ (E , R, R′) =
∑

ν

∑
mn

U (m)
νl (R)Fmn(E − Eν )U (n)

νl ′ (R).

(C18)

Similar expansions are then used to calculate T -matrix
elements given by

TV E = 〈ν f |Vdε f |ψ〉. (C19)

Inserting the spherical harmonics expansion we obtain

TV E =
∫

dR
∑

n

∑
ll ′

χν f l (R)W (n)
ll ′ (R) fn(ε f )ψl ′ (R),

=
∫

dR
∑

n

∑
l

U (n)
ν f l (R) fn(ε f )ψl (R). (C20)

2. Evaluation of Green’s function Gd

To obtain the partial-wave expansion of Green’s func-
tion for general potential Vd we follow derivation from
Ref. [47]. This approach expresses Green’s function as a com-
bination of sets of solutions of the underlying Schrödinger
equation, one set being regular at origin and one regular
at infinity. This is the generalization of the same prob-
lem from scattering in a spherically symmetric potential
[48]. Using the spherical harmonic expansion of the general
solution,

φ(R, θ ) =
∑

J

1

R
φJ (R)YJ (θ ), (C21)

we get the set of coupled equations

− d2

dR2
φl (R) +

N∑
l ′=0

V d
ll ′φl (R) = K2φl (R), (C22)

where we introduced potential matrix elements

V d
l ′l = 2M

∫
Yl ′ (θ )Vd (R, θ )Yl (θ )dθ + l (l + 1)

R2
δll ′ . (C23)
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By imposing regular boundary conditions at the ori-
gin φJ (0) = 0 we obtain a set of linearly independent
solutions φR

Jl indexed by J with components l . Sim-
ilarly imposing incoming boundary condition as R →
∞ in the diagonal form φJl = −ih+

l (KR)δJl we obtain
set of solutions φI

Jl . Then the expression for calculat-
ing Green’s function elements can be written in matrix
form:

g(R, R′)

= φR(R)(A−1)T φI (R′)�(R′ − R)

+ φI (R)A−1φI (R′)�(R − R′), (C24)

where � is the Heaviside step function and M is a constant
matrix computed from the expression

A = φI (R)
T d

dR
φR(R) − φI (R)

T d

dR
φR(R). (C25)

Even though this expression is seemingly dependent of R, A
is a constant matrix (see Ref. [47] for details) and can be
evaluated at an arbitrary point R. One of the advantages of
this approach is the relative simplicity of obtaining the set of
solutions. Solutions can be calculated by simply integrating
from the boundary conditions outward/inward, which can be
done over long distances. This allows us to construct Green’s
function even for long-range potentials on a grid.
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Kolorenč, and J. Horáček, Electron scattering in HCl: An im-
proved nonlocal resonance model, Phys. Rev. A 81, 042702
(2010).

[36] P. Knowles, C. Hampel, and H. Werner, Coupled-cluster theory
for high-spin, open-shell reference wave-functions, J. Chem.
Phys. 99, 5219 (1993).

[37] M. J. O. Deegan and P. J. Knowles, Perturbative corrections to
account for triple excitations in closed and open-shell coupled-
cluster theories, Chem. Phys. Lett. 227, 321 (1994).

[38] T. H. Dunning, Gaussian-basis sets for use in correlated
molecular calculations. 1. The atoms boron through neon and
hydrogen, J. Chem. Phys. 90, 1007 (1989).

[39] H.-J. Werner, P. J. Knowles et al., MOLPRO, version 2012, a
package of ab initio programs, see https://www.molpro.net.

[40] Z. Mašín, J. Benda, J. D. Gorfinkiel, A. G. Harvey, and J.
Tennyson, UKRmol+: A suite for modelling electronic pro-
cesses in molecules interacting with electrons, positrons and
photons using the R-matrix method, Comput. Phys. Commun.
249, 107092 (2020).

[41] J. Tennyson, Electron–molecule collision calculations using the
R-matrix method, Phys. Rep. 491, 29 (2010).
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